一种悬索桥空缆安装线形和索鞍初始安装位置的确定方法与流程

文档序号:16738474发布日期:2019-01-28 12:48阅读:657来源:国知局
一种悬索桥空缆安装线形和索鞍初始安装位置的确定方法与流程

本发明属于桥梁施工监控领域,特别涉及一种悬索桥空缆安装线形和索鞍初始安装位置的确定方法。



背景技术:

悬索桥由主缆、吊杆、桥塔、锚碇、主索鞍、散索鞍和索夹等构成。悬索桥结构设计、施工计算的最终目的是高精度地达到设计所要求的成桥状态。首先由设计参数和外荷载确定出成桥主缆的理论线形,它为施工计算提供数据源。主缆一经架设完成很难进行后期线形调整,因此精准的空缆线形和主/散索鞍预偏量是实现悬索桥成桥设计线形的关键因素。这些参数的精确计算需考虑主索鞍和散索鞍圆弧的影响,以及塔顶标高预抬高的影响。

索鞍的作用是使主缆沿一定的曲线转向,因而直接约束着主缆的变形,在任何情况下主缆均应与鞍座相切。主索鞍一般只有一段圆弧,而散索鞍有多段不等半径的圆弧,给边跨和锚跨的线形计算造成一些麻烦。

主索鞍和散索鞍在安装时均有预偏量。在成桥状态,主索鞍两侧的主缆水平分力相同,散索鞍两侧主缆轴向拉力对转动点力矩平衡。但是各跨作用在主缆上的外荷载并不相等,例如主跨较长,荷载较重,而边跨荷载较轻,甚至没有吊索荷载。在空缆状态这些外荷载还没有施加,这种状态的主缆内力相当于成桥状态的主缆内力减去了外荷载所产生的主缆内力,当然主跨减小得多,边跨减小得少,如果索鞍保持为成桥状态的位置,势必产生强大的不平衡力。这种不平衡力将导致桥塔偏位和主缆索股在索鞍内的滑移危险。为了消除这种不平衡力,需要偏移主索鞍和偏转散索鞍,通过跨度的改变引起跨中垂度的显著改变,从而改变主缆的内力,让相邻两跨主缆在索鞍处保持一定的平衡关系。这种偏移量或偏转量就是索鞍的预偏量。

裸塔顶标高大于成桥状态塔顶标高,高出的部分称为预抬高。在成桥状态,主缆对桥塔施加一个巨大的向下作用力,使得桥塔产生一个压缩量。如果将该压缩量设置为裸塔塔顶预抬高,在成桥状态桥塔顶部标高可达到设计值。

为了精确计算悬索桥的空缆线形和主/散索鞍预偏量,需要发明一种计算方法。



技术实现要素:

发明目的:针对上述问题,本发明提供一种可以精确地确定悬索桥空缆线形参数,使用方便,结果精确可靠的悬索桥空缆安装线形和索鞍初始安装位置的确定方法。

与成桥主缆线形计算不同,空缆线形和索鞍预偏量的计算需各跨联立进行,因为任一跨的线形和参数受到相邻跨的影响。利用分跨点的几何相容条件、力学平衡条件和边界几何约束条件建立耦合方程组,并设法将方程组中的参数表达成未知数的函数,最后利用非线性规划求解法求出未知数。

技术方案:本发明提出一种悬索桥空缆安装线形和索鞍初始安装位置的确定方法,包括如下步骤:

(1)确定用于表述悬索桥空缆线形的未知数;

(2)利用各跨高差和跨径闭合、无应力长度守恒、以及散索鞍力矩的平衡等条件建立方程;

(3)将主跨的参数表达成未知数的函数;

(4)将左边跨的参数表达成未知数的函数;

(5)将右边跨的参数表达成未知数的函数;

(6)将左锚跨的参数表达成未知数的函数;

(7)将右锚跨的参数表达成未知数的函数;

(8)将函数带入步骤(2)中的方程求解得出空缆线形和索鞍预偏量;

(9)利用步骤(8)中得出的空缆线形和索鞍预偏量进行悬索桥的索鞍和主缆安装。其中步骤9)所述的索鞍安装是根据索鞍的成桥设计位置和算出的预偏量确定索鞍的初始安装位置。主缆安装是根据缆心高程确定基准索股高程,然后分别用绝对高程法和相对高程法安装基准索股和一般索股。

进一步的,所述步骤(1)中用于表述悬索桥空缆线形的未知数包括:各跨主缆水平力:h′a,l,h′s,l,h'm,h′s,r,h′a,r;h’s,l=h’m=h’s,r,可看作一个未知量;各跨主缆悬链线方程参数:a'a,l,a′s,l,a'm,a′s,r,a'a,r;各跨主缆悬链线段的水平投影长度:l'a,l,l′s,l,l'm,l′s,r,l'a,r;主索鞍预偏量:δm,l,δm,r;散索鞍预偏角:αs,l,αs,r;其中下标a,s和m分别表示锚跨、边跨和主跨;下标l和r分别表示左跨和右跨;上标'代表空缆状态的参数。

进一步的,所述步骤(2)中建立方程的具体步骤如下:

(2.1)各跨高差闭合条件

δhm=δh'm

δhs1=δh′s,l

δhs2=δh′s,r

δha1=δh′a,l

δha2=δh′a,r

其中,δhm是成桥时左右主索鞍的圆心c1和c2之间的已知高差,δh’m是用空缆未知参数表示的δhm;δhs1是成桥时左散索鞍转动中心i1和左主索鞍圆心c1的已知高差,δh’s,l是用空缆未知参数表示的δhs1;δha1、δh’a,l分别是成桥、空缆时左锚点a1与左散索鞍转动中心i1的高差,前者为已知条件,后者表达成上述空缆未知参数的函数;下标“1”和“2”分别代表左跨和右跨;

(2.2)各跨水平距离闭合条件

lm=l'm

ls1=l's,l

ls2=l's,r

la1=l'a,l

la2=l'a,r

其中,lm、l’m分别是成桥、空缆时左右塔中心线的间距,前者为已知条件,后者可表达成上述空缆未知参数的函数;ls1、l’s,l分别是成桥、空缆时左散索鞍转动中心i1到左塔中心线水平距离;la1、l’a,l分别是成桥、空缆时左锚点a1与左散索鞍转动中心i1的水平距离;

(2.3)各跨无应力长度守恒

sm=s'm

ss,l=s′s,l

ss,r=s′s,r

sa,l=s′a,l

sa,r=s'a,r

其中,s和s’分别是成桥、空缆时各跨主缆的无应力长度;

(2.4)散索鞍转动中心力矩平衡

式中,i2是右散索鞍的转动中心。

进一步的,所述步骤(3)中将主跨参数表达成未知数的函数的具体步骤如下:

其中主跨参数是指:主索鞍成桥状态圆心c1和c2间的高差δh'm、桥塔中心线的间距l'm和主跨主缆的无应力长度s'ml;

(3.1)左右主索鞍成桥状态圆心c1和c2间的高差δh'm表达为:

式中,δht,l和δht,r分别是左、右塔顶标高预抬高量;

δh’c,m是空缆悬链线段两端点f1'和f2'的高差,表示为

式中,l'm是空缆悬链线段f1'f2'的水平投影长度;c'm=h'm/q',h'm为空缆水平力(kn),q’为空缆自重荷载集度(kn/m);

(3.2)空缆时主塔中心线的间距l'm表达为:

l'm=-δm,l-r1sinγ1+r1sinβ4'+l'm+r2sinβ5'-δm,r-r2sinγ2

式中,δm,l、δm,r分别是左、右主索鞍的预偏量;

(3.3)空缆状态下主跨主缆的无应力长度s'ml表达为:

式中,s′c,m、分别是主跨主缆悬链线段f1'f2'、左索鞍圆弧段d'1f1'、和右索鞍圆弧段f2'd'2的无应力长度,并分别表示为:

进一步的,所述步骤(4)中将左边跨参数表达成未知数的函数的具体步骤如下:

其中左边跨参数是指:左散索鞍转动中心i1与左主索鞍圆心c1的高差δh′s,l、左散索鞍转动中心i1到左塔中心线水平距离l's,l、左边跨主缆的无应力长度s′sl,l;

(4.1)左散索鞍转动中心i1和左主索鞍圆心c1的高差δh′s,l表达为:

式中,lk,l和li,l分别是左散索鞍ip点到圆心k1和转动中心i1的距离;αs,l是左散索鞍预偏角,为原竖直线z1k1在左散索鞍偏转动后与竖直线的夹角;δh’c,s,l是左边跨悬链线段的高差,

(4.2)空缆时左散索鞍转动中心i1到左塔中心线水平距离l's,l表示为:

l's,l=(lk,l-li,l)sin(ω1+αs,l)-r4,lsinβ2'+l′s,l+r1(sinβ3'+sinγ1)+δm,l

式中,l′s,l是左边跨主缆悬链线段的水平投影长度;

(4.3)空缆状态下的左边跨无应力长度s′sl,l表示为:

式中,s′c,s,l,分别是空缆左边跨悬链线段q1e'1、散索鞍圆弧段d'3q1和主索鞍圆弧段e'1d'1的无应力长度,分别表示为:

进一步的,所述步骤(5)中将右边跨的参数表达成未知数的函数的具体步骤如下:

其中右边跨参数是指:右主索鞍圆心c2与右散索鞍转动中心i2的高差δh′s,r、右散索鞍转动中心i2到右塔中心线水平距离l′l,r、右边跨主缆的无应力长度s′s,r;

(5.1)右主索鞍圆心c2与右散索鞍转动中心i2的高差δh′s,r表达为:

式中,αs,r是右散索鞍预偏角,为原竖直线z2k2在右散索鞍预偏转动后与竖直线的夹角;δh’c,s,r是右边跨主缆悬链线段的高差,

(5.2)空缆时右散索鞍转动中心i2到右塔中心线的水平距离l'l,r表达为:

l'l,r=(lk,r-li,r)sin(ω2+αs,r)-r4,rsinβ7'+l′l,r+r2sinβ6'+r2sinγ2+δm,r

(5.3)空缆状态下的右边跨无应力长度s′sl,r表示为:

式中,s′c,s,r,分别是主缆悬链线段e'2q2,主索鞍圆弧段d'2e'2,散索鞍圆弧段q2d'4的无应力长度,分别表达为:

进一步的,所述步骤(6)中将左锚跨的参数表达成未知数的函数的具体步骤如下:

其中左锚跨参数是指:锚点a1与散索鞍转动中心i1间的高差δh'a,l和水平距离l'a,l、锚跨主缆的无应力长度s'a,l、作用在散索鞍转动中心的力矩和

(6.1)左锚点a1与左散索鞍转动中心i1间的高差δh'a,l表示为:

式中,δh’c,a,l是空缆时左锚跨悬链线段的高差,l'a,l是左锚跨主缆悬链线段的水平投影长度;δh′1,l是切点j1与散索鞍第一段圆弧圆心的高差,δh'2,l是散索鞍第一段圆弧圆心与第二段圆弧圆心的高差,δh′3,l是散索鞍第二段圆弧圆心与第三段圆弧圆心的高差,δh'4,l是散索鞍第三段圆弧圆心与第四段圆弧圆心k1的高差,分别表达如下:

δh′1,l=r1,lcosβ1'

(6.2)左锚点a1与左散索鞍转动中心i1间的水平距离表达为:

l'a,l=l'a,l+(δl′1,l+δl'2,l+δl′3,l+δl'4,l)-(lk,l-li,l)sin(ω1+αs,l)

式中,δl′1,l是切点j1与散索鞍第一段圆弧圆心的水平距离,δl'2,l是散索鞍第一段圆弧圆心与第二段圆弧圆心的水平距离,δl′3,l是散索鞍第二段圆弧圆心与第三段圆弧圆心的水平距离,δl'4,l是散索鞍第三段圆弧圆心与第四段圆弧圆心k1的水平距离,分别表达如下:

δl′1,l=r1,lsinβ1'

(6.3)空缆状态下左锚跨主缆的无应力长度表达为:

式中,s′c,a,l和分别是左锚跨主缆悬链线段a1j1和圆弧段j1d'3的无应力长度,分别表示为:

(6.4)空缆时,左锚跨的散索鞍发生偏角,且两侧的主缆水平力发生变化,需要重新计算力矩平衡:

式中,e's1,l是边跨主缆水平分力的偏心距,e′s1,l=r4,lcosβ2'-(lk,l-li,l)cos(ω1+αs,l);v′s,l是边跨主缆在切点q1处的竖向分力,v′s,l=h′s,ltanβ2';e′s2,l是边跨主缆竖向分力的偏心距,e′s2,l=r4,lsinβ2'-(lk,l-li,l)sin(ω1+αs,l);e'a1,l是锚跨主缆水平分力的偏心距,

e'a1,l=δh′1,l+δh′2,l+δh′3,l+δh′4,l-(lk,l-li,l)cos(ω1+αs,l);v′a,l是左锚跨主缆在切点j1处的竖向分力,v′a,l=h′a,ltanβ1';e'a2,l是锚跨主缆竖向分力的偏心距,e'a2,l=δl′1,l+δl′2,l+δl′3,l+δl′4,l-(lk,l-li,l)sin(ω1+αs,l);gl是左散索鞍重力;e'g,l是左散索鞍重力的偏心距,e'g,l=lg,lsin(ω1+αs,l)。

进一步的,所述步骤(7)中将右锚跨的参数表达成未知数的函数的具体步骤如下:

其中右锚跨参数是指:散索鞍转动中心i2与锚点a2间的高差δh'a,r和水平距离l'a,r、锚跨主缆的无应力长度s'a,r、作用在散索鞍转动中心的力矩和

(7.1)散索鞍转动中心i2与锚点a2间的高差δh'a,r表示为:

式中,δh’c,a,l是空缆时右锚跨悬链线段的高差,li,r是右散索鞍ip点到转动中心i2的距离;δh′1,r是右散索鞍切点j2与散索鞍第一段圆弧圆心的高差,δh'2,r是散索鞍第一段圆弧圆心与第二段圆弧圆心的高差,δh′3,r是散索鞍第二段圆弧圆心与第三段圆弧圆心的高差,δh'4,r是散索鞍第三段圆弧圆心与第四段圆弧圆心k2的高差,分别表达如下:

δh′1,r=r1,rcosβ8'

(7.2)左散索鞍转动中心i2与右锚点a2间的水平距离l'a,r表示为:

l'l,r=l′l,r+(δl′1,r+δl'2,r+δl′3,r+δl'4,r)-(lk,r-li,r)sin(ω2+αs,r)

式中,δl′1,r是切点j2与散索鞍第一段圆弧圆心的水平距离,δl'2,r是散索鞍第一段圆弧圆心与第二段圆弧圆心的水平距离,δl′3,r是散索鞍第二段圆弧圆心与第三段圆弧圆心的水平距离,δl'4,r是散索鞍第三段圆弧圆心与第四段圆弧圆心k2的水平距离,分别表达如下:

δl′1,r=r1,rsinβ8'

(7.3)空缆状态下右锚跨的无应力长度表达为:

式中,s′c,a,r和分别是空缆时右锚跨主缆悬链线段j2a2和散索鞍圆弧段d'4j2的无应力长度,可分别表达为:

(7.4)空缆时,左锚跨的散索鞍发生偏角,且两侧的主缆水平力发生变化,需要重新计算力矩平衡:

式中,e's1,r是边跨主缆水平分力的偏心距,e′s1,r=r4,rcosβ7'-(lk,r-li,r)cos(ω2+αs,r);v′s,r是边跨主缆在切点q2处的竖向分力,v′s,r=h′s,rtanβ7';e's2,r是边跨主缆竖向分力的偏心距,e′s2,r=r4,rsinβ7'-(lk,r-li,r)sin(ω2+αs,r);e'a1,r是锚跨主缆水平分力的偏心距,e'a1,r=δh′1,r+δh′2,r+δh′3,r+δh′4,r-(lk,r-li,r)cos(ω2+αs,r);v′al,r是锚跨主缆在切点j2处的竖向分力,v′al,r=h'al,rtanβ8';e'a2,r是锚跨主缆水平分力的偏心距,e'a2,r=δl′1,r+δl'2,r+δl′3,r+δl'4,r-(lk,r-li,r)sin(ω2+αs,r);gr是右散索鞍重力;e'g,r是右散索鞍重力的偏心距,e'g,r=lg,r·sin(ω2+αs,r)。

进一步的,所述步骤(8)中通过方程求解得出空缆线形和索鞍预偏量的具体步骤如下:

将步骤(3)至步骤(7)中利用未知数表达的参数代入步骤(2)得出的方程组中,可得到17个耦合的方程;将每个方程的等号右侧项移到等号左侧可得到17个函数形式fi()=0。

以17个未知数为变量,构造目标函数:

利用规划求解的方法可求解出空缆状态的17个未知数,至此求出空缆线形和索鞍预偏量。

进一步的,所述步骤(9)中利用计算结果进行悬索桥的索鞍和主缆安装的具体步骤如下:将左、右主索鞍分别从成桥设计位置分别向各自岸侧水平偏移δm,l和δm,r,即获得了主索鞍的初始安装位置;将左、右散索鞍从成桥设计位置围绕转动中心分别向各自岸侧旋转角度αs,l和αs,r,即获得了散索鞍的初始安装位置并进行安装;根据计算获得的空缆线形方程确定跨中最低点高程,该高程是主缆紧缆后的缆心高程;将缆心高程减去缆心与基准索股的高差获得基准索股的安装高程,基准素股一般位于最底层的中部;根据基准索股的安装高程利用绝对高程法安装它,然后利用相对高程法安装一般索股,相对高程法是利用一般索股与基准索股的相对高差进行一般索股的定位,待所有索股安装完成之后,进行紧缆,主缆安装完成。

本发明采用上述技术方案,具有以下有益效果:本发明考虑了锚跨主缆、索鞍圆弧和塔顶预抬高量的影响,以成桥线形和荷载为出发点,一次性求出空缆线形参数(主缆水平力、悬链线方程参数、主索鞍预偏量和散索鞍预偏角等)。方法使用方便,结果精确可靠,可用于悬索桥施工控制,指导施工。

附图说明

图1为具体实施例中的成桥状态的全桥示意图;

图2为具体实施例中的成桥状态的左主索鞍示意图;

图3为具体实施例中的成桥状态的右主索鞍示意图;

图4为具体实施例中的成桥状态的左边跨主缆线形示意图;

图5为具体实施例中的成桥状态的左锚跨主缆线形示意图;

图6为具体实施例中的空缆状态的左主索鞍示意图;

图7为具体实施例中的空缆状态的右主索鞍示意图;

图8为具体实施例中的左边跨空缆线形示意图;

图9为具体实施例中的右边跨空缆线形示意图;

图10为具体实施例中的左锚跨空缆线形示意图;

图11为具体实施例中的空缆状态的左散索鞍力矩平衡关系示意图;

图12为具体实施例中的右锚跨空缆线形示意图;

图13为具体实施例中的空缆状态的右散索鞍力矩平衡关系示意图。

具体实施方式

下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

本发明所述的一种悬索桥空缆安装线形和索鞍初始安装位置的确定方法,该方法包括以下步骤:

(1)确定用于表述空缆线形的未知数。

(2)根据各跨高差和跨径闭合、无应力长度守恒、以及散索鞍力矩的平衡等条件来建立方程组。

(3)将方程中的非未知量参数表达成未知量的函数,并代入到方程组中。

(4)主最后利用规划求解方法求解方程组,获得未知量的值。

(5)根据计算结果进行悬索桥索鞍和主缆的安装。

具体包含以下步骤:

第一步:确定未知数。相对于成桥状态,空缆状态时主缆的水平力、悬链线方程参数、索鞍位置和切点位置均会发生变化。主索鞍需预设偏量,散索鞍预设偏角。空缆状态的未知数包含以下5类:

(1)各跨主缆水平力:h'a,l,h′s,l,h'm,h′s,r,h'a,r其中,下标a,s和m分别表示锚跨、边跨和主跨;下标l和r分别表示左跨和右跨;上标'代表空缆状态的参数;h’s,l=h’m=h’s,r,可看做一个未知量。

(2)各跨主缆悬链线方程参数:a'a,l,a′s,l,a'm,a′s,r,a'a,r

(3)各跨主缆悬链线段的水平投影长度:l'a,l,l′s,l,l'm,l′s,r,l'a,r

(4)主索鞍预偏量:δm,l,δm,r

(5)散索鞍预偏角:αs,l,αs,r

总计17个未知数,需要用17个方程来求解。

第二步:建立耦合方程。可利用各跨高差和跨径闭合、无应力长度守恒、以及散索鞍力矩的平衡等条件来建立方程:

(1)各跨高差闭合条件

式中,δhm是成桥时左右主索鞍的圆心c1和c2之间的已知高差,δh’m是用空缆未知参数表示的δhm;δhs1是成桥时左散索鞍转动中心i1和左主索鞍圆心c1的已知高差,δh’s,l是用空缆未知参数表示的δhs1;δha1、δh’a,l分别是成桥、空缆时左锚点a1与左散索鞍转动中心i1的高差,前者为已知条件,后者可表达成上述空缆未知参数的函数;下标“1”和“2”分别代表左跨和右跨。

(2)各跨水平距离闭合条件

式中,lm、l’m分别是成桥(图1)、空缆时左右塔中心线的间距,前者为已知条件,后者可表达成上述空缆未知参数的函数;ls1、l’s,l分别是成桥、空缆时左散索鞍转动中心i1到左塔中心线水平距离;la1、l’a,l分别是成桥、空缆时左锚点a1与左散索鞍转动中心i1的水平距离。

(3)各跨无应力长度守恒

式中,s和s’分别是成桥、空缆时各跨主缆的无应力长度。

(4)散索鞍转动中心力矩平衡

式中,i2是右散索鞍的转动中心。

接下来,将方程中的参数表达成上述17个未知数的函数。

第三步:将主跨参数表达成未知数的函数。利用未知数建立三个参数表达式:主索鞍成桥状态圆心c1和c2(图2和图3)间的高差δh'm,桥塔中心线的间距l'm和主跨主缆的无应力长度s'ml。

(1)左右主索鞍成桥状态圆心c1和c2间的高差δh'm可表达为:

式中,δht,l和δht,r分别是左、右塔顶标高预抬高量;δh’c,m是空缆悬链线段两端点f1'和f2'(图6和图7)的高差,可表示为

式中,l'm是空缆悬链线段f1'f2'的水平投影长度;c'm=h'm/q',h'm为空缆水平力(kn),q’为空缆自重荷载集度(kn/m)。

(2)空缆时主塔中心线的间距l'm可表达为:

l'm=-δm,l-r1sinγ1+r1sinβ4'+l'm+r2sinβ5'-δm,r-r2sinγ2(4)

式中,δm,l、δm,r分别是左、右主索鞍的预偏量。

(3)空缆状态下主跨主缆的无应力长度s'ml可表达为:

式中,s′c,m、分别是主跨主缆悬链线段f1'f2'、左索鞍圆弧段d'1f1'、和右索鞍圆弧段f2'd'2的无应力长度,可分别表示为:

第四步:将左边跨参数表达成未知数的函数。利用未知数建立三个参数表达式:左散索鞍转动中心i1与左主索鞍圆心c1的高差δh′s,l,左散索鞍转动中心i1到左塔中心线水平距离l's,l(如图8所示),和左边跨主缆的无应力长度s′sl,l。

(1)左散索鞍转动中心i1和左主索鞍圆心c1(图4)的高差δh′s,l可表达为:

式中,lk,l和li,l分别是左散索鞍ip点到圆心k1和转动中心i1的距离;αs,l是左散索鞍预偏角,为原竖直线z1k1在左散索鞍偏转动后与竖直线的夹角;δh’c,s,l是左边跨悬链线段的高差,

(2)空缆时左散索鞍转动中心i1到左塔中心线水平距离l's,l可表示为:

l's,l=(lk,l-li,l)sin(ω1+αs,l)-r4,lsinβ2'+ls',l+r1(sinβ3'+sinγ1)+δm,l(8)

式中,l′s,l是左边跨主缆悬链线段的水平投影长度。

(3)空缆状态下的左边跨无应力长度s′sl,l可表示为:

式中,s′c,s,l,分别是空缆左边跨悬链线段q1e'1、散索鞍圆弧段d'3q1和主索鞍圆弧段e'1d'1的无应力长度,可分别表示为:

第五步:将右边跨参数表达成未知数的函数。利用未知数建立三个参数表达式:右主索鞍圆心c2与右散索鞍转动中心i2的高差δh′s,r,右散索鞍转动中心i2到右塔中心线水平距离l'l,r(如图9所示),和右边跨主缆的无应力长度s′s,r。

(1)右主索鞍圆心c2与右散索鞍转动中心i2的高差δh′s,r可表达为:

式中,αs,r是右散索鞍预偏角,为原竖直线z2k2在右散索鞍预偏转动后与竖直线的夹角;δh’c,s,r是右边跨主缆悬链线段的高差,

(2)空缆时右散索鞍转动中心i2到右塔中心线的水平距离l'l,r可表达为:

l'l,r=(lk,r-li,r)sin(ω2+αs,r)-r4,rsinβ7'+l′l,r+r2sinβ′6+r2sinγ2+δm,r(12)

(3)空缆状态下的右边跨无应力长度s′sl,r可表示为:

式中,s′c,s,r,分别是主缆悬链线段e'2q2,主索鞍圆弧段d'2e'2,散索鞍圆弧段q2d'4的无应力长度,可分别表达为:

第六步:将左锚跨参数表达成未知数的函数。利用未知数建立四个参数表达式:锚点a1与散索鞍转动中心i1(图5和图10)间的高差δh'a,l和水平距离l'a,l,锚跨主缆的无应力长度s'a,l和作用在散索鞍转动中心的力矩和

(1)左锚点a1与左散索鞍转动中心i1间的高差δh'a,l可表示为:

式中,δh’c,a,l是空缆时左锚跨悬链线段的高差,l'a,l是左锚跨主缆悬链线段的水平投影长度;δh′1,l是切点j1与散索鞍第一段圆弧圆心的高差(如图10所示),δh'2,l是散索鞍第一段圆弧圆心与第二段圆弧圆心的高差,δh′3,l是散索鞍第二段圆弧圆心与第三段圆弧圆心的高差,δh'4,l是散索鞍第三段圆弧圆心与第四段圆弧圆心k1的高差,可分别表达如下:

δh′1,l=r1,lcosβ1'(16-1)

(2)左锚点a1与左散索鞍转动中心i1间的水平距离可表达为:

l'a,l=l'a,l+(δl′1,l+δl'2,l+δl′3,l+δl'4,l)-(lk,l-li,l)sin(ω1+αs,l)(17)

式中,δl′1,l是切点j1与散索鞍第一段圆弧圆心的水平距离,δl'2,l是散索鞍第一段圆弧圆心与第二段圆弧圆心的水平距离,δl′3,l是散索鞍第二段圆弧圆心与第三段圆弧圆心的水平距离,δl'4,l是散索鞍第三段圆弧圆心与第四段圆弧圆心k1的水平距离,可分别表达如下:

δl′1,l=r1,lsinβ1'(18-1)

(3)空缆状态下左锚跨主缆的无应力长度可表达为:

式中,s′c,a,l和分别是左锚跨主缆悬链线段a1j1和圆弧段j1d'3的无应力长度,可分别表示为:

(4)空缆时,左锚跨的散索鞍发生偏角,且两侧的主缆水平力发生变化,需要重新计算力矩平衡(如图11所示):

式中,e's1,l是边跨主缆水平分力的偏心距,e′s1,l=r4,lcosβ2'-(lk,l-li,l)cos(ω1+αs,l);v′s,l是边跨主缆在切点q1处的竖向分力,v′s,l=h′s,ltanβ2';e's2,l是边跨主缆竖向分力的偏心距,e′s2,l=r4,lsinβ2'-(lk,l-li,l)sin(ω1+αs,l);e'a1,l是锚跨主缆水平分力的偏心距,e'a1,l=δh′1,l+δh′2,l+δh′3,l+δh′4,l-(lk,l-li,l)cos(ω1+αs,l);v′a,l是左锚跨主缆在切点j1处的竖向分力,v′a,l=h′a,ltanβ1';e'a2,l是锚跨主缆竖向分力的偏心距,e'a2,l=δl′1,l+δl′2,l+δl′3,l+δl′4,l-(lk,l-li,l)sin(ω1+αs,l);gl是左散索鞍重力;e'g,l是左散索鞍重力的偏心距,e'g,l=lg,lsin(ω1+αs,l)。

第七步:将右锚跨参数表达成未知数的函数。利用未知数建立四个参数表达式:散索鞍转动中心i2与锚点a2间的高差δh'a,r和水平距离l'a,r,锚跨主缆的无应力长度s'a,r和作用在散索鞍转动中心的力矩和

(1)散索鞍转动中心i2与锚点a2间的高差δh'a,r可表示为:

式中,δh’c,a,l是空缆时右锚跨悬链线段的高差,li,r是右散索鞍ip点到转动中心i2的距离;δh′1,r是右散索鞍切点j2与散索鞍第一段圆弧圆心的高差(如图12所示),δh'2,r是散索鞍第一段圆弧圆心与第二段圆弧圆心的高差,δh′3,r是散索鞍第二段圆弧圆心与第三段圆弧圆心的高差,δh'4,r是散索鞍第三段圆弧圆心与第四段圆弧圆心k2的高差,可分别表达如下:

δh′1,r=r1,rcosβ8'(23-1)

(2)左散索鞍转动中心i2与右锚点a2间的水平距离l'a,r可表示为:

l'l,r=l′l,r+(δl′1,r+δl'2,r+δl′3,r+δl'4,r)-(lk,r-li,r)sin(ω2+αs,r)(24)

式中,δl′1,r是切点j2与散索鞍第一段圆弧圆心的水平距离,δl'2,r是散索鞍第一段圆弧圆心与第二段圆弧圆心的水平距离,δl′3,r是散索鞍第二段圆弧圆心与第三段圆弧圆心的水平距离,δl′4,r是散索鞍第三段圆弧圆心与第四段圆弧圆心k2的水平距离,可分别表达如下:

δl′1,r=r1,rsinβ8'(25-1)

(3)空缆状态下右锚跨的无应力长度可表达为:

式中,s′c,a,r和分别是空缆时右锚跨主缆悬链线段j2a2和散索鞍圆弧段d'4j2的无应力长度,可分别表达为:

(4)空缆时,左锚跨的散索鞍发生偏角,且两侧的主缆水平力发生变化,需要重新计算力矩平衡(图13):

式中,e's1,r是边跨主缆水平分力的偏心距,e′s1,r=r4,rcosβ7'-(lk,r-li,r)cos(ω2+αs,r);v′s,r是边跨主缆在切点q2处的竖向分力,v′s,r=h′s,rtanβ7';e's2,r是边跨主缆竖向分力的偏心距,e′s2,r=r4,rsinβ7'-(lk,r-li,r)sin(ω2+αs,r);e'a1,r是锚跨主缆水平分力的偏心距,e'a1,r=δh′1,r+δh′2,r+δh′3,r+δh′4,r-(lk,r-li,r)cos(ω2+αs,r);v′al,r是锚跨主缆在切点j2处的竖向分力,v′al,r=h'al,rtanβ8';e'a2,r是锚跨主缆水平分力的偏心距,e'a2,r=δl′1,r+δl'2,r+δl′3,r+δl'4,r-(lk,r-li,r)sin(ω2+αs,r);gr是右散索鞍重力;e'g,r是右散索鞍重力的偏心距,e'g,r=lg,r·sin(ω2+αs,r)。

第八步:方程求解。将上述利用未知数表达的参数代入方程组(1),可得到17个耦合的方程。将每个方程的等号右侧项移到等号左侧可得到17个函数形式fi()=0。

以17个未知数为变量,构造目标函数:

利用规划求解的方法可求解出空缆状态的17个未知数。至此求出了空缆线形和索鞍预偏量。

第九步:安装索鞍。根据索鞍的成桥设计位置和算出的预偏量确定索鞍的初始安装位置。具体地,将左、右主索鞍分别从成桥设计位置(一般在桥塔中心)分别向各自岸侧水平偏移δm,l和δm,r,即获得了主索鞍的初始安装位置;将左、右散索鞍从成桥设计位置围绕转动中心分别向各自岸侧旋转角度αs,l和αs,r,即获得了散索鞍的初始安装位置。

第十步:安装主缆。根据计算获得的空缆线形方程可以确定跨中最低点高程,该高程是主缆紧缆后的缆心(截面中心)高程。将缆心高程减去缆心与基准索股的高差可获得基准索股的安装高程。基准素股一般位于最底层的中部。根据基准索股的安装高程利用绝对高程法安装它,然后利用相对高程法安装一般索股。相对高程法是利用一般索股与基准索股的相对高差进行一般索股的定位。待所有索股安装完成之后,进行紧缆,主缆安装完成。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1