一种人流密度预测方法、装置及存储介质与流程

文档序号:15695574发布日期:2018-10-19 18:59阅读:1303来源:国知局
一种人流密度预测方法、装置及存储介质与流程

本发明实施例涉及大数据技术领域,尤其涉及一种人流密度预测方法、装置及存储介质。



背景技术:

人流密度是一种重要的城市基础数据,不论在城市交通管理还是城市公共安全管理中都有着极为重要的作用。目前对人流密度数据的获取方法基本都属于硬件方法,包括视频检测和感应环检测,视频检测易受到光线的影响,而感应环需对道路进行开凿施工,推广极为不易。这些方法虽然获取的数据较为准确,但如果进行大范围的数据获取,则会出现实施困难,效率不高的缺陷。因此,找到一种高效且便于广泛应用的人流密度预测方法,就成为业界亟待解决的问题。



技术实现要素:

针对现有技术存在的上述问题,本发明实施例提供了一种人流密度预测方法、装置及存储介质。

一方面,本发明实施例提供了一种人流密度预测方法,包括:获取人流密度的时间变化曲线,对曲线进行拟合得到人流密度拟合曲线,根据所述人流密度拟合曲线得到相应的人流密度拟合函数;获取待预测道路的人流密度数据,将所述待预测道路的人流密度数据代入所述人流密度拟合函数,得到待预测道路拟合函数特征参量;根据所述待预测道路拟合函数特征参量得到待预测道路人流密度时间变化曲线函数,并根据所述待预测道路人流密度时间变化曲线函数预测待预测道路的人流密度。

另一方面,本发明实施例提供了一种主动交互装置及一种非暂态可读存储介质。所述一种主动交互装置包括:至少一个处理器;以及与所述处理器通信连接的至少一个存储器,其中:所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行所述一种人流密度预测方法。所述一种非暂态可读存储介质存储程序指令,用于执行所述一种人流密度预测方法。

本发明实施例提供了一种人流密度预测方法、装置及存储介质,通过人流密度拟合出人流密度曲线,得到相应的人流密度拟合函数,再根据具体路况获取人流密度拟合函数的参量,然后得到具体路况可用的有效人流密度拟合函数对人流密度情况进行预测。该方法、装置及存储介质可以广泛应用于人流密度预测领域,对人流密度的预测效率较高。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明第一实施例中人流密度预测方法的整体流程图;

图2是本发明第一实施例中人流密度曲线示意图;

图3是本发明第一实施例中人流密度多峰拟合曲线示意图;

图4是本发明实施例的硬件装置工作示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明实施例提供了一种人流密度预测方法、装置及存储介质。参见图1,图1是本发明第一实施例中人流密度预测方法的整体流程图,包括:

s101:获取人流密度的时间变化曲线,对曲线进行拟合得到人流密度拟合曲线,根据所述人流密度拟合曲线得到相应的人流密度拟合函数。

通过统计分析,得到每个路段的人流密度以24小时呈周期性变化(即,人流密度的时间变化曲线的变化周期包括:24小时为一个变化周期),而单周期内的人流密度曲线呈多峰曲线。在很多工程实际问题中,随机变量的概率密度函数的图形存在两个峰值。一般的分布函数只有一个峰值或没有峰值,而进行多峰拟合可以很好的描述这种具有双峰或多峰形态的变量。利用origin工具进行多峰高斯拟合分析,可以得到人流密度的多峰拟合曲线,其拟合的高斯函数如下式所示:

其中y0为基线,b为峰面积,w为该峰的半高宽,xc为峰位置。

参见图2,图2是本发明第一实施例中人流密度曲线示意图,包括:

人流量密度轴201、时间轴202、平均人流密度203及数据平滑曲线204。

选取某一路段的人流量,以每小时为时间间隔对人流进行统计,以人流密度为例,将数据进行五点三次平滑后得到曲线如图2所示。由图可知,数据平滑曲线204与平均人流密度203的基本趋势保持一致。

针对人流密度进行拟合分析,设置峰个数为2,并输出y0,b1,b2,w1,w2,xc1,xc2等参数,拟合相识度为0.961。

由人流密度数据进行多峰拟合后得到的高斯多峰拟合曲线满足下列关系式:

高斯函数中,xc为峰位置,在式(2)中,xc1表示夜间人流密度的低峰,而xc2为午高峰或晚高峰时刻,这在全市道路上具有普遍性;w1及w2为对应峰的半高宽,在人流密度曲线中,各高峰时间段的时长基本可以视为一致;b1及b2为峰面积即峰曲线与基线所围成的面积,该值与道路本身的差异性有关,但由于本文选取的统计量为人流密度,即单位面积内的人数量,因此同样标准道路的峰面积具有一致性。

s102:获取待预测道路的人流密度数据,将所述待预测道路的人流密度数据代入所述人流密度拟合函数,得到待预测道路拟合函数特征参量。

参见图3,图3是本发明第一实施例中人流密度多峰拟合曲线示意图,包括:

人流密度轴301、时间轴302、第二峰值拟合曲线303、第一峰值拟合曲线304、多峰拟合曲线305及数据平滑曲线306。两条曲线所输出的参量为b1,b2,w1,w2,xc1,xc2。其中,b1、w1及xc1是第一峰值拟合曲线304的输出参量。b2、w2及xc2是第二峰值拟合曲线303的输出参量。

s103:根据所述待预测道路拟合函数特征参量得到待预测道路人流密度时间变化曲线函数,并根据所述待预测道路人流密度时间变化曲线函数预测待预测道路的人流密度。

由上述输出参量可以得到任意一条道路的人流密度特征曲线函数,将该路某一时刻的人流密度数据(x1,y1)代入该式,可求得y0,从而可以通过计算获得24小时内任意时刻x所对应的人流密度y,如下式:

本发明第二实施例基于第一实施例。其中,所述获取人流密度的时间变化曲线,包括:统计典型道路的人流密度数据(在另一实施例中,所述统计典型道路的人流密度数据,包括:根据电动车的长、宽、高及车距获取人流密度数据。其中,所述车距包括:前后车距及左右车距。在又一实施例中,所述统计典型道路的人流密度数据,包括:根据人的社交距离获取人流密度数据),对所述典型道路的人流密度数据进行统计分析得到人流密度的时间变化曲线。

本发明第三实施例基于第二实施例。其中,所述统计典型道路的人流密度数据,包括:

将电动车的长与前后车距求和得到人纵向占位距离,将电动车的宽与左右车距求和得到人横向占位距离,将所述人纵向占位距离与所述人横向占位距离求积,然后取所述积的倒数得到人流密度数据。

具体地,以道路上人流主要存在形式为骑行电动车为例。电动车的长假设为1.875m,宽假设为0.85m,高假设为1.1m,前后车距及左右车距均为1m,按车上载1人计算,则每平米人数量为1/[(1.875+1)*(0.85+1)]=0.188人/m2

本发明第四实施例基于第二实施例。其中,所述统计典型道路的人流密度数据,包括:

以所述人的社交距离的一半作为社交半径,以所述社交半径获取社交圆的面积,然后取所述社交圆的面积的倒数得到人流密度数据。

具体地,以道路上人流主要的存在形式为步行为例。人的社交距离假设为1.2m,则每平米人数量为1/[3.14*0.6*0.6]=0.885人/m2

参见图4,图4是本发明实施例的硬件装置工作示意图,所述硬件装置包括:一种人流密度预测装置401、处理器402及存储介质403。

人流密度预测装置401:所述一种人流密度预测装置401实现所述一种人流密度预测方法。

处理器402:所述处理器402加载并执行所述存储介质403中的指令及数据用于实现所述的一种人流密度预测方法。

存储介质403:所述存储介质403存储指令及数据;所述存储介质403用于实现所述的一种人流密度预测方法。

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)执行各个实施例或者实施例的某些部分所述的方法。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1