面向多管理平台的对地观测任务分布式协同规划方法与流程

文档序号:17590689发布日期:2019-05-03 21:47阅读:374来源:国知局
面向多管理平台的对地观测任务分布式协同规划方法与流程

本发明属于空间信息技术领域,主要涉及的是针对多管理平台的任务规划方法,可用于对地观测网络的任务规划与资源调度过程。



背景技术:

对地观测卫星是对地观测网络的一个重要组成部分,其观测范围广、不受复杂地理环境限制,在环境监测、国家安全等方面发挥的作用日益明显。我国目前的在轨对地观测卫星包括海洋系列、资源系列、高分系列等专用星座,它们隶属于不同的行政单位,由各自的运管平台管控。这些星座的管理体制不一,相互之间缺少有效的协同交互机制。随着任务爆发式增长和新型任务不断涌现,这种“烟囱”式的对地观测卫星管理架构问题日趋明显:一方面,由于卫星的造价以及运营、维护成本高昂,各个卫星系统的资源数量十分有限,仅依靠单个系统的能力难以应对大规模突发任务;另一方面,网络中任务的到达具有突发性以及时空不均匀性,个别运管平台在某一时间特定区域内产生大量任务而其余运管较为空闲的情况时有发生。如此孤立的资源管控模式导致了的网络中资源使用效率低下,无法有效应对自然灾害、武装冲突之类的紧急情况。

针对这种弊端,一个直观的解决方式就是打破原有的孤立管理体制,将所有运管平台合并为一个中心运管平台,由该平台管控所有卫星资源,集中式地规划所有观测任务。然而,由于统一规划全网所有任务计算复杂度较高,且受限于政府管理体制,将隶属于不同行政部门的对地观测卫星系统合并管理难以实现等原因,该方法现阶段并不具备现实可行性。

由于独立规划框架与集中式规划框架均存在不足,需要研究分布式协同的方法,既无需改变现有管理体制又可以实现资源共享。在“coordinatedplanningofheterogeneousearthobservationresources”中wu等人提出了一个多运管平台协同规划框架,该框架中的协同中心根据观测机会分配公共任务。但是,由于各系统的封闭性,其无法向协同中心提供本地任务和观测资源的具体信息。因此,在这种协同中心获知的有效信息十分有限的情况下,该方法盲目地分配公共任务给子运管平台很容易导致与子运管的本地任务发生冲突,影响大量本地任务的执行,而导致整体规划算法效率低下。



技术实现要素:

本发明的目的在于针对现有任务规划问题解决方案的不足,提出一种面向多管理平台的对地观测任务分布式协同规划方法,以提升任务规划方法应对大规模任务和紧急任务的能力;同时,在各个子运管平台的资源隐私无需公开的前提下,既能协调各个子运管平台的卫星资源以最大限度地保证公共任务的完成,又要尽量不影响每个子运管平台的卫星执行本地任务,从而提升整体规划算法的效率。

实现本发明目的技术方案是:通过将网络中的任务规划问题建模为混合整数线性规划问题,进一步转化为凸优化问题,然后利用admm算法求解问题的最优解,从而获得资源调度方案,具体步骤包括如下:

(1)初始化对地观测网络的基本参数,该基本参数包括网络中的子运管平台集合a、对地观测卫星集合sa、观测任务集合om、观测目标集合ob、规划时长t和等长时隙的长度τ;

(2)根据星历表中的星体运动轨迹,计算观测目标是否在观测卫星的观测范围内,得到所有观测目标与观测卫星之间的可见关系;

(3)根据观测目标与观测卫星的可见关系,求解与每个观测机会冲突的观测机会集合

(4)建立混合整数线性优化模型:

其中,ia,ja分别为子运管平台a的本地任务下标集合和观测卫星下标集合,k(i,j)为观测目标obi与观测卫星osj的可见时隙集合,im+1为公共任务下标集合,wi为完成包含观测目标obi的观测任务omi的收益值,变量表示目标obi的一个观测机会,目标obi对应一个任务omi,若任务omi在第k个时隙由观测卫星osj执行,则否则变量yia表示公共任务omi的执行情况,若公共任务omi由子运管平台a执行,则yia=1,否则为与观测机会冲突的观测机会集合,x为所有任务的观测机会集合;

第一个约束条件c1为变量yia与的数学关系;第二个约束条件c2保证了公共任务不能被多次执行;第三个约束条件c3保证了本地任务也不能被多次执行;第四个约束条件c4保证了对于任意一个对地观测卫星,在一个时隙内只能执行一个任务,与该被执行任务冲突的任务都无法在该时隙内被这个对地观测卫星执行;

(5)将所建立的模型中二进制变量和yia松弛为取值范围为[0,1]的变量,使得求解的问题转化为凸优化问题形式p1:

(p1)ming(x,y)

其中,(x,y)为所有的对组成的集合,z为满足约束c1~c4的(x,y);

(6)利用admm算法对凸优化问题形式p1进行分布式求解,得到松弛后的变量和yia的最优解;

(7)将松弛后变量和yia的最优解还原为二进制变量,根据和yia的定义得到任务规划的详细方案,即观测任务omi在第k个时隙是否由观测卫星osj执行,以及公共任务omi是否由子运管平台a执行的结果。

本发明与现有技术相比具有如下优点:

第一,本发明由于采用了分布式协同任务规划方法,既保持了现有的对地观测卫星资源管理体制,又在各子运管平台的资源信息无需公开的前提下实现了各子运管平台之间的资源共享,与现有技术相比,提高了本文所提出的规划方法应对大规模任务和紧急任务的能力。

第二,本发明通过利用admm算法进行建模后凸问题的求解,将公共任务分配的决策权转让给各个子运管平台,由各子运管平台根据自身本地任务与资源情况产生公共任务的初步分配决策,并通过协同中心的协调来确定公共任务的最终分配方案,与现有技术相比,有利于避免分配后的公共任务与子运管平台的本地任务的冲突,从而提升规划算法的收益和效率。

附图说明

图1是本发明的实现流程图;

图2是本发明中求解观测目标与对地观测卫星观测机会的子流程图;

图3是本发明中求解观测机会冲突集合的子流程图;

图4是本发明中观测任务冲突示意图;

图5是本发明中分布式求解优化问题的子流程图;

图6是本发明中还原松弛变量并输出规划结果的子流程图。

具体实施方式

参照图1,本发明的实现步骤如下:

步骤一,初始化对地观测网络的基本参数。

设对地观测网络的基本参数,包括网络中的子运管平台集合a、对地观测卫星集合sa、观测任务集合om、观测目标集合ob、规划时长t和等长时隙的长度;

将对地观测网络基本参数初始化为:

a={1,2,...,a,...,m},其中m为子运管平台个数,a=1,2,...,m;

sa={os1,os2,...,osj,...}=sa1∪sa2∪…∪saa∪…∪sam,其中,osj表示第j颗对地观测卫星,j=1,2,...,saa表示由子运管平台a管控的对地观测卫星集合;

om={om1,om2,...,omi,...}=om1∪om2∪…∪oma∪…∪omm∪omm+1,其中,omi表示第i个任务,i=1,2,...,omi=(obi,wi,eti,lti),obi表示任务omi包含的观测目标,wi表示任务omi的收益值,eti表示任务omi的最早观测开始时间,lti表示任务omi的最晚观测结束时间,oma表示子运管平台a的本地任务集合,omm+1表示公共任务集合;

ob={ob1,ob2,...,obi,...}=ob1∪ob2∪…∪oba∪…∪obm∪obm+1。

步骤二,根据星历表中的星体运动轨迹,计算观测目标是否在观测卫星的观测范围内,得到所有观测目标与观测卫星之间的可见关系。

参照图2,本步骤的具体实现如下:

(2a)输入所有观测卫星的轨道六根数、所有观测任务的最早观测开始时间和最晚观测结束时间及所有观测目标的经纬度;

(2b)按顺序遍历观测卫星集合sa中的卫星,对于一颗观测卫星osj,如果有osj∈saa,则需要与其计算可见关系的观测目标为:子运管平台a的所有本地任务包含的观测目标集合oba和所有公共任务包含的观测目标集合obm+1;

(2c)利用(2a)输入的参数,在卫星工具包软件stk中计算观测目标集合oba和obm+1与对地观测卫星osj的可见关系,并将其用观测机会表示,其中k∈k(i,j),k(i,j)表示观测目标集合oba和obm+1中每个观测目标obi与观测卫星osj的可见时隙集合;

(2d)在计算完所有的可见关系之后,用xa表示子运管平台a的所有本地任务的观测机会集合,用xm+1表示所有公共任务的观测机会集合,且为所有任务的观测机会集合。

步骤三,根据观测目标与观测卫星的可见关系,求解冲突观测机会集合o(x)。

参照图3,本步骤的具体实现如下:

(3a)对于一个观测机会设初始迭代次数h=0,初始冲突观测机会集合所有的观测卫星的姿态稳定时间为ast;

(3b)依次选择观测机会集合x中不同于的一个观测机会其中,观测机会表示观测目标obi'在第k'时隙对观测卫星osj'可见,且记观测机会的开始时间为记观测机会的结束时间为记观测机会的开始时间为记观测机会的结束时间为

(3c)判断两个观测机会之间是否存在资源争用冲突:

参照图4(a)所示的资源争用冲突示例,如果j=j',k=k'且i≠i',则在同一个时隙内,对地观测卫星j上的两个观测机会存在资源争用冲突,且令h=h+1,执行(3e);否则,执行(3d);

(3d)判断两个观测机会之间是否存在动作切换冲突:

参照图4(b)所示的动作切换冲突示例,如果j=j',k≠k'且i≠i',计算对地观测卫星osj在观测目标obi和obi'之间所需的切换时间γ(i,i'),j,如果满足或者则对地观测卫星osj上的两个观测机会存在动作切换冲突,且令h=h+1,执行(3e);否则,直接执行(3e);

(3e)判断是否遍历完x中不同于的所有观测机会,若是,则执行(3f);否则,返回(3b);

(3f)判断是否对x中所有的求解冲突集合若是,则冲突观测机会集合否则,返回(3a)。

步骤四,建立混合整数线性优化模型。

(4a)设本实例中所有的本地任务的收益值为wl,所有的公共任务的收益值为wp,且wp>>wl,则根据完成任务收益值的最大化的规划目的,设模型中的目标函数表示成:

其中:ia,ja分别为子运管平台a的本地任务下标集合和观测卫星下标集合,im+1为公共任务下标集合;变量表示观测目标obi的一个观测机会,若任务omi在第k个时隙由观测卫星osj执行,则否则变量yia表示公共任务omi的执行情况,若公共任务omi由子运管平台a执行,则yia=1,否则yia=0;

(4b)设模型应该满足的约束有以下四个:

约束一,变量yia与变量的数学关系为:

约束二,任意一个公共任务只能被执行一次:

约束三,任意一个本地任务只能被执行一次:

约束四,对于任意一颗对地观测卫星osj∈sa,在一个时隙内只能执行一个任务,与该被执行任务冲突的任务都无法在该时隙内被这个对地观测卫星执行:

(4c)根据(4a)和(4b),得到所建立的混合整数线性优化模型为:

s.t.c1,c2,c3,c4。

步骤五,将所建立的模型转化为凸优化问题形式。

将步骤四所建立的混合整数线性优化模型中的二进制变量和yia松弛成取值范围为[0,1]的变量,使得混合整数线性优化模型转化为凸优化问题形式p1,即求g(x,y)的最小值,表示为:

(p1)ming(x,y)

其中,

其中,(x,y)为所有的对组成的集合,z为满足约束c1~c4的(x,y)。

步骤六,利用admm算法对凸优化问题形式p1进行分布式求解,得到松弛后的变量和yia的最优解。

参照图5,本步骤的具体实现如下:

(6a)将凸优化问题p1中的全局变量yia进行m次复制,得到局部变量它是子运管平台b对公共任务omi由子运管平台a执行观测的决策,其中i∈im+1,a,b∈a,则凸优化问题p1可以写成各个子运管平台的子问题之和的形式p2,其表示如下:

其中,为子运管平台a对公共任务omi由子运管平台b执行观测的决策,变量yib表示公共任务omi的执行情况,若公共任务omi由子运管平台b执行,则yib=1,否则yib=0,

约束c5~c8实质上是约束c1~c4分解到各个子运管平台的结果,因此物理意义与c1~c4是相同的;

(6b)利用一致性约束式<4>将式<3>扩展为增广拉格朗日形式:

其中,为价格因子,a,b∈a,i∈im+1;ρ为惩罚因子,用于调整算法的收敛速度;

(6c)初始化迭代次数t=1,协同中心初始化价格因子全局变量惩罚因子ρ;

(6d)各个子运管平台根据协同中心发布的价格因子以及本地任务和对地观测卫星的情况产生一个本地任务规划方案与公共任务规划的决策,其表示如下:

将不影响结果的常数项忽略后,式<6>可以简化为问题p3:

s.t.(xa,ya)∈xa

通过求解问题p3,得到的值,即各子运管平台本地任务的规划方案,以及的值,即对公共任务规划的决策;

(6e)各子运管平台将对公共任务规划的决策传递给协同中心,协同中心收集各子运管平台的决策,并按式<7>对各子运管平台的决策进行协调:

简化式<7>,并利用导数工具对最值问题进行求解,得到协调后的公共任务规划决策:

(6f)协同中心按式<9>对价格因子进行更新,并将更新的价格因子发放给各子运管平台:

(6g)各个子运管平台根据更新后的价格因子按照(6d)的步骤进行本地任务规划方案和公共任务规划决策的调整,并令t=t+1;

(6h)判断和yib的值是否趋于稳定,若是,则得到原问题p1的最优解,否则,返回(6d)。

步骤七,将松弛后变量和yia的最优解还原为二进制变量,输出规划方案。

参照图6,本步骤的具体实现如下:

(7a)还原所有yia和的值,其中i∈im+1:

(7a1)对于某个公共任务omi∈omm+1,求使得yia取值最大的a0,即则公共任务omi由子运管平台a0执行,即令对于集合a中的其他子运管平台a,令yia=0;

(7a2)进一步在子运管平台a0的卫星集合中,求使得取值最大的j0,即求则公共任务omi由子运管平台a0的卫星执行,即令

(7a3)对于与冲突的观测动作

重复(7a1)-(7a3),直至所有yia和还原为二进制值,其中i∈im+1;

(7b)还原所有的值,其中

(7b1)对于子运管平台a的某个本地任务omi∈oma,在子运管平台a的卫星集合中求使得取值最大的j1,即则该本地任务omi由子运管平台a的卫星执行,即令

(7b2)对于与冲突的观测动作

重复(7b1)-(7b2),直至所有还原为二进制值,其中

(7c)根据和yia的定义得到任务规划的详细方案,即观测任务omi在第k个时隙是否由观测卫星osj执行,以及公共任务omi是否由子运管平台a执行的结果。

以上描述仅是本发明的一个具体实例,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1