一种基于物联网的湿地保护与开发的优化分析方法与流程

文档序号:15388290发布日期:2018-09-08 00:50阅读:274来源:国知局

本发明属于湿地保护与开发技术领域,尤其涉及一种基于物联网的湿地保护与开发的优化分析方法。



背景技术:

湿地指天然或人工形成的沼泽地等带有静止或流动水体的成片浅水区,还包括在低潮时水深不超过6米的水域。湿地与森林、海洋并称全球三大生态系统,在世界各地分布广泛。湿地生态系统中生存着大量动植物,很多湿地被列为自然保护区。然而,现有的湿地分析需要人工到现场进行采集分析,这种方式工作效率低,数据不准确。

综上,现有技术存在的问题是:现有的湿地分析需要人工到现场进行采集分析,这种方式工作效率低,数据准确率低,导致湿地开发与保护不能有效结合。



技术实现要素:

针对现有技术存在的问题,本发明提供了一种基于物联网的湿地保护与开发的优化分析方法。

本发明是这样实现的,一种基于物联网的湿地保护与开发的优化分析方法,所述基于物联网的湿地保护与开发的优化分析方法包括以下步骤:

步骤一,数据采集终端通过无线信号连接无线局域网络,实时监测湿地覆盖的区域中植物生长状况,以及湿地功能运作状况;将检测的数据信息发送到网络中;

所述无线局域网络的ip地址动态分配方法利用协议中周期性广播的hello包来传送ip地址,每个节点建立表格来存储ip和mac的对应关系,节点在收到hello包时,判断hello包携带的ip地址是否和表中的冲突,冲突则发送冲突通知给冲突节点,冲突节点重新生成ip地址,并丢弃此hello包;反之,继续处理hello包;

该无线局域网中ip地址动态分配方法包括两个新的帧结构和一个新的发送/接收函数;

所述无线局域网络的总链路质量的计算公式为:

qos=new_qos-data_len-skb_size-rtt-pacloss-signal

其中,qos为总链路质量,data_len为发送数据长度,skb_size为接收缓冲队列长度,rtt为平均时延,pacloss为丢包率,signal为信号强度的绝对值;

其中,node_number_punishment为中间路径上设置的跳数惩罚,

combined_qos=hello_qos×qos_own×qos_different_lq_punishment

其中,hello_qos为hello广播包中关于链路质量的信息,

qos_different_lq_punishment为链路非对称惩罚,其算法为:

步骤二,通过数据优化平台设定的评判标准,对数据采集终端采集的湿地数据建立数据模型,分析湿地的状况,并设计湿地保护开发方案;

所述数据采集终端安全数据检索方法包括以下步骤:

步骤一,传感器si完成一个周期的数据采集,采集的数据为(i,t,{d1,d2,…,dn}),其中i为传感器号,t为周期号;si首先采用aes对数据{d1,d2,…,dn}进行加密,生成加密数据{(d1)k,(d2)k,…,(dn)k},其中k为数据加密密钥;

步骤二,si为每一个数据构建一个不可区分布鲁姆过滤器,且每一个不可区分布鲁姆过滤器分配一个唯一的id号,对数据dj,si构建一个分配id号为ij的不可区分布鲁姆过滤器bij;

步骤三,si将加密数据、对应的不可区分布鲁姆过滤器以及其id号上传到存储节点,上传的数据形式为:{(i1,bi1,(d1)k),(i2,bi2(d2)k),…,(in,bin,(dn)k)};

所述不可区分布鲁姆过滤器bij构造方法如下:

(1)对bij进行初始化,对每一个对0<=c<m,单元b[c][h(ij||hk+1(t||c))]:=0,b[c][1-h(ij||hk+1(t||a))]:=1;

(2)采用h1,h2,…,hk计算h1(dj),h2(dj),…,hk(dj);置b[hf(dj)][h(ij||hk+1(t||hf(dj)))]:=1,b[hf(dj)][1-h(ij||hk+1(t||hf(dj)))]:=0,其中1<=f<=k;

所述步骤三具体包括:

sink节点需要检索数据值d是否存在,生成检索条件为:{(hk+1(t||h1(d)),h1(d)),(hk+1(t||h2(d)),h2(d)),…,(hk+1(t||hk(d)),hk(d))};

当存储节点接收到检索条件{(hk+1(t||h1(d)),h1(d)),(hk+1(t||h2(d)),h2(d)),…,(hk+1(t||hk(d)),hk(d))},对每一个不可区分布鲁姆过滤器bij的第h1(d),h2(d),…,hk(d),判断bij[hf(d)][h(ij||hk+1(t||hf(d)))]的值是否全部为1,其中1<=f<=k,如果全为1,则对应的数据满足查询条件,否则对应的数据不满足查询条件;存储节点把所有满足查询条件的加密数据返回给sink节点;

sink节点接收到存储节点返回的加密数据后,首先对数据进行解密,并排除由于假阳性带来的实际不满足查询条件的数据;

进一步,所述数据采集终端包括无线摄像头、温度传感器、湿地传感器、光照传感器、水质监测器;

无线摄像头,用于对湿地整体区域进行监控采集;

所述无线摄像头的图像传输方法首先比较相邻两帧图像,找出所有图像变化的区域,然后根据变化像素点的坐标得到面积最小的不重叠矩形区域的集合;每次只发送矩形区域集合所包含的图像数据和对应坐标信息;

根据像素点的坐标得到变化矩形区域,式(1)和式(2)是根据变化像素点来判断矩形r范围的算式;

rl≤pxandrt=pyi(1)

rr≥pxandrb≥py(2)

其中rl和rt代表矩形左上角的横坐标和纵坐标,rr和rb代表矩形右下角的横坐标和纵坐标,px和py代表变化像素点的横坐标和纵坐标,py0代表第一次变化像素点的纵坐标;根据式(1)和式(2)求得变化矩形区域的范围;先将前后相邻两幅位图的数据保存下来,并判断前后两帧屏幕所对应像素的值是否变化;当第一次检测到变化的采样点时,会将变化采样点的坐标(px0,py0)进行记录,作为变化矩形区域的左上角坐标(rl,rt),并且将行无变化标识为false;继续对比,当再次检测到不同采样点时,先将行无变化标识为false,接着将采样点的横坐标px同矩形左上角的横坐标rl进行比较并取最小值,同时矩形右下角的坐标(rr,rb)会和点的坐标(px,py)比较并取最大值;即:

rl=min(pxi,rl)(i>1)rt=pyi(i=1)

rr=max(rxi,rr)(i>1)rb=max(ryi,rb)(i>1)

当检测到某行采样点值全部都相同时,得到一个变化的矩形区域块;

在一个扫描区域中对变化区域进行矩形分割算法采用隔列直接比较法判断前后图像缓冲区中两帧屏幕图像所对应像素是否变化从而找出变化的矩形区域;按照从上到下,从左到右的原则,基于矩形分割隔列扫描的图像传输方法找出后一帧图像相对于前一帧图像所有变化区域并基于矩形分割算法得到面积最小的不重叠矩形区域的集合;

温度传感器,用于对湿地的温度状况进行检测采集;

湿地传感器,用于对湿地的湿度状况进行检测采集;

光照传感器,用于对湿地的光照强度状况进行检测采集;

水质监测器,用于对湿地的水质状况进行检测采集。

进一步,所述数据优化平台包括:数据归类模块、数据建模模块、数据分析模块、数据决策模块;

数据归类模块,用于对大量的湿地采集的数据进行归类;

数据建模模块,用于对湿地采集的数据建立数学模型,科学的计算湿地场景;

数据分析模块,用于通过构建的数学模型,进行优化分析,并设计出科学合理的开发方案。

进一步,所述对湿地采集的数据建立数学模型为:

根据湿地水量平衡方程写出:

得到湿地水质迁移转化方程:

式中:v表示反应器的容积,q0,q表示流入与流出反应器的物质流量,c0表示输入反应器的湿地污染物浓度,c表示输出反应器湿地污染物浓度,r湿地污染物的反应浓度,s湿地污染物的源与汇。

进一步,所述通过构建的数学模型为:湿地采集的数据s=(u,a∪d),其中u为论域对象的非控有限集合,a和d分别为属性集和决策属性,且对于有a:u→va,其中va是属性a的值集,设r施由条件属性a在论域u上定义的一个等价关系,r将论域u中的元素划分成各不相交的等价类:u/r={q1,q2,…,qn},决策类集合为d(y)={y1,y2,…yn}。

本发明的优点及积极效果为:本发明通过数据采集终端连接无线网络,可以实时无线远程监控采集数据;通过数据优化平台对湿地的分析可以提高数据准确性,促使更加有效的对湿地进行开发。

附图说明

图1是本发明实施提供的基于物联网的湿地保护与开发的优化分析方法流程图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

下面结合附图对本发明的应用原理作进一步描述。

本发明提供一种基于物联网的湿地保护与开发的优化分析方法包括以下步骤:

步骤s101,数据采集终端通过无线信号连接无线局域网络,实时监测湿地覆盖的区域中植物生长状况,以及湿地功能运作状况;将检测的数据信息发送到网络中;

步骤s102,通过数据优化平台设定的评判标准,对数据采集终端采集的湿地数据建立数据模型,分析湿地的状况,并设计湿地保护开发方案。

本发明提供的步骤s101中数据采集终端包括无线摄像头、温度传感器、湿地传感器、光照传感器、水质监测器;

无线摄像头,用于对湿地整体区域进行监控采集;

温度传感器,用于对湿地的温度状况进行检测采集;

湿地传感器,用于对湿地的湿度状况进行检测采集;

光照传感器,用于对湿地的光照强度状况进行检测采集;

水质监测器,用于对湿地的水质状况进行检测采集。

本发明提供的步骤s102数据优化平台包括:数据归类模块、数据建模模块、数据分析模块、数据决策模块;

数据归类模块,用于对大量的湿地采集的数据进行归类;

数据建模模块,用于对湿地采集的数据建立数学模型,科学的计算湿地场景;

数据分析模块,用于通过构建的数学模型,进行优化分析,并设计出科学合理的开发方案。

对湿地采集的数据建立数学模型为:

根据湿地水量平衡方程写出:

得到湿地水质迁移转化方程:

式中:v表示反应器的容积,q0,q表示流入与流出反应器的物质流量,c0表示输入反应器的湿地污染物浓度,c表示输出反应器湿地污染物浓度,r湿地污染物的反应浓度,s湿地污染物的源与汇。

通过构建的数学模型为:湿地采集的数据s=(u,a∪d),其中u为论域对象的非控有限集合,a和d分别为属性集和决策属性,且对于有a:u→va,其中va是属性a的值集,设r施由条件属性a在论域u上定义的一个等价关系,r将论域u中的元素划分成各不相交的等价类:u/r={q1,q2,…,qn},决策类集合为d(y)={y1,y2,…yn}。

所述无线局域网络的ip地址动态分配方法利用协议中周期性广播的hello包来传送ip地址,每个节点建立表格来存储ip和mac的对应关系,节点在收到hello包时,判断hello包携带的ip地址是否和表中的冲突,冲突则发送冲突通知给冲突节点,冲突节点重新生成ip地址,并丢弃此hello包;反之,继续处理hello包;

该无线局域网中ip地址动态分配方法包括两个新的帧结构和一个新的发送/接收函数;

所述无线局域网络的总链路质量的计算公式为:

qos=new_qos-data_len-skb_size-rtt-pacloss-signal

其中,qos为总链路质量,data_len为发送数据长度,skb_size为接收缓冲队列长度,rtt为平均时延,pacloss为丢包率,signal为信号强度的绝对值;

其中,node_number_punishment为中间路径上设置的跳数惩罚,

combined_qos=hello_qos×qos_own×qos_different_lq_punishment

其中,hello_qos为hello广播包中关于链路质量的信息,

qos_different_lq_punishment为链路非对称惩罚,其算法为:

步骤二,通过数据优化平台设定的评判标准,对数据采集终端采集的湿地数据建立数据模型,分析湿地的状况,并设计湿地保护开发方案;

所述数据采集终端安全数据检索方法包括以下步骤:

步骤一,传感器si完成一个周期的数据采集,采集的数据为(i,t,{d1,d2,…,dn}),其中i为传感器号,t为周期号;si首先采用aes对数据{d1,d2,…,dn}进行加密,生成加密数据{(d1)k,(d2)k,…,(dn)k},其中k为数据加密密钥;

步骤二,si为每一个数据构建一个不可区分布鲁姆过滤器,且每一个不可区分布鲁姆过滤器分配一个唯一的id号,对数据dj,si构建一个分配id号为ij的不可区分布鲁姆过滤器bij;

步骤三,si将加密数据、对应的不可区分布鲁姆过滤器以及其id号上传到存储节点,上传的数据形式为:{(i1,bi1,(d1)k),(i2,bi2(d2)k),…,(in,bin,(dn)k)};

所述不可区分布鲁姆过滤器bij构造方法如下:

(1)对bij进行初始化,对每一个对0<=c<m,单元b[c][h(ij||hk+1(t||c))]:=0,b[c][1-h(ij||hk+1(t||a))]:=1;

(2)采用h1,h2,…,hk计算h1(dj),h2(dj),…,hk(dj);置b[hf(dj)][h(ij||hk+1(t||hf(dj)))]:=1,b[hf(dj)][1-h(ij||hk+1(t||hf(dj)))]:=0,其中1<=f<=k;

所述步骤三具体包括:

sink节点需要检索数据值d是否存在,生成检索条件为:{(hk+1(t||h1(d)),h1(d)),(hk+1(t||h2(d)),h2(d)),…,(hk+1(t||hk(d)),hk(d))};

当存储节点接收到检索条件{(hk+1(t||h1(d)),h1(d)),(hk+1(t||h2(d)),h2(d)),…,(hk+1(t||hk(d)),hk(d))},对每一个不可区分布鲁姆过滤器bij的第h1(d),h2(d),…,hk(d),判断bij[hf(d)][h(ij||hk+1(t||hf(d)))]的值是否全部为1,其中1<=f<=k,如果全为1,则对应的数据满足查询条件,否则对应的数据不满足查询条件;存储节点把所有满足查询条件的加密数据返回给sink节点;

sink节点接收到存储节点返回的加密数据后,首先对数据进行解密,并排除由于假阳性带来的实际不满足查询条件的数据。

所述无线摄像头的图像传输方法首先比较相邻两帧图像,找出所有图像变化的区域,然后根据变化像素点的坐标得到面积最小的不重叠矩形区域的集合;每次只发送矩形区域集合所包含的图像数据和对应坐标信息;

根据像素点的坐标得到变化矩形区域,式(1)和式(2)是根据变化像素点来判断矩形r范围的算式;

rl≤pxandrt=pyi(1)

rr≥pxandrb≥py(2)

其中rl和rt代表矩形左上角的横坐标和纵坐标,rr和rb代表矩形右下角的横坐标和纵坐标,px和py代表变化像素点的横坐标和纵坐标,py0代表第一次变化像素点的纵坐标;根据式(1)和式(2)求得变化矩形区域的范围;先将前后相邻两幅位图的数据保存下来,并判断前后两帧屏幕所对应像素的值是否变化;当第一次检测到变化的采样点时,会将变化采样点的坐标(px0,py0)进行记录,作为变化矩形区域的左上角坐标(rl,rt),并且将行无变化标识为false;继续对比,当再次检测到不同采样点时,先将行无变化标识为false,接着将采样点的横坐标px同矩形左上角的横坐标rl进行比较并取最小值,同时矩形右下角的坐标(rr,rb)会和点的坐标(px,py)比较并取最大值;即:

rl=min(pxi,rl)(i>1)rt=pyi(i=1)

rr=max(rxi,rr)(i>1)rb=max(ryi,rb)(i>1)

当检测到某行采样点值全部都相同时,得到一个变化的矩形区域块;

在一个扫描区域中对变化区域进行矩形分割算法采用隔列直接比较法判断前后图像缓冲区中两帧屏幕图像所对应像素是否变化从而找出变化的矩形区域;按照从上到下,从左到右的原则,基于矩形分割隔列扫描的图像传输方法找出后一帧图像相对于前一帧图像所有变化区域并基于矩形分割算法得到面积最小的不重叠矩形区域的集合。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1