用于目标物体制图的装置、身份识别装置和电子设备的制作方法

文档序号:17510204发布日期:2019-04-24 00:23阅读:196来源:国知局
用于目标物体制图的装置、身份识别装置和电子设备的制作方法

本实用新型涉及一种图像传感技术领域,尤其涉及一种用于目标物体制图的装置、身份识别装置及电子设备。



背景技术:

目前,3D技术的应用场景逐渐增多,比如,物体识别,但是,由于现有图像感测过程中采用的是粗采样方式,导致获得的目标物体的3D图像的信息量相对较少,因此,该3D图像并不能较真实地反应该目标物体的模样,导致识别率降低。



技术实现要素:

本实用新型实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本实用新型实施方式需要提供一种用于目标物体制图的方装置、身份识别装置及电子设备。

首先,本实用新型提供一种用于目标物体制图的装置,包括:

第一获取模块,用于获取该目标物体的二维图像;

第二获取模块,用于获取该目标物体的第一三维图像;和

处理模块,用于将该目标物体的二维图像和第一三维图像进行重构,获得该目标物体的第二三维图像。

本实用新型的用于目标物体制图的装置通过将该目标物体的二维图像与第一三维图像进行重构,来获得该目标物体的第二三维图像。相应地,该第二三维图像的信息量较该第一三维图像的信息量增多,从而,该第二三维图像可以较真实地反应该目标物体的模样。

在某些实施方式中,该二维图像的分辨率大于该第一三维图像的分辨率,该第二三维图像的分辨率大于该第一三维图像的分辨率。

在某些实施方式中,该第二三维图像的分辨率与该二维图像的分辨率相同。

在某些实施方式中,该第二三维图像的深度信息多于该第一三维图像的深度信息。

在某些实施方式中,该二维图像为包括颜色或不包括颜色的灰度图像。

在某些实施方式中,当该二维图像为彩色图时,该第二三维图像包括该二维图像的彩色信息以及灰度信息,或者,当该二维图像为灰度图时,该第二三维图像包括该二维图像的灰度信息。

在某些实施方式中,该第一获取模块包括第一投射器和红外图像传感器,该第一投射器用于投射红外泛光至该目标物体,该图像传感器用于捕获由该目标物体反射回来的红外泛光,感测获得该目标物体的二维图像;或者,该第一获取模块包括RGB图像传感器,用于感测获得该目标物体的二维图像。

在某些实施方式中,该第二获取模块包括第二投射器、红外图像传感器、和处理单元,该第二投射器用于投射空间结构光至该目标物体,该红外图像传感器用于捕获由该目标物体反射回来的空间结构光,感测获得该目标物体的红外图像,该处理单元根据该红外图像构建出该目标物体的第一三维图像,或者,该第二投射器用于发射时间结构光至该目标物体,该红外图像传感器用于捕获由该目标物体反射回来的时间结构光,感测获得该目标物体的红外图像,该处理单元根据该红外图像构建出该目标物体的第一三维图像,或者,该第二获取模块包括至少二摄像头,该至少二摄像头设置位置不同,用于分别获取该目标物的二维图像,该处理单元根据该至少二摄像头获得的二维图像来构建出该目标物体的第一三维图像。

在某些实施方式中,当该第二获取模块通过投射空间结构光至该目标物体时,该处理单元从该红外图像中提取出空间结构光的图案信息,并根据提取到的空间结构光的图案信息构建出该第一三维图像,或者,当该第二获取模块通过投射时间结构光至该目标物体时,该处理单元从该红外图像中提取出该目标物体被该时间结构光投射到的位置处的图案信息,并根据提取到的图案信息构建出该第一三维图像。

在某些实施方式中,通过映射的方式,该处理单元将该第一三维图像与该二维图像转换为在同一坐标系下表征的图像信息,并根据该第一三维图像上已知的深度信息,通过插值运算得到新的深度信息。

在某些实施方式中,该二维图像的横纵坐标信息多于该第一三维图像的横纵坐标信息,经坐标系转换后,该第一三维图像上已知的深度信息分别对应一横纵坐标点,且根据该已知的深度信息,该处理单元通过插值运算得到未带有已知深度信息的横纵坐标点所对应的深度信息。

在某些实施方式中,该第二三维图像包括该已知的深度信息、该新的深度信息、以及该二维图像上的灰度信息。

在某些实施方式中,当该第一获取模块获得的该二维图像为灰度图时,该处理单元根据该已知的深度信息、该新的深度信息、该二维图像上的灰度信息、以及横纵坐标信息重构出该第二三维图像;当该第一获取模块获得的该二维图像为彩色图时,该处理单元根据该已知的深度信息、该新的深度信息、该二维图像上的灰度信息和彩色信息、以及横纵坐标信息重构出该第二三维图像。

在某些实施方式中,该处理单元将该第一三维图像向该二维图像所在的坐标系中进行映射,或,该处理单元将该二维图像向该第一三维图像所在的坐标系中进行映射。

在某些实施方式中,当该第一获取模块投射红外泛光至该目标物体时,该红外泛光的波长范围为[925,955]纳米。

在某些实施方式中,该红外泛光的波长为940纳米。

在某些实施方式中,该第二投射器投射的空间结构光或时间结构光的的波长范围为[925,955]纳米。

在某些实施方式中,该空间结构光或时间结构光的波长为940纳米。

本实用新型还提供一种身份识别装置,其包括识别模块和上述任意一项所述的用于目标物体制图的装置,所述识别模块用于根据该用于目标物体制图的装置获得的第二三维图像对目标物体的身份进行识别。

在某些实施方式中,该身份识别装置包括脸部识别装置。

本实用新型还提供一种电子设备,包括上述中任意一项所述的用于目标物体制图的装置或者包括上述中任意一项所述的身份识别装置。

在某些实施方式中,当该电子设备包括该身份识别装置时,所述电子设备用于根据该身份识别装置的识别结果来对应控制是否执行相应的功能。

在某些实施方式中,所述相应的功能包括解锁、支付、启动预存的应用程序中的任意一种或几种。

由于该电子设备包括上述的用于目标物体制图的装置或身份识别装置,因此,该电子设备获得的第二三维图像能够较真实地反应该目标物体的模样。相应地,该电子设备的用户体验能够得到提升。

本实用新型实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本实用新型实施方式的实践了解到。

附图说明

本实用新型实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:

图1为本实用新型的三维图像重构装置第一实施方式的结构框图。

图2为环境光的辐射强度与波长之间的关系示意图。

图3为第一三维图像与二维图像的示意图。

图4为图3所示一块最小单元区域的映射图,映射关系为从二维图像到第一三维图像进行映射。

图5为图3所示一块最小单元区域的映射图,映射关系为从第一三维图像到二维图像进行映射。

图6是本实用新型的三维图像重构装置第二实施方式的结构框图。

图7是本实用新型的三维图像重构装置第三实施方式的结构框图。

图8是本实用新型的身份识别装置一实施方式的结构框图。

图9是本实用新型的电子设备一实施方式的结构示意图。

具体实施方式

下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。

在本实用新型的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。

下文的公开提供了许多不同的实施方式或例子用来实现本实用新型的不同结构。为了简化本实用新型的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本实用新型。此外,本实用新型可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。

进一步地,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本实用新型的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本实用新型的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本实用新型。

请参阅图1,图1为本实用新型用于目标物体制图的装置的第一实施方式的结构框图。该用于目标物体制图的装置100包括第一获取模块10、第二获取模块12、和处理模块14。其中,该第一获取模块10用于获取目标物体的二维图像。该第二获取模块12用于获取该目标物体的第一三维图像。该处理模块14用于将该目标物体的二维图像和第一三维图像进行重构,获得该目标物体的第二三维图像。

本实用新型的用于目标物体制图的装置100通过将该目标物体的二维图像与第一三维图像进行重构,来获得该目标物体的第二三维图像。相应地,该第二三维图像的信息量较该第一三维图像的信息量增多,从而,该第二三维图像可以较真实地反应该目标物体的模样。

该用于目标物体制图的装置100可应用在智能终端、医疗、模具、汽车、航天、机器人以及无人机等等领域。

该目标物体例如为人脸,当然,该目标物体也可为人体其它合适的部位或者其它合适的生物体或非生物体或其中任意几者的组合。

该二维图像的分辨率大于该第一三维图像的分辨率。例如,该二维图像的分辨率为100万,该第一三维图像的分辨率为1万。

相应地,该处理模块14通过将该二维图像与该第一三维图像进行重构获得该第二三维图像,该第二三维图像的分辨率能够对应得到提高,因此,该第二三维图像的分辨率大于该第一三维图像的分辨率。该第二三维图像的分辨率例如也可以达到100万。

术语“第一三维图像”,如在本专利实用新型文件中是指表示目标物体表面的3D坐标集。术语“第二三维图像”,如在本专利实用新型文件中可以是指表示目标物体表面的3D坐标集。其中,该第二三维图像中的坐标点的数量多于该第一三维图像中的坐标点的数量,每一坐标点包括横坐标(X)、纵坐标(Y)、和深度信息(Z)。因此,该第二三维图像的深度信息多于该第一三维图像的深度信息。

可选地,该第二三维图像除了包括表示目标物体表面的3D坐标集外,其例如还可以包括该二维图像的灰度信息。

当该二维图像为彩色图时,该第二三维图像例如进一步包括该二维图像的彩色信息。

可见,经重构后的第二三维图像相比第一三维图像具有更多的信息,因此,该第二三维图像更能较真实地反应该目标物体的模样。

在第一实施方式中,该第一获取模块10包括第一投射器101和红外图像传感器103。该第一投射器101用于投射红外泛光至该目标物体。该红外图像传感器103用于捕获由该目标物体反射回来的红外泛光,并根据捕获的红外泛光感测获得该目标物体的二维图像。该第一投射器101例如但不局限于红外泛光灯。

所述二维图像为不具彩色信息的灰度图。

该第二获取模块12包括第二投射器121、红外图像传感器123、和处理单元125。该第二投射器121用于投射空间结构光至该目标物体。该红外图像传感器123用于捕获由该目标物体反射回来的光线,感测获得该目标物体的红外图像。该处理单元125根据该红外图像构建出该目标物体的第一三维图像。

该第二投射器121投射的空间结构光例如呈网格式、散斑式、条纹式、编码式等图案。在本实施方式中,所述空间结构光为红外光。然,可变更地,在其它实施方式中,所述空间结构光例如也可为可见光或紫外光范围内的辐射带。相应地,该红外图像传感器123也要做对应调整。

该第二投射器121例如包括光源、准直镜头以及光学衍射元件(DOE),其中光源用于产生一红外激光束;准直镜头将红外激光束进行校准,形成近似平行光;光学衍射元件对校准后的红外激光束进行调制,形成具有预设图案的红外结构光。

举例,当该第二投射器121投射散斑图案到目标物体上时,该红外图像传感器123获得的目标物体的红外图像为包括散斑图案的灰度图。在本实施方式中,该处理单元125从该红外图像中提取出散斑图案的图像信息,并根据提取到的散斑图案的图像信息来构建出该第一三维图像。因此,该第一三维图像的分辨率为该散斑图案的个数。

该处理单元125例如通过计算能够从该散斑图案的图像信息中提取出相应的横纵坐标信息以及深度信息,从而能够构建得到该目标物体的第一三维图像。

一般地,投射到目标物体上散斑图案例如为1万至3万个点。相应地,该第一三维图像的分辨率为1万至3万。

该处理单元125例如可以和该处理模块14进行集成,二者也可为分立的元件。又或者,该处理单元125例如为与红外图像传感器123进行集成。

在本实施方式中,该红外图像传感器103和该红外图像传感器123可以为两个独立的传感器,也可为同一红外图像传感器。当采用同一红外图像传感器时,产品成本可以降低。

为了避免图像混叠,第一投射器101和第二投射器121分时工作。

另外,当第一获取装置10和第二获取装置12分时工作时,该第一获取装置10可先于该第二获取装置12工作,或后于该第二获取装置12工作。

现有的,业界通常投射波长为850纳米的近红外光,来获得目标物体的红外图像。然而,本实用新型的发明人经过大量的创造性劳动,分析与研究发现:投射波长为940纳米的红外泛光、940纳米的红外结构光进行感测,可以获得较准确的感测效果。

请一并参阅图2,图2为环境光的辐射强度与波长之间的关系示意图。其中,波长用横轴表示,且被标示为字母λ,辐射强度用纵轴表示,且被标示为字母E。发明人通过理论研究、结合大量的实验测试、验证并反复进行分析与研究等,创造性地发现:环境光中波长范围为[920,960]纳米的近红外光易被大气吸收、强度衰减较大,当该第一投射器101投射波长范围为[920,960]纳米的红外泛光到目标物体,根据捕获的红外泛光获得该目标物体的二维图像时,能够少受环境光的干扰,从而提高图像的获取精度。类似地,当该第二投射器121投射波长范围为[920,960]纳米的空间结构光到目标物体,根据捕获的空间结构光获得该目标物体的红外图像时,能够少受环境光的干扰,从而提高图像的获取精度。

进一步地,在波长范围为[920,960]纳米的红外光中,波长为940纳米的近红外光更易被大气吸收、强度衰减最大,因此,在本实用新型的实施方式中,该第一投射器101投射的红外泛光的波长优选为940纳米,该第二投射器121投射的空间结构光的波长优选为940纳米。

然而,在实际应用中,该第一投射器101所投射的红外泛光的波长和该第二投射器121所投射的空间结构光的波长在940纳米的基础上会有一定的偏差,例如会有(+15)纳米或(-15)纳米左右的偏差。因此,该第一投射器101投射的红外泛光的波长范围例如为[925,955]纳米,该第二投射器121投射的空间结构光的波长范围例如为[925,955]纳米。可见,该波长范围[925,955]仍然落在波长范围[920,960]内。

需要说明的是,该第一投射器101所投射的红外泛光的波长和该第二投射器121所投射的空间结构光的波长为落在上述波长范围[920,960]纳米中的任意一数值。本实用新型为了叙述简洁清楚,在此处并未一一列举各具体数值,但落在这波长范围[920,960]纳米中的任意一数值都是可行的。

当然,可变更地,本实用新型的装置100的第一投射器101和第二投射器121也可采用波长为850纳米或者其它合适波长的红外泛光、空间结构光进行感测。

该处理模块14例如通过映射的方式,将该第一三维图像与该二维图像转换为在同一坐标系下表征的图像信息,并根据该第一三维图像上已知的深度信息,通过插值运算得到新的深度信息。

请一并参见图3,图3为第一三维图像与二维图像的示意图。无论采取何种投射方式得到的第一三维图像,其所包含的深度信息都需要被转换成可以与二维图像在相同坐标体系下进行表征的深度信息。在相同坐标体系X-Y-Z下,第一三维图像提供了目标物体的空间深度信息,二维图像例如提供了该目标物体的横纵坐标信息和灰度信息。其中,深度信息即为Z方向的尺寸大小。

需要注意的是,二维图像实际上至少包含了三个维度的信息:X坐标,Y坐标,以及被拍摄的目标物体的灰度信息。如果该二维图像为彩色图,该二维图像进一步包括彩色信息。

该二维图像的分辨率大于该第一三维图像的分辨率,相应地,该二维图像的横纵坐标信息多于该第一三维图像的横纵坐标信息,经坐标系转换后,该第一三维图像上已知的深度信息分别对应一横纵坐标点,且根据该已知的深度信息,通过插值运算得到未带有已知深度信息的横纵坐标点所对应的深度信息。

可见,经映射与插值运算后得到的深度信息增加。该深度信息的个数例如与二维图像的分辨率个数相同或相近。然,本实用新型并不限制该深度信息的个数与二维图像的分辨率的个数相同或相近,该深度信息的个数也可根据实际需要对应增加,例如,该深度信息的个数为二维图像的分辨率的一半等等都是可以的。

当该二维图像为灰度图时,该处理模块14例如根据该已知的深度信息、该新的深度信息、该二维图像上的灰度信息、以及横纵坐标信息重构出该第二三维图像

可见,该第二三维图像的信息量较该第一三维图像的信息量大增,其更能真实地反应该目标物体的模样。

请参见图4,图4为图3所示的一块最小单元区域的映射图,映射关系为从二维图像到第一三维图像进行映射。首先,在二维图像上选取一块最小单元区域,四个顶点分别为(X,Y),(X,Y+1),(X+1,Y),(X+1,Y+1),然后在该第一三维图像上寻找与该最小单元区域相对应区域,该对应区域的四个顶点的横纵坐标信息分别是(X,Y),(X,Y+1),(X+1,Y),(X+1,Y+1)。其中,X、Y例如均为大于0的整数。在本实用新型中,顶点的坐标选取也可根据实际需要选择,并不限于整数,且也并不限于间隔为1的选择。当然,对于数字图像,X、Y通常为整数,且相邻坐标间隔一般选择为1。然,本实用新型并不对参数做特别的限制,厂商可根据实际需要进行相应参数的设置。上述寻找对应区域的方式是将该第一三维图像与该二维图像放在同一坐标系,然后通过映射的方式进行,但本实用新型并不对寻找的方式进行限制,也可为其它合适的寻找方式。

如果该对应区域的顶点的深度信息Z是已知的,则直接采用已知的深度信息Z。

如果该对应区域的顶点的深度信息Z是未知的,则通过插值运算,利用已知的深度信息Z计算获得新的深度信息Z’,比如,以该顶点周围的几个点的已知深度信息Z来进行运算。

在获得新深度信息Z’的过程中,除了插值运算,例如还可包括平滑滤波等信号处理。

需要说明的是,已知的深度信息Z就是在构建该第一三维图像时获得的各深度信息。

另外,需要说明的是,为了清楚明了,在从二维图像往第一三维图像上进行映射时,第一三维图像上的对应区域的顶点坐标被分别标示为与二维图像上的各顶点坐标对应相同。然而,在实际处理时,由于第一三维图像和二维图像的分辨率不同,因此,如果按照各自对X、Y坐标的划分,1万个像素区域的X、Y坐标的大小划分与100万个像素区域的X、Y坐标的大小划分是不同的,相应地,第一三维图像上的顶点与二维图像上相对应的顶点坐标较可能并不相同。

当坐标不同时,经坐标系转换后,例如选用二维图像的X、Y坐标进行统一标注。

如此,重复上述方式或步骤,对于该二维图像上的各最小单元区域,获得该第一三维图像上的各对应区域的顶点的深度信息Z或Z’。另外,结合二维图像的横纵坐标信息以及灰度信息等,重构出该第二三维图像。可见,该第二三维图像的分辨率以及信息量得到明显提升。因此,该第二三维图像能更准确地体现该目标物体的模样。

上述只是本实用新型的方法获得新深度信息的一种实施方式,当然,对于新深度信息的获取也可采用其它合适的转换方式,本实用新型对此并不做限制。

上面的实施例是从二维图像到第一三维图像的映射,然,可变更地,也可从第一三维图像到二维图像进行映射,例如参见图5,首先,在第一三维图像上选取一块最小单元区域,四个顶点分别为(X,Y),(X,Y+△),(X+△,Y),(X+△,Y+△),然后在该二维图像上寻找与该最小单元区域相对应区域,该对应区域的四个顶点的横纵坐标信息分别是(X,Y),(X,Y+△),(X+△,Y),(X+△,Y+△),其中,△为大于1的整数,在实施例中,以相邻坐标间隔为1来计算的话,△例如但并不局限于等于6。

由于第一三维图像的每个像素区域较大,而二维图像上的每个像素区域较小,因此,该二维图像上的每个对应区域会包含多个像素区域。图5中的二维图像上的每个小方格代表一个像素区域。

当第一三维图像的像素区域的顶点经投影与二维图像的像素区域的顶点重合时,则该二维图像上的该顶点的深度信息直接采用该第一三维图像上的顶点的已知深度信息Z,不需要再进行插值运算获得,否则,需要经过插值运算获得新深度信息Z’。

在获得新深度信息Z’的过程中,除了插值运算,例如还可包括平滑滤波等信号处理。

需要说明的是,已知的深度信息Z就是在构建该第一三维图像时获得的各深度信息。

另外,需要说明的是,为了清楚明了,在从第一三维图像往二维图像上进行映射时,二维图像上的对应区域的顶点坐标被分别标示为与第一三维图像上的各顶点坐标对应相同。然而,在实际处理时,由于二维图像和第一三维图像的分辨率不同,因此,如果按照各自对X、Y坐标的划分,100万个像素区域的X、Y坐标的大小划分与1万个像素区域的X、Y坐标的大小划分是不同的,相应地,二维图像上的顶点与第一三维图像上相对应的顶点坐标较可能并不相同。

当坐标不同时,经坐标系转换后,例如选用二维图像的X、Y坐标进行统一标注,或者是采用第一三维图像的横纵坐标,并结合新的横纵坐标进行统一标注等等也是可行的。

如此,重复上述方式或步骤,将该第一三维图像的深度信息转换成与该二维图像在相同坐标体系下进行表征的深度信息,并通过插值运算得到新的深度信息Z’。另外,结合二维图像的横纵坐标信息以及灰度信息等,重构出该第二三维图像。可见,该第二三维图像的分辨率以及信息量得到明显提升。因此,该第二三维图像能更准确地体现该目标物体的模样。

另外,基于插值运算得到后的三维坐标信息,可再进一步进行插值等运算处理,获得具有更高分辨率的第二三维图像。

请参阅图6,图6为本实用新型用于目标物体制图的装置的第二实施方式的结构框图。该装置200与上述的装置100大致相同,二者主要区别在于:该装置200的第一获取模块20包括RGB图像传感器203。该RGB图像传感器203用于感测该目标物体的二维图像。

当该第二投射器201投射空间结构光至该目标物体时,该RGB图像传感器203可与该红外图像传感器223同时或分时工作。

另外,该第一获取模块20也可进一步包括第一投射器101和红外图像传感器103,当环境光较暗时,也可采用红外图像传感器103进行感测。此种情况下,RGB图像传感器203则例如停止工作。

由该RGB图像传感器203获得的该目标物体的二维图像为彩色图。相应地,该处理模块14根据该第一三维图像和该二维图像重构出的第二三维图像可进一步包含该二维图像的彩色信息,因此,该第二三维图像能更进一步反应该目标物体的真实模样。

当该二维图像为彩色图时,该处理模块14例如根据该已知的深度信息、该新的深度信息、该二维图像上的灰度信息和彩色信息、以及横纵坐标信息重构出该第二三维图像。

请参阅图7,图7为本实用新型用于目标物体制图的装置的第三实施方式的结构框图。该装置300与上述的装置100大致相同,二者主要区别在于:该装置300的第二获取模块32包括摄像头321、摄像头323、和处理单元325。在本实施方式中,该摄像头321与摄像头323设置在不同的位置,从而分别从不同的角度获得该目标物体的二维图像。该处理单元325根据获得二维图像能够分析得到该目标物体表面的深度信息,从而构建出该目标物体的第一三维图像。

在本实施方式中,第二获取模块32是采用双目的感测原理来获得该目标物体的第一三维图像。可变更地,在其它实施方式中,该第二获取模块32也可包括多个摄像头,该多个摄像头对应该目标物体被分别设置在不同的位置。相应地,该第二获取模块32采用多目的感测原理来获得该目标物体的第一三维图像。

请参阅图8,图8为本实用新型的身份识别装置的一实施方式的结构框图。该身份识别装置400包括识别模块401和上述中任一实施方式所述的用于目标物体制图的装置。以装置100为例进行说明,该识别模块401用于根据该装置100获得的第二三维图像对目标物体的身份进行识别。

由于该身份识别装置400采用了该装置100,而该装置100获取的第二三维图像更能真实地反应目标物体的模样,因此,该身份识别装置400的识别准确率会得到提升。

该身份识别装置400例如但不局限于包括脸部识别装置。

请参阅图9,图9为本实用新型的电子设备的一实施方式的结构示意图。所述电子设备500例如但不局限于为消费性电子产品、家居式电子产品、车载式电子产品、金融终端产品等合适类型的电子产品。其中,消费性电子产品例如但不局限为手机、平板电脑、笔记本电脑、桌面显示器、电脑一体机等。家居式电子产品例如但不局限为智能门锁、电视、冰箱、穿戴式设备等。车载式电子产品例如但不局限为车载导航仪、车载DVD等。金融终端产品例如但不局限为ATM机、自助办理业务的终端等。所述电子设备500包括上述身份识别装置400。所述电子设备500根据所述身份识别装置400的身份鉴权结果来对应是否执行相应的功能。所述相应的功能例如但不局限于包括解锁、支付、启动预存的应用程序中的任意一种或几种。

在本实施方式中,以电子设备500为手机为例进行说明。所述手机例如为全面屏的手机,所述身份识别装置400例如设置在手机的正面顶端。当然,所述手机也并不限制于全面屏手机。

例如,当用户需要进行开机解锁时,抬起手机或触摸手机的屏幕都可以起到唤醒该身份识别装置400的作用。当该身份识别装置400被唤醒之后,识别该手机前方的用户是合法的用户时,则解锁屏幕。

可见,由于该电子设备500应用了该身份识别装置400,该电子设备500的用户体验较好。

在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。

尽管上面已经示出和描述了本实用新型的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施方式进行变化、修改、替换和变型。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1