一种基于微观组织退化的马氏体钢的高温强度预测方法与流程

文档序号:16264633发布日期:2018-12-14 21:50阅读:835来源:国知局
一种基于微观组织退化的马氏体钢的高温强度预测方法与流程

本发明属于材料技术领域,具体涉及一种基于微观组织退化的马氏体钢的高温强度预测方法。

背景技术

燃煤为主的能源结构是我国雾霾天气的主要成因之一,而燃煤发电是我国目前最主要的发电方式,该趋势将长期存在。面对我国资源开发和环境保护的巨大压力,超超临界机组通过提高蒸汽参数和蒸汽温度,是目前清洁、高效发电的首选。然而,长期高温服役下会导致材料的微观组织退化,从而会大大降低材料的高温强度,严重威胁机组的安全运行,因此,对于长期高温服役下的结构,在超超临界机组的结构设计与在役评估中,由于长期服役诱导微观组织退化而导致的高温强度降低应该被考虑,从而对长期高温服役下的结构达到科学精确的评估。

几十年来,针对于长期服役的高温结构,研究者往往关注于其微观组织的退化机制,以及随后导致的蠕变强度下降的问题。实际上,材料的微观组织退化往往也会导致高温强度的下降。关于微观组织与强度的定量关系很少被研究,尤其是针对于长期高温服役的结构。然而,由于长期高温服役导致的微观组织退化的复杂性和高温试验的耗时性,一直没有发展考虑高温服役条件下基于微观组织退化的高温强度预测方法。因此,建立考虑高温服役的微观组织退化的高温强度预测方法是保证机组安全运行的关键。



技术实现要素:

本发明提出了一种基于微观组织退化的马氏体钢/铁素体钢的高温强度预测方法,即在高温服役条件下基于微观组织退化的高温强度预测模型。利用材料的不同强化机制对屈服强度的贡献,引入高温服役条件下材料的关键微观组织参量,计算具有高温服役损伤状态的高温屈服强度。

本发明是通过以下技术方案实现的:

一种基于微观组织退化的马氏体钢的高温强度预测方法,包括以下步骤:

步骤1,样品制备,将待测材料加工成外形尺寸完全相同的多个蠕变试样;

步骤2,将所述蠕变试样在蠕变条件下进行蠕变试验,获得多个不同蠕变损伤状态的蠕变试样,所述蠕变条件包括蠕变温度,蠕变压力,所述蠕变温度高于所述蠕变试样的熔点的0.4倍,所述蠕变压力低于所述蠕变试样的屈服强度;

步骤3,对步骤2得到的所述不同蠕变损伤状态的蠕变试样进行显微测试技术表征,得到所述不同蠕变损伤状态的蠕变试样的微观组织参数,所述微观组织参数包括:θ晶粒之间的局部取向差,单位为rad;λm马氏体板条结构的平均宽度,单位为nm;ni第i种析出相的数量密度,单位μm-2;所述显微测试技术表征包括tem表征方法和ebsd表征方法;

步骤4,计算所述不同蠕变损伤状态的蠕变试样的屈服强度,计算过程如下:

首先定义计算屈服强度的方法,其计算公式为:

σy是需要计算得到的屈服强度,单位是mpa;

(ⅰ)中:τa是位错对屈服强度的贡献,单位是mpa,

其中:α1是材料常数,取值范围0.2~0.5,单位为1,m是泰勒因子,取值为3,单位为1,g是剪切模量,取值为48,单位为gpa,b是伯氏矢量,取值为0.253,单位为nm,ρ是位错密度,单位为μm-2,ρ的计算公式:

其中:θ是晶粒之间的局部取向差,单位为rad;μ是ebsd测试的扫描步长,单位为nm;

(ⅰ)中:τb是障碍对屈服强度的贡献,单位是mpa,

τb=τb+τp

其中:τb是晶界对屈服强度的贡献,单位为mpa,τp是析出相对屈服强度的贡献,单位为mpa。τb的计算公式:

τb=α2gb/λm

其中:α2是材料常数,取值范围2~3,单位为1;λm是马氏体板条结构的平均宽度,单位为nm;τp的计算公式:

其中:nt是多种析出相的总数量密度,单位μm-2;λe是多种析出相之间的当量平均间距,单位为nm;是多种析出相对屈服强度的当量贡献,单位为mpa;fb是晶界和马氏体边界的析出相占总的析出相的比例,单位为1;是弥散分布于基体的析出相对屈服强度的当量贡献,单位为mpa;是分布于晶界和马氏体板条界的析出相对屈服强度的当量贡献,单位为mpa。

上述技术方案中,不同蠕变损伤状态的蠕变试样的局部取向差θ由ebsd测试手段表征获得;不同蠕变损伤状态的蠕变试样的马氏体板条结构的平均宽度λm由tem测试手段表征获得;ni是第i种析出相的数量密度,由tem测试手段表征获得。

上述技术方案中,是弥散分布于基体的析出相对屈服强度的当量贡献,包括:富铜析出相对屈服强度的当量贡献和mx碳氮化物析出相对屈服强度的当量贡献,单位为mpa;是分布于晶界和马氏体板条界的析出相对屈服强度的当量贡献,包括:laves相对屈服强度的当量贡献和m23c6碳化物对屈服强度的当量贡献,单位为mpa。

本发明的优点和有益效果为:

本发明提出了长时高温服役条件下基于微观组织退化的高温强度预测模型,能够预测由于长期高温服役导致的材料微观组织退化的高温强度,可进一步保证高温结构的安全服役。

附图说明

图1是实施例1中蠕变试样示意图。

图2是实施例1中不同蠕变损伤状态的蠕变试样的屈服强度的预测值与实验值的比较。

对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。

具体实施方式

为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。

实施例1

一种基于微观组织退化的马氏体钢的高温强度预测方法,包括以下步骤:

步骤1,选取新型马氏体耐热钢g115,制备成以标距长度为40mm,直径为5mm的圆棒作为研究对象的蠕变试样;

步骤2,将所述蠕变试样在650℃下施加140mpa的应力,获得不同时效的蠕变损伤状态下的试样蠕变试验;

步骤3,对步骤2得到的所述不同蠕变损伤状态的蠕变试样进行显微测试技术表征,得到所述不同蠕变损伤状态的蠕变试样的微观组织参数,所述微观组织参数包括:θ晶粒之间的局部取向差,单位为rad;λm马氏体板条结构的平均宽度,单位为nm;ni第i种析出相的数量密度,单位μm-2;所述显微测试技术表征包括tem表征方法和ebsd表征方法;其中各种析出相的数量密度和马氏体板条宽度通过tem技术获得。首先通过机械磨到50μm,然后在一个5%硝酸和95%酒精的溶液下进行电解双喷(tenupol-5,struers),电解双喷测试在15℃下以一个50v的电压条件下进行,获得用于检测tem的标准试样,这个tem检测使用feitecnaif20型号设备在200kv下测试,具体可参考文献:a.aghajani,ch.somsen,g.eggeler,ontheeffectoflong-termcreeponthemicrostructureofa12%chromiumtemperedmartensiteferriticsteel,actamater.57(2009)5093-5106。另外,材料的位错密度通过ebsd技术获得。首先对机械加工的块状试样进行标准的磨抛,然后在一个体积比1:1:2的磷酸,酒精和蒸馏水的溶液中电解抛光,获得标准的ebsd试样。该ebsd检测使用feiquanta3dfeg双聚焦设备在30kv和16na条件下以400nm的扫描步长下进行,具体可参考文献:b.xiao,l.y.xu,l.zhao,h.y.jing,y.d.han,k.song,transientcreepbehaviorofanoveltemperedmartensiteferriticsteelg115steel,mater.sci.eng.a716(2018)284-295。所获得的各个微观组织参量如表1所示。

步骤4,计算所述不同蠕变损伤状态的蠕变试样的屈服强度,计算过程如下:

(1)首先准备获得所需要的各个微观组织参量,结果见表1:

(a)位错密度;

(b)马氏体板条宽度;

(c)富铜相、laves相、mx碳氮化物、m23c6碳化物的数量密度和fb晶界和马氏体边界的析出相占总的析出相的比例,其中富铜相指的是富集铜元素的颗粒,mx碳氮化物指的的(ti,nb)(c,n)的颗粒,m23c6碳化物指的是cr23c6的颗粒,laves相指的是(fe,cr)2(mo,w)的颗粒;

表1.g115钢在不同蠕变状态下的关键微观组织参量.

(2)然后计算不同微观组织参量,在不同蠕变损伤状态下对屈服强度的贡献,在这里选用蠕变时间为100h作为示例。

位错对屈服强度的贡献:

晶界对屈服强度的贡献:τb=α2gb/λm=80.96mpa

m23c6碳化物和laves相对屈服强度的当量贡献:

mx碳氮化物和富铜相对屈服强度的当量贡献:

四类析出相对屈服强度的当量贡献:

(3)同理,然后计算不同蠕变损伤状态下,不同强化机制对屈服强度的贡献,计算结果如表2所示。

表2.g115钢在不同蠕变状态下的不同强化机制对屈服强度的贡献.

(4)最后,可获得不同蠕变损伤状态下的高温屈服强度,计算结果如图2所示。屈服强度的预测值与实验值获得了较好的吻合。

本发明建立的基于微观组织退化的高温强度预测方法能够准确地预测长期高温服役高温结构的高温强度。将微观组织退化而导致的高温强度劣化纳入高温结构寿命的评估中,能够更进一步确保高温结构的服役安全,从而减少生命财产的损失。

以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1