具有有机发光二极管(OLED)屏幕或其他屏幕的设备中用于屏上指纹感测的屏下光学传感器模块中经由成像透镜和成像针孔的光学成像的制作方法

文档序号:16596017发布日期:2019-01-14 19:39阅读:152来源:国知局
具有有机发光二极管(OLED)屏幕或其他屏幕的设备中用于屏上指纹感测的屏下光学传感器模块中经由成像透镜和成像针孔的光学成像的制作方法

本专利文件要求深圳汇顶科技有限公司于2018年2月23日提交的申请号为62/634,745、发明名称为“用于屏上指纹感测的屏下光学传感器模块中经由成像透镜和成像针孔的光学成像”的美国临时专利申请的权益和优先权。上述专利申请的全部内容通过引用并入本专利文件的公开内容的一部分。

本专利文件涉及指纹的感测以及电子设备或系统中执行其他参数测量的一个或多个感测操作,所述电子设备或系统包括移动设备或可穿戴设备等便携式设备和更大的系统。



背景技术:

各种传感器可以在电子设备或系统中实现,以提供某些期望的功能。对只有授权用户才能被识别并且与未授权用户区分开的计算机和计算机控制的设备或系统的安全访问的需求不断增长。

例如,移动电话、数码相机、平板pc、笔记本电脑和其他便携式电子设备在个人、商业和政府的使用中越来越普及。供个人使用的便携式电子设备可以配备有一个或多个安全机制以保护用户的隐私。

又如,用于组织或企业的计算机或计算机控制的设备或系统可以被保护为仅允许授权人员访问,以保护该组织或企业的设备或系统的信息或使用。

存储在便携式设备和计算机控制的数据库、设备或系统中的信息可以具有应当被保护的某些特性。例如,存储的信息可以实质上是个人信息,如个人联系人或电话簿、个人照片、个人健康信息或其他个人信息,或是由组织或企业专有地使用的机密信息,如商业财务信息、雇员数据、商业秘密以及其他专有信息。如果访问电子设备或系统的安全性受到损害,则数据可能被未被授权获得访问的其他人访问,造成个人隐私的丧失或有价值机密信息的丢失。除了信息的安全性以外,保护对计算机和计算机控制的设备或系统的访问还允许保护由计算机或计算机处理器控制的设备或系统,例如计算机控制的汽车,以及其他系统,例如atm的使用。

对移动设备等设备或电子数据库、计算机控制的系统等系统的安全访问可以以不同方式实现。例如,实现安全访问的一种常用方法是使用用户密码。然而,密码可以容易地被传播或获得,并且密码的这种性质可以降低安全水平。而且,用户需要记住密码以使用受密码保护的电子设备或系统,并且如果用户忘记该密码,则用户需要采取某些密码恢复流程来获得认证或以其他方式重新获得对设备的访问。遗憾的是,各种情况下,这样的密码恢复过程对用户来说可能是繁琐的,而且具有各种实用性的限制和不便。

个人指纹识别可以用于实现用户认证,以在增强数据安全性的同时减轻与密码相关联的某些不期望的效果。

包括便携式或移动计算设备的电子设备或系统可以使用用户认证机制来保护个人或其他机密数据,并且防止未被授权的访问。电子设备或系统上的用户认证可以通过生物度量标识符的一种或多种形式来执行,这种生物度量标识符可以单独使用或在常规密码认证方法的基础上使用。生物度量标识符的一种形式就是人的指纹图案。指纹传感器可以内置于电子设备或系统中,以读取用户的指纹图案作为认证过程的一部分,使得该设备或系统只能由授权用户通过该授权用户的指纹图案的认证来解锁。



技术实现要素:

本专利文件中描述的传感器技术和传感器技术的实现方式的示例提供了一种光学传感器模块,其使用来自显示屏的光并基于该光的光学感测来执行一个或多个感测操作。一种用于实现所公开的光学传感器技术的适当的显示屏可以基于各种显示技术或配置,包括具有发光显示像素而不使用背光的显示屏,其中每个单独的像素生成用于在有机发光电二极管(oled)显示屏或电致发光显示屏等屏幕上形成显示图像的一部分的光。所公开的光学传感器技术还可以适用于其他显示屏,如液晶显示(lcd)屏。在应用中,公开的技术可以实现为通过利用屏下光学传感器模块提供指纹的屏上光学感测,该屏下光学传感器模块采集并检测由显示屏发出的用于显示图像并由屏幕组件的顶面反射回来的返回的光。

具体地,公开了设备和光学传感器模块,用于利用包括针孔-透镜组件的屏下光学传感器模块进行指纹的屏上光学感测,以增强光学成像性能,例如置于有机发光二极管(oled)显示模块下方的光学传感器模块和其他显示模块。提供了用于减少光学感测中的环境光的技术。

一方面,所公开的技术能够实现为提供一种用于操作能够通过光学感测检测指纹的电子设备的方法。该方法包括操作位于触摸显示面板下方的光学传感器模块,为所述设备提供触摸感测操作,以产生探照光用于照亮所述触摸显示面板的顶部透明层;将从所述顶部透明层返回的探测光引导至所述光学传感器模块内的针孔中,以允许在大视场内以不同角度在所述返回的光的所述针孔处接收;使用位于所述针孔和光学传感器阵列内的光学检测器的光学传感器阵列之间的透镜以接收来自所述针孔的光,并将从所述针孔接收到的光聚焦到所述光学传感器阵列上,与利用所述针孔将光投射到没有所述透镜的所述光学传感器阵列上时的较低空间成像分辨率相比,所述透镜以增强的空间成像分辨率在所述光学传感器阵列处进行光学成像。

另一方面,所公开的技术可以实现为提供一种能够通过光学感测检测指纹的电子设备,包括:显示面板,该显示面板包括显示图像的显示像素;顶部透明层,形成于所述显示面板之上,作为用于用户触摸的界面,并且作为用于传输来自所述显示面板的光以显示图像的界面;以及光学传感器模块,位于所述显示面板下方,以接收来自所述顶部透明层的光来检测指纹。光学传感器模块包括光学检测器的光学传感器阵列,用于将接收的来自所述顶部透明层和所述显面板携带用户指纹图案的光转换为表示指纹图案的检测信号;针孔层,位于所述显示面板和所述光学传感器阵列之间,且被构造成包括具有高折射率的光学透明针孔层材料,用于接收来自所述顶部透明层和所述显示面板的光,以及形成在所述光学透明针孔层材料的一个表面上的不透明层,用于包括针孔,以透射由所述光学透明针孔层材料接收的所述光;光学间隔层,形成于所述显示面板和所述针孔层之间,以接触所述针孔层的所述光学透明针孔层材料,以将来自所述顶部透明层和所述显示面板的接收的光导向形成于所述光学透明针孔层材料的相对侧上的所述针孔;透镜,位于所述针孔层和所述光学传感器阵列之间,接收来自所述针孔的透射光并将接收到的所述光聚焦到所述光学传感器阵列上,以增强的空间成像分辨率和减小的图像尺寸在所述光学传感器阵列处进行光学成像。所述光学间隔层被配置为具有低于所述光学透明针孔层材料的高折射率的折射率,以在收集来自所述顶部透明层和显示面板的返回的光时产生大的光学视场,用于通过所述针孔向所述光学传感器阵列透射。在实现方式中,显示面板可以是有机发光二极管(oled)显示面板或液晶显示(lcd)面板。

又一方面,所公开的技术能够实现为提供一种用于操作能够通过光学感测检测指纹的电子设备。这种电子设备的一种实现方式包括显示面板,该显示面板包括操作为发光以显示图像的发光显示像素;顶部透明层,形成于所述显示面板之上,作为用于用户触摸的界面并且作为用于传输来自所述显示面板的光以显示图像的界面;以及光学传感器模块,位于所述显示面板下方,用于经由所述顶部透明层接收光以检测指纹。所述光学传感器模块包括光学检测器的光学传感器阵列,用于将接收的来自所述顶部透明层和所述显面板携带用户指纹图案的光转换为表示指纹图案的检测信号;针孔层,位于所述显示面板和所述光学传感器阵列之间,并构造成包括针孔,所述针孔被构造成在收集接收的光时产生大的光学视场并将收集的光向所述光学传感器阵列传输,以及透镜,位于所述针孔层和所述光学传感器阵列之间,用于接收来自所述针孔的透射光并将接收到的光聚焦到所述光学传感器阵列上,与利用所述针孔将光投射到没有所述透镜的所述光学传感器阵列上时的较低空间成像分辨率相比,所述透镜以增强的空间成像分辨率在所述光学传感器阵列处进行光学成像。

这些和其他方面及其实现方式在附图、说明书和权利要求书中进行更为详细的描述。

附图说明

图1是具有指纹感测模块的系统的示例的框图,该系统可以实现为包括本文件中公开的光学指纹传感器。

图2a和图2b示出了电子设备200的一种示例性实现方式,该电子设备200具有触摸感测显示屏组件和位于该触摸感测显示屏组件下方的光学传感器模块。

图2c和图2d示出了实现图2a和图2b中的光学传感器模块的设备的示例。

图3示出了适用于实现公开的光学指纹感测技术的oled显示器和触摸感测组件的一个示例。

图4a和图4b示出了用于实现图2a和图2b中的设计的、且在显示屏组件下方的光学传感器模块的一种实现方式的示例。

图5a和5b示出了对于两种不同光学条件下来自顶部感测表面上的感测区的返回的光的信号生成,以便于理解屏下光学传感器模块的操作。

图6a至图6c、图7、图8a至图8b、图9和图10a至图10b示出了屏下光学传感器模块的示例设计。

图11示出了在不同铺设条件下通过成像模块在顶部透明层上的指纹感测区域的成像,其中成像设备将该指纹感测区域成像到光学传感器阵列上,该成像设备可以是光学透射的,也可以是光学反射的。

图12示出了指纹传感器的操作的示例,该操作用于减少或消除指纹感测中来自背景光的不期望的影响。

图13示出了操作用于采集指纹图案的屏下光学传感器模块的过程。

图14a、14b和图15示出了通过操作oled像素以两种不同颜色的光照亮手指来确定与oled显示屏接触的目标是否为活人的手指的一部分的操作过程的示例。

图16示出了由oled显示器产生的标准校准图案的示例,用于校准由光学传感器阵列输出的用于指纹感测的成像感测信号。

图17示出了不同按压力下的同一手指的两种不同的指纹图案:轻度按压的指纹3301和重度按压的指纹3303。

图18示出了从约525nm到约940nm的数个不同光学波长下典型的人类大拇指和小拇指的光学透射光谱轮廓的示例。

图19示出了屏下光学传感器模块的示例中的背景光的影响。

图20示出了用于设计用于减少背景光的屏下光学传感器模块中的光学滤波的设计算法的示例。

图21示出了传感器初始化过程的示例,在每次获得指纹时,测量光学传感器阵列处的基线背景水平。

图22和图23示出了具有额外照明光源的屏下光学传感器模块的示例中的不同光学信号的行为,该额外照明光源用于补充oled显示光的指纹感测照明。

图24示出了设计算法的示例,该设计算法用于设计存在用于光学感测的额外光源时减少背景光的屏下光学传感器模块中的光学滤波。

图25示出了基于针孔-透镜组件的屏下光学传感器模块的示例。

图26示出了基于针孔-透镜组件的屏下光学传感器模块的示例,该针孔-透镜组件在针孔-透镜组件的目标侧和成像侧具有匹配的材料层。

图27a-27b示出了针孔相机和针孔-透镜组件的成像操作,用于描述由于针孔-透镜组件中存在透镜而出现的改善的空间成像分辨率。

图28示出了针孔-透镜组件的成像,用于描述由于存在用于支撑位于针孔-透镜组件上方的针孔的高折射率层而出现的减小的图像失真。

图29示出了用于基于针孔-透镜组件的屏下光学传感器模块中的光学滤波器的梯度透射滤波器轮廓的示例,用于改善图像均匀性。

图30示出了基于针孔-透镜组件的屏下光学传感器模块的示例,该针孔-透镜组件利用外壳阻挡环境光。

具体实施方式

该专利文件中公开的光学感测技术可用于指纹的光学感测和其他参数或性质的光学感测,并且可以以提供各种优点或益处的特定方式实现,例如,包括在用于改进光学成像和紧凑的光学传感器模块封装的针孔-透镜组件实现针孔。

电子设备或系统可以配备有指纹认证机制,以提高访问设备的安全性。这种电子设备或系统可以包括便携式或移动计算设备,例如智能手机、平板计算机、腕戴式设备和其他可穿戴或便携式设备,还包括更大的电子设备或系统,例如便携形式或桌面形式的个人计算机、atm、用于商业或政府用途的各种终端到各种电子系统、数据库或信息系统以及包括汽车、船、火车、飞机和其他的机动交通系统。

指纹感测在使用或需要安全访问的移动应用和其他应用中是有用的。例如,指纹感测可以用于提供对移动设备的安全访问和包括在线购买的安全金融交易。所期望的是,包括适于移动设备和其他应用的鲁棒且可靠的指纹感测。在移动、便携式或可穿戴设备中,由于这些设备上的空间有限,尤其考虑到对给定设备上的最大显示区域的需求,期望指纹传感器将指纹感测的占用最小化或消除。

为了被用户看到,由显示屏生成的用于显示图像的光可以穿过该显示屏的顶面。手指可以触摸该顶面,从而与该顶面处的光交互,使得在该触摸的表面区域处的反射或散射的光携带该手指的空间图像信息,并且返回至该顶面下方的显示面板。在触摸感测显示设备中,顶面是与用户接合的触摸感测界面,并且在用于显示图像的光和用户手指或手之间的这种交互不断地发生,但是这种返回至显示面板的携带信息的光被大量浪费,并且在大多触摸感测设备中未被使用。在具有触摸感测显示和指纹感测功能的各种移动或便携式设备中,指纹传感器倾向于是与显示屏分离的设备,要么被设置在显示屏的相同表面上的除显示屏区域之外的位置处,例如在受欢迎的苹果iphone和最近的三星galaxy智能手机中,要么被设置在智能手机的背面,例如华为、联想、小米或谷歌的一些新款智能手机,以避免占用用于在正面设置大显示屏的宝贵空间。这些指纹传感器是与显示屏分离的设备,从而需要很紧凑以节省空间用来显示和其他功能,同时仍然提供具有高于某一可接受水平的空间图像分辨率的可靠且快速的指纹感测。然而,因为基于各种合适的指纹感测技术(例如电容式触摸感测或光学成像)的采集指纹图像中的高空间图像分辨率需要具有大量感测像素的大传感器区域,所以在许多指纹传感器中紧凑和小的需求与在采集指纹图案时提供高空间图像分辨率的需求彼此直接冲突。

本文公开的光学传感器技术使用在显示屏中用于显示图像的从设备显示组件的顶面返回的光来进行指纹感测和其他感测操作。该返回的光携带与该顶面接触的目标(例如手指)的信息,并且采集和检测该返回的光构成了在实现位于显示屏下方的特定光学传感器模块时设计考虑的一部分。因为触摸屏组件的顶面用作指纹感测区域,所以该被触摸区域的光学图像应该由光学传感器模块内的光学成像传感器阵列采集,该光学成像传感器阵列具有对原始指纹的高图像保真度以用于鲁棒的指纹感测。光学传感器模块可以设计为通过恰当地配置用于采集和检测返回的光的光学元件来实现这种期望的光学成像。

所公开的技术可以实现为提供执行人类指纹的光学感测和用于认证对移动设备或计算机控制的系统等锁定的计算机控制的设备的访问尝试的认证的设备、系统和技术,该锁定的计算机控制的设备配备有指纹检测模块。所公开的技术可以用于保护对各种电子设备和系统的访问,包括笔记本电脑、平板电脑、智能手机和游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行atm等其他电子设备或系统。

本文所公开的光学传感器技术可以实现为检测用于在显示屏中显示图像的光的一部分,其中,用于显示屏的光的这部分可以是散射光、反射光或一些杂散光。例如,在所公开的用于oled显示屏或者其他具有发光显示像素而不使用背光的显示屏的光学传感技术的一些实现方式中,由oled显示屏产生的图像光在oled显示屏的顶面处或附近遇到用户手指或手掌、或像触笔的用户指针设备等目标时,可以作为返回的光反射或散射回oled显示屏。这种返回的光可以被采集以使用所公开的光学传感器技术来执行一个或多个光学感测操作。由于在光学感测中对来自oled显示屏自身的oled像素的光的使用,在一些实现方式中,基于所公开的光学传感器技术的光学传感器模块可以特殊地设计为集成到oled显示屏,其中,该方式维持oled显示屏的显示操作和功能而没有干扰,同时提供光学感测操作和功能,以增强智能手机或其他移动/可穿戴式设备等电子设备或其他形式的电子设备或系统的整体功能、设备集成和用户体验。

例如,基于所公开的光学传感器技术的光学传感器模块可以耦合到具有发光显示像素而不使用背光的显示屏(如oled显示屏),以通过使用上述由oled显示屏产生的光的返回的光来感测人的指纹。操作中,与oled显示屏直接接触或在oled显示屏附近的人的手指能够使返回的光回到oled显示屏中,同时携带被oled显示屏输出的光照射到的一部分手指的信息。这种信息可以包括手指被照射部分的脊和谷的空间图案和位置等。因此,光学传感器模块可以集成以采集这种返回的光中的至少一部分,以通过光学成像和光学检测操作来检测手指被照射部分的脊和谷的空间图案和位置。该检测到的手指的被照射到的部分的脊和谷的空间图案和位置随后可以被处理,以构造指纹图案并进行指纹识别,例如,作为用户认证和设备访问过程的一部分,与储存的授权用户指纹图案进行比较,以确定检测到的指纹是否为匹配指纹。利用所公开的光学传感器技术的这种基于光学感测的指纹检测,使用oled显示屏作为光学感测平台,并且可以用于替代现有的电容式指纹传感器或其他指纹传感器,这些传感器基本上是作为“附加”部件的独立传感器,不使用来自显示屏的光,也不使用用于手机、平板电脑和其他电子设备的指纹感测的显示屏。

所公开的光学传感器技术可以以下方式实现:将具有发光显示像素的显示屏(如oled显示屏)用作光学感测平台,在oled显示屏的显示像素发射的光与手指触摸的顶部触摸表面上的区域交互后,使用这种发射的光进行指纹感测或其他光学感测功能。所公开的光学传感器技术和oled显示屏之间的这种密切关系为使用基于所公开的光学传感器技术的光学传感器模块提供了独特的机会,以提供与oled显示屏的触摸感测方面相关的(1)附加的光学感测功能和(2)有用的操作或控制特征。

需要注意的是,在一些实现方式中,基于所公开的光学传感器技术的光学传感器模块可以耦合到oled显示屏的背面而不需要在oled的显示屏的显示表面侧的指定区域,在一些外部表面区域受限的智能手机、平板电脑或可穿戴设备等电子设备中,该指定区域会占用宝贵的设备表面空间。这种光学传感器模块可以置于oled的显示屏之下,与显示屏区域垂直重叠,并且,从用户的角度来看,该光学传感器模块隐藏在显示屏区域的后面。此外,由于这种光学传感器模块的光学感测是通过检测由oled显示屏发出的并从显示区域的顶面返回的光而进行的,所以所公开的光学传感器模块不需要与显示屏区域分离的特殊感测端口或感测区域。因此,在包括苹果的iphone/ipad设备或三星galaxy智能手机模型等的其他设计中,指纹传感器位于显示屏的相同表面上的特定指纹传感器区域或端口(如主页按钮)处,但位于显示屏区域外的指定的非显示区域中,不同于该其他设计中的指纹传感器,基于所公开的光学传感器技术的光学传感器模块可以以以下方式实现:通过使用独特的光学感测设计将从手指返回的光路由到光学传感器中,并且通过提供合适的光学成像机制实现高分辨率光学成像感测,允许在oled显示屏上的位置处进行指纹感测。就这点而言,所公开的光学传感器技术能够实现为通过使用既能显示图像又能提供触摸感测操作的相同顶部触摸感测表面,提供独特的屏上指纹感测配置,而在显示屏区域外没有分离的指纹感测区域或接口。

除了用于指纹感测外,本专利文件公开的光学感测技术可以用于测量其他参数或执行其他光学感测功能。例如,所公开的光学传感器技术能够测量被提供在整个oled显示屏上可用的大触摸区域的人的手掌的图案(相反,一些指定的指纹传感器,如苹果iphone/ipad设备的主页按钮中的指纹传感器,具有相当小且指定的屏外指纹感测区域,其在感测区域的大小上受到高度限制,可能不适合感测大图案)。再如,所公开的光学传感器技术不但可以用于使用光学感测来采集和检测与人相关联的手指或手掌的图案,还可以用于使用光学感测或其他感测机制,通过“活体手指”检测机制来检测所采集的或检测到的指纹或手掌的图案是否来自活着的人的手,该检测机制可以基于例如不同光学波长下血液的不同光吸收行为,事实上,由于活着的人的自然移动或运动(有意或无意的)这个人的手指通常是移动着或伸展着的,或者当血液流过与心跳相连的人体时手指会有脉动。在一个实现方式中,光学传感器模块可以检测由于心跳/血流变化而导致的来自手指或手掌的返回的光的变化,从而检测在表现为手指或手掌的目标中是否存在活着的心跳。用户认证可以基于指纹/手掌图案的光学感测和对活体存在的正面确定的结合来增强访问控制。又如,光学传感器模块可以包括感测功能,以基于来自手指或手掌的返回的光的光学感测来测量血糖水平或血氧饱和度。再如,当人触摸oled的显示屏时,触摸力的变化能够以一种或多种方式反映,包括指纹图案变形、手指和屏幕表面之间的接触面积的变化、指纹脊变宽或血流的动态变化。这些或其他变化能够通过基于所公开的光学传感器技术的光学感测来测量,并且可以用于计算触摸力。除指纹感测之外,这种触摸力感测还可用于为光学传感器模块添加更多功能。

针对与oled显示屏的触摸感测方面相关的有用操作或控制特征,所公开的光学传感器技术可以基于来自光学传感器模块的一个或多个感测结果提供触发功能或附加功能,以进行与oled显示屏的触摸感测控制相关的某些操作。例如,手指皮肤的光学特性(如折射率)通常与其他人造目标不同。据此,光学传感器模块可以设计为选择性地接收和检测由与oled显示屏的表面接触的手指造成的返回的光,而由其他目标造成的返回的光不会被光学传感器模块检测到。这种目标选择性光学检测可以用于提供通过触摸感测的有用的用户控制,如只有经由人的手指或手掌的触摸才能唤醒智能手机或设备,而其他目标的触摸不会引起设备的苏醒,以进行节能操作并且延长电池的使用。这种操作可以通过基于光学传感器模块的输出的控制来实现,以控制oled显示屏的唤醒电路操作,其中,通过关闭大多数oled像素使其处于“睡眠”模式而不发光,而开启oled显示屏中的部分oled像素使其处于闪光模式,以向屏幕表面间歇性地发出闪光来感测人的手指或手掌的任何触摸。另一种“睡眠”模式配置可以通过使用内置于光学传感器模块的一个或多个额外的led光源来实现,以产生“睡眠”模式唤醒感测的闪烁光,其中,在睡眠模式期间关闭所有的oled像素,使得光学传感器模块能够检测由手指在oled显示屏上触摸造成的这种唤醒感测光的返回的光,并且响应于正面检测,oled显示屏上的oled像素被开启或被“唤醒”。在一些实现方式中,唤醒感测光可以在红外线不可见的光谱范围中,所以用户不会体验任何闪光的视觉效果。又如,由光学传感器模块进行的指纹感测是基于在正常oled显示屏操作的过程中对来自oled显示屏的表面的返回的光的感测,可以控制oled显示屏操作以通过消除用于指纹的光学感测的背景光来提供改善的指纹感测。例如,在一种实现方式中,每个显示扫描帧生成一帧指纹信号。如果生成两帧与屏幕显示相关的指纹信号,其中当oled显示屏打开时生成一帧指纹信号,而当oled显示屏关闭时生成另一帧指纹信号,则这两帧指纹信号的差值可以用于减少周围的背景光的影响。在一些实现方式中,通过操作指纹感测帧速率为显示帧速率的一半,能够减少指纹感测中的背景光噪声。

如上所述,基于所公开的光学传感器技术的光学传感器模块可以耦合到oled显示屏的背面,而不需要在oled显示屏的表面侧上创建特定的区域,该区域在一些智能手机、平板电脑或可穿戴设备等电子设备中会占用宝贵的设备表面空间。所公开的技术的这个方面可以用于在设备设计和产品集成或制造中提供某些优点或益处。

在一些实现方式中,基于所公开的光学传感器技术的光学传感器模块可以被配置为非入侵式模块,其可以容易地集成到具有发光显示像素的显示屏(如oled显示屏),而不需要改变oled显示屏的设计以提供指纹感测等期望的光学感测功能。就这点而言,基于所公开的光学传感器技术的光学传感器模块可以独立于特定的oled显示屏设计的设计,这是由于光学传感器模块的以下性质:这种光学传感器模块的光学感测是通过检测由oled显示屏发出的并从显示区域的顶面返回的光进行的,并且所公开的光学传感器模块作为屏下光学传感器模块耦合到oled显示屏的背面,用于接收来自显示区域的顶面的返回的光,从而不需要与显示屏区域分离的特定感测端口或感测区域。因此,这种屏下光学传感器模块可以用于与oled显示屏组合,以在oled显示屏上提供光学指纹感测和其他传感器功能,而不使用具有专门设计用于提供这种光学感测的硬件的特殊设计的oled显示屏。所公开的光学传感器技术的这方面可以使oled显示屏在智能手机、平板电脑或其他具有来自所公开的光学传感器技术的光学感测的增强功能的电子设备中的范围更加广泛。

例如,对于不提供分离的指纹传感器的现有电话组件设计,像某些苹果iphone或三星galaxy模型,这种现有电话组件设计可以不改变触摸感测显示屏组件而集成如本文所述的屏下光学传感器模块,以提供增加的屏上指纹感测功能。因为所公开的光学感测不需要分离的指定的感测区域或端口,像某些苹果(iphone)/三星(galaxy)手机具有在显示屏区域外的前指纹传感器,或像华为、小米、谷歌或联想的一些模型的一些智能手机在背面具有指定的后指纹传感器,本文所公开的屏上指纹感测的集成不需要对具有触摸感测层和显示层的现有电话组件设计或触摸感测显示模块进行实质的改变。基于本文件中所公开的光学感测技术,在设备的外部不需要外部感测端口和外部硬件按钮,该设备需要添加所公开的光学传感器模块来进行指纹感测。添加的光学传感器模块和相关电路在电话外壳内的显示屏下,并且可以在触摸屏的相同触摸感测表面上方便地进行指纹感测。

又如,由于用于指纹感测的光学传感器模块的上述性质,集成这种光学传感器模块的智能手机能够随着改进的设计、功能和集成机制来更新,而不影响oled的显示屏的设计或制造或加重oled的显示屏的设计或制造负担,以在产品周期中为设备制造和改进/升级提供期望的灵活性,同时维持使用oled的显示屏的智能手机、平板电脑或其他电子设备中光学感测功能的更新版本的可用性。具体地,利用所公开的屏下光学传感器模块,可以在下一产品版本中更新触摸感测层或oled显示层,无需为指纹感测功能做任何显著的硬件改变。此外,通过使用新版本的屏下光学传感器模块,可以将通过这种光学传感器模块实现的、用于指纹感测或其他光学感测功能的、改善的屏上光学感测,添加到新产品版本中,包括增加附加的光学感测功能,而不需要对电话组件设计做显著改变。

所公开的光学传感器技术的以上或其他特征可以实现为向新一代的电子设备提供改善的指纹感测和其他感测功能,尤其是对于具有显示屏的智能手机、平板电脑和其他电子设备,该显示屏具有发光显示像素而不使用背光(如oled显示屏),以提供各种触摸感测操作和功能,并增强这种设备的用户体验。

在实际应用中,配备有光学指纹感测的电子设备中用于指纹感测和其他感测功能的光学感测的性能可能因来自环境的不期望的背景光的出现而降低,该环境下部分背景光可能会进入光学传感器模块。这种背景光导致光学传感器模块中的光学检测器产生噪声信号,这种噪声信号会不期望地降低光学指纹感测检测的信噪比。在一些情况下,这种背景噪声可能达到覆盖携带光学指纹信息或其他有用信息(例如,生物信息)的有用信号的信号电平的程度,并可能导致不可靠的光学感测操作,甚至导致光学感测的故障。例如,光学传感器模块处的不期望的背景光的来源之一可能是太阳的日光,并且太阳光的影响对于户外操作或在日光强烈的遮蔽环境中可能尤其成问题。又如,在具有所公开的光学指纹感测的设备位置处或其附近的位置出现的其它光源也可能导致光学传感器模块处出现不期望的背景光。

通过减少能够进入光学传感器模块的不期望的背景光的数量,或者通过增强除返回的oled显示光的信号电平之外的、携带了指纹或其他有用信息的光学感测信号的光学信号电平,或者通过背景减少和增强光学感测信号电平相结合,减缓光学传感器模块处的背景光的不期望影响。在一些实现方式中,可以通过使用一个或多个光学滤波机制结合屏下光学传感器模块来实现背景减少。在增强携带指纹或其他有用信息的光学感测信号的光学信号电平时,可以将一个或多个额外照明光源添加到设备中,以提供除返回的oled显示光引起的信号电平之外的额外光学照明光。

在以下部分中,屏下光学传感器模块的各种设计的示例用于通过实现至少一个成像透镜将光学信号收集到光学检测器,并提供期望的光学成像,例如足够的成像分辨率。在针孔-透镜组件中实现针孔的具体实例用于改进光学成像和紧凑的光学传感器模块封装。另外,提供了用于光学感测的背景光过滤或添加额外照明光。

在所公开的技术特征的实现方式中,可以提供生物医学传感器等附加的感测功能或感测模块,例如在像腕带设备或手表的可穿戴设备中的心跳传感器。总之,可以在电子设备或系统中提供不同的传感器以实现不同的感测操作和功能。

图1是具有包括指纹传感器181的指纹感测模块的系统180的示例的框图,该系统180可以实现为包括基于本文件中所公开的指纹的光学感测的光学指纹传感器。系统180包括指纹传感器控制电路184和数字处理器186,该数字处理器186可以包括一个或多个处理器,用于处理指纹图案,并确定输入的指纹图案是否是授权用户的指纹图案。指纹感测系统180使用指纹传感器181来得到指纹并将得到的指纹与储存的指纹进行比较,以启用或禁用由指纹感测系统180保护的设备或系统188中的功能。操作中,指纹处理处理器186基于采集的用户指纹是否来自授权用户,控制对设备188的访问。如图所示,指纹传感器181可以包括多个指纹感测像素,如统一表示指纹中的至少一部分的像素182a-182e。例如,指纹感测系统180可以在作为系统188的atm处实现,以确定请求访问资金或其他交易的客户的指纹。基于对从指纹传感器181得到的客户的指纹与一个或多个储存的指纹的比较,响应于正面识别,指纹感测系统180可以使得atm系统188准许请求的对用户账户的访问,或者响应于否定识别,可以拒绝访问。又如,设备或系统188可以是智能手机或便携式设备,并且指纹感测系统180是集成到设备188的模块。又如,设备或系统188可以是使用指纹传感器181来准许或拒绝进入的设施或家庭的门或安全入口。再如,设备或系统188可以是汽车或其他交通工具,其使用指纹传感器181链接到发动机的启动,并识别人是否被授权操作该汽车或交通工具。

如具体的示例,图2a和图2b示出了电子设备200的一个示例性实现,该电子设备200具有触摸感测显示屏组件和位于该触摸感测显示屏组件下方的光学传感器模块。在该具体的示例中,显示技术可以通过oled显示屏或其他具有发光显示像素而不使用背光的显示屏来实现。电子设备200可以为智能手机或平板电脑等便携式设备,并且电子设备200可以为如图1所示的设备188。

图2a示出了设备200的前侧,其类似于一些现有智能手机或平板电脑中的一些特征。设备屏幕在设备200的前侧,占据前侧空间的全部、大部分或显著部分,并且在设备屏幕上提供指纹感测功能,如用于在设备屏幕上接纳手指的一个或多个感测区域。作为示例,图2a示出了设备屏幕中用于手指触摸的指纹感测区,该指纹感测区可以被照亮为明显可识别的地区或区域,用户放置手指以进行指纹感测。该指纹感测区可以像设备屏幕的其余部分一样用于显示图像。如图所示,在各种实现方式中,设备200的设备外壳可以具有侧面,该侧面支持当前市场上各种智能手机中常见的侧控制按钮。并且,如图2a中设备外壳的左上角的一个示例所示,在设备屏幕外的设备200的前侧上可以设置一个或多个可选的传感器。

图2b示出了设备200中与本文件中公开的光学指纹感测相关的模块的结构构造的示例。图2b中所示的设备屏幕组件包括:例如,在顶部具有触摸感测层的触摸感测屏模块以及位于触摸感测屏模块下的具有显示层的显示屏模块。光学传感器模块耦合到显示屏组件模块并位于其下方,以接收和采集来自触摸感测屏模块的顶面的返回的光,并且将该返回的光引导且成像到光学感测像素或光电探测器的光学传感器阵列上,该光学传感器阵列将该返回的光中的光学图像转换成像素信号以用于进一步处理。光学传感器模块之下是设备电子结构,该设备电子结构包含用于设备200中的光学传感器模块和其他组件的某些电子电路。该设备电子器件可以布置在设备外壳内部,并且可以包括如图2b所示的光学传感器模块的下面的一部分。

在实现方式中,设备屏幕组件的顶面可以为光学透明层的表面,作为用户触摸感测表面以提供多种功能,例如(1)显示器输出表面,其中携带显示器图像的光穿过该显示输出表面到达观看者的眼睛,(2)触摸感测界面,通过触摸感测模块接收用户触摸以进行触摸感测操作,以及(3)光学界面,用于屏上指纹感测(以及可能的一个或多个其他的光学感测功能)。该光学透明层可以为玻璃或晶体层等刚性层或柔性层。

具有发光显示像素而不使用背光的显示屏的一个示例是具有单独的发射像素阵列以及薄膜晶体管(thinfilmtransistor,tft)结构或基板的oled显示器,其中,该薄膜晶体管结构或基板可以包括小孔阵列,并且可以是光学透明的,以及可以是覆盖基板以保护oled像素。参见图2b,本示例中的光学传感器模块位于oled显示面板的下面,以采集来自该顶部触摸感测表面的返回的光,并且获取当用户的手指与该顶面上的感测区域接触时的指纹图案的高分辨率图像。在其他实现方式中,所公开的用于指纹感测的屏下光学传感器模块可以在没有触摸感测功能的设备上实现。另外,合适的显示面板可以有不同于oled显示器的各种屏幕设计。

图2c和图2d示出了实现图2a和图2b中的光学传感器模块的设备的示例。图2c示出了包含屏下光学传感器模块的设备的一部分的横截面视图。图2d在左侧示出了具有触摸感测显示器的设备的前侧的视图,表示显示屏下部上的指纹感测区域,并且在右侧示出了包含位于设备显示屏组件下面的光学传感器模块的设备的一部分的透视图。图2d还示出了具有电路元件的柔性带的布局的示例。

在图2a、2b、2c和2d的设计示例中,光学指纹传感器设计不同于一些其他的指纹传感器设计,这些其他设计使用独立于显示屏的指纹传感器结构,并且在移动设备的表面上,显示屏和指纹传感器之间具有物理分界(例如,一些移动电话设计中,在顶部玻璃盖板的开口中的按钮状结构)。在本文所示的设计中,用于检测指纹感测和其他光学信号的光学指纹传感器位于顶部盖板玻璃或层的下面(例如图2c),使得盖板玻璃的顶面用作移动设备的顶面,作为横跨垂直堆叠并垂直重叠的显示屏幕层和光学检测器传感器的连续且均匀的玻璃表面。用于将光学指纹感测和对触摸灵敏的显示屏集成在共同且均匀的表面下的这种设计提供了益处,包括提高了设备一体化,增强了设备封装,增强了设备对外部元件、故障、磨损和撕裂的抵抗力,并且增强了设备的所有权期间的用户体验。

各种oled显示设计和触摸感测设计可以用于图2a、2b、2c和2d中的光学传感器模块之上的设备屏幕组件。图3示出了oled显示和触摸感测组件的一个示例,该示例是苹果公司的名称为“集成的硅-oled显示和触摸传感器面板”、2015年11月19日公开的公开号为us2015/0331508a1的美国专利申请的图7b,该申请通过引用并入本专利文件的一部分。oled可以以各种类型或配置来实现,包括但不限于无源矩阵oled(pmoleds)、有源矩阵oled(amoleds)、透明oled、阴极共用oled、阳极共用oled、白光oled(woleds)和rgb-oled。不同类型的oled可以有不同的用途、配置和优点。在具有集成的硅-oled显示和触摸传感器面板的系统的示例中,该系统可以包括硅基板、晶体管阵列、一个或多个金属化层、一个或多个通孔、oled叠层、滤色器、触摸传感器以及附加的部件和电路。附加的部件和电路可以包括静电放电设备、光屏蔽、开关矩阵、一个或多个光电二极管、近红外检测器和近红外滤色器。集成的硅-oled显示和触摸传感器面板还可以配置用于近场成像、光学辅助触摸和指纹检测。在一些示例中,多个触摸传感器和/或显示像素可以被分组成集群,并且该集群可以耦合到开关矩阵以用于触摸和/或显示粒度的动态变化。在图3的oled示例和其他实现方式中,触摸传感器和触摸感测电路可以包括,例如,驱动线和感测线等触摸信号线、接地区域和其他电路。减少集成的触摸屏的尺寸的一种方式可以是包括多功能电路元件,该多功能电路元件可以形成设计为以显示系统的电路运行的显示电路的一部分,以在显示器上生成图像。该多功能电路元件还可以形成可以感测在显示器上或显示器附近的一个或多个触摸的触摸感测系统的触摸感测电路中的一部分。该多功能电路元件可以是,例如,lcd的显示像素中的电容器,该电容器可以用于以显示系统中显示电路的存储电容器/电极、公共电极、导线/路径等运行,并且还可以用于以触摸感测电路的电路元件运行。图3中oled显示器示例可以实现为将多点触摸功能包括到oled显示器,而不需要覆盖oled显示器的分离的多点触摸面板或层。

oled显示器、显示电路、触摸传感器和触摸电路可以在硅基板上形成。通过在硅基板上制造集成的oled显示器和触摸传感器面板,可以实现极高的每英寸像素(ppi)。针对oled和触摸感测结构的不同于图3的其他布置也是可能的。例如,触摸感测层可以是位于oled显示组件的顶部的组件。

返回参考图2a和2b,所示的用于屏上指纹感测的屏下光学传感器模块可以以各种配置来实现。

在一种实现方式中,基于上述设计的设备可以被构造为包括设备屏幕,该设备屏幕提供触摸感测操作并且包括具有发光显示像素的显示面板结构,每个像素可操作以发光,用于形成显示图像,该设备还包括顶部透明层,形成于设备屏幕之上,作为用于触摸感测操作的用户触摸界面并且作为用于传输来自显示结构的光以将图像显示给用户的界面,该设备还包括光学传感器模块,位于显示面板结构的下方,以接收由显示结构的发光显示像素中的至少一部分发出的并从顶部透明层返回的光来检测指纹。

该设备还可以配置有各种特征。

例如,设备电子控制模块可以包括在该设备中,以在检测到的指纹与授权用户的指纹匹配时授权用户对该设备的访问。另外,光学传感器模块除了被配置为检测指纹外,还被配置为通过光学感测检测不同于指纹的生物特征参数,以指示在顶部透明层处的与检测到的指纹相关联的触摸是否来自活人,如果(1)检测到的指纹与授权用户的指纹匹配,并且(2)检测到的生物特征参数指示检测到的指纹来自活人,则设备电子控制模块被配置为授权用户对该设备的访问。该生物表征参数可以包括,例如,手指是否包含人的血流或心跳。

例如,该设备可以包括耦合至显示面板结构的设备电子控制模块,以向发光显示器像素提供电源,并通过显示面板结构控制图像显示,以及在指纹感测操作中,设备电子控制模块操作使得在一帧中关闭发光显示器像素并在下一帧中打开发光显示器像素,以使得光学传感器阵列通过光显示器像素采集照明和非照明的两个指纹图像,来减少指纹感测中的背景光。

再如,设备电子控制模块可以耦合到显示面板结构,以向发光显示像素提供电源,并在睡眠模式下关闭发光显示像素的电源,并且当光学传感器模块在顶部透明层的指定的指纹感测区域处检测到人的皮肤的存在时,设备电子控制模块可以用于将显示面板结构从睡眠模式唤醒。更具体地,在一些实现方式中,当显示面板结构处于睡眠模式时,设备电子控制模块可以用于操作一个或多个选择的发光显示像素间歇性地发光,同时关闭其他发光显示像素的电源,将间歇发出的光引导至顶部透明层的指定的指纹感测区域,以监控是否存在与指定的指纹感测区域接触的人的皮肤,用于将设备从睡眠模式唤醒。并且,显示面板结构可以设计为除了包括发光显示像素外,还包括一个或多个led灯,以及当显示面板结构处于睡眠模式时,设备电子控制模块用于操作一个或多个led灯间歇性地发光,同时关闭发光显示像素的电源,将间歇发出的光引导至顶部透明层的指定的指纹感测区域,以监控是否存在与指定的指纹感测区域接触的、用于将设备从睡眠模式唤醒的人的皮肤。

再如,该设备可以包括耦合至光学传感器模块的设备电子控制模块,以接收通过感测手指的触摸获得的多个检测到的指纹的信息,并且该设备电子控制模块被操作为测量该多个检测到的指纹的变化并确定造成测量到的该变化的触摸力。例如,该变化可以包括由于触摸力引起的指纹图像的变化、由于触摸力引起的触摸区域的变化或指纹脊的间距的变化。

再如,顶部透明层可以包括指定的指纹感测区域,用于用户使用手指触摸以进行指纹感测。显示面板结构下方的光学传感器模块可以包括:与显示面板基板接触的透明块,以接收从该显示面板结构发出的且从该顶部透明层返回的光;接收该光的光学传感器阵列;以及光学成像模块,将该透明块接收到的光成像到该光学传感器阵列上。该光学传感器模块可以相对于指定的指纹感测区域放置,并且被构造成:当与人的皮肤接触时,选择性地接收在顶部透明层的顶面处经过全内反射的返回的光,而在没有人的皮肤的接触时,不接收来自指定的指纹感测区域的返回的光。

又如,光学传感器模块可以被构造成包括位于显示面板结构下方的光楔,以修改与该光楔接合的显示面板结构的底面上的全反射条件,来允许从该显示面板结构提取出穿过该底面的光,该光学传感器模块还可以包括光学传感器阵列,接收来自该光楔的从该显示面板结构提取出的光,还可以包括光学成像模块,位于该光楔和该光学传感器阵列之间,以将来自该光楔的光成像到该光学传感器阵列上。

下面提供了用于屏上指纹感测的屏下光学传感器模块的具体示例。

图4a和图4b示出了显示屏组件下面的光学传感器模块的一种实现方式的示例,该光学传感器模块用于实现图2a和图2b中的设计。图4a至图4b中的设备包括具有顶部透明层431的显示组件423,该顶部透明层431形成于设备屏幕组件423之上,作为用于触摸感测操作的用户触摸的界面,并且作为用于传输来自显示结构的光以将图像显示给用户的界面。在一些实现方式中,该顶部透明层431可以是盖板玻璃或晶体材料。设备屏幕组件423可以包括顶部透明层431下面的oled显示模块433。oled显示模块433包括oled层及其他,该oled层包括发出用于显示图像的光的oled像素阵列。oled层具有光学地用作孔和光散目标的阵列的电极和布线结构。oled层中的孔阵列允许来自顶部透明层431的光传输通过oled层到达oled层下面的光学传感器模块,并且由oled层造成光散射影响用于指纹感测的屏下光学传感器模块的光学检测。设备电路模块435可以设置在该oled显示面板的下面,以控制该设备的操作,并且为用户执行功能以操作该设备。

本特定实现方式示例中的光学传感器模块被置于oled显示模块433的下方。可以控制指纹照明区613中的oled像素发光,以照亮设备屏幕区域内的顶部透明层431上的指纹感测区615,使用户将手指放入其中来进行指纹识别。如图所示,手指445被置于照亮的指纹感测区615中,该指纹感测区615作为有效感测区以进行指纹感测应。被指纹照明区613中的oled像素照亮的区615中的反射或散射的光中的一部分,被引导至oled显示模块433下方的光学传感器模块中,并且光学传感器模块内的光电探测器感测阵列接收这种光,并采集由接收的光携带的指纹图案信息。

在这种设计中,使用oled显示面板内的指纹照明区613中的oled像素来为光学指纹感测提供照明光,可以控制指纹照明区613中的oled像素以较低的周期间歇性地开启,以减少用于光学感测操作的光学功率。例如,当oled面板中剩余的oled像素被关闭(如处于睡眠模式)时,指纹照明区613中的oled像素可以间歇性地开启,以发出用于光学感测操作的照明光,该光学感测操作包括执行光学指纹感测和唤醒oled面板。在一些实现方式中,该指纹感测操作可以由两步骤的过程实现:首先,以闪光模式打开oled显示面板内指纹照明区613中的一些oled像素,而不打开该指纹照明区613中的其他oled像素,以使用闪光来感测手指是否触摸感测区615,并且一旦检测到区615中的触摸,打开指纹照明区613中的oled像素,以激活光学感测模块进行指纹感测。并且,一旦激活该光学感测模块进行指纹感测,指纹照明区613中的oled像素就可以在亮度水平下操作,以改善指纹感测的光学检测性能,例如,在高于其显示图像时的亮度水平的亮度水平下操作。

在图4b的示例中,屏下光学传感器模块包括耦合到该显示面板的透明块701,该透明块701接收来自设备组件的顶面的返回的光,该返回的光最初是由指纹感测区613中的oled像素发出的,该屏下光学传感器模块还包括执行光学成像和成像采集的光学成像块702。来自指纹照明区613中的oled像素的光在到达盖板顶面后,例如,用户手指触摸的感测区域615处的盖板顶面,从该盖板顶面反射或散射回来。当感测区域615中的盖板顶面紧密接触指纹脊时,由于在该位置处接触的手指的皮肤或组织的存在,指纹脊下的光反射不同于指纹谷下的另一位置处的光反射,指纹谷下的另一位置处没有手指的皮肤或组织。该盖板顶面上的手指触摸的区域中脊和谷的位置处的光反射条件的这种不同形成了图像,该图像表示该手指的被触摸部分的脊和谷的图像或空间分布。该反射光被指向返回oled像素,并且在穿过oled显示模块433的小孔后,到达该光学传感器模块的低指数光学透明块701的界面。该低指数光学透明块701的折射率被构造成小于oled显示面板的折射率,使得可以将返回的光从oled显示面板提取到该光学透明块701中。一旦该返回的光在该光学透明块701内被接收,这种接收到的光进入光学成像单元作为成像感测块702的一部分,并且被成像到块702内的光电探测器感测阵列或光学感测阵列上。指纹脊和谷之间的光反射差异造成了指纹图像的对比。图4b所示的是控制电路704(例如微控制器或mcu),其耦合到成像感测块702和主电路板上的设备主处理器705等其他电路。

在该特定的例子中,光学光路设计是:光线在基板和空气界面之间的顶面上的总反射角内进入盖板顶面,并会被块702中的成像光学器件和成像传感器阵列最有效地收集。在这种设计中,指纹脊/谷区域的图像呈现最大的对比。这种成像系统可能具有不期望的光学失真,这会对指纹感测有不利影响。因此,基于光学传感器阵列处的,沿返回光线的光路的光学失真情况,在处理块702中的光学传感器阵列的输出信号时,获取的图像还可以在成像重建期间通过失真校正来校正。通过在x方向线和y方向线的整个感测区域,每次扫描一行像素的测试图像图案,失真校正系数可以由在每个光电检测器像素处采集的图案生成。这种校正过程还可以使用来自于每次调谐一个单独的像素且扫描光电探测器阵列的整个图像区域产生的图像。这种校正系数只需要在组装传感器之后生成一次。

来自环境的背景光(如太阳光或室内光)可以通过oled显示组件433中的薄膜晶体管tft结构中的基板孔穿过oled面板顶面进入图像传感器。这种背景光可以在来自手指的有价值的图像中产生背景基线,并且这种背景基线是不期望的。可以使用不同的方法来减少这种基线强度。一个示例是以一定的频率f调谐接通和断开指纹照明区613中的oled像素,通过对像素驱动脉冲和图像传感器帧进行相位同步,图像传感器得以相同频率获取接收到的图像。在这种操作下,不同相位的图像中只有一个包含从像素发射的光。通过减去奇数帧和偶数帧,可能得到大部分由指纹照明区613中调制的oled像素发射的光所组成的图像。基于该设计,每个显示扫描帧生成指纹信号的帧。如果通过在一帧中谐调接通指纹照明区613中的oled像素并在另一帧中调谐断开指纹照明区613中的oled像素,去除两个连续的信号帧,则可以将环境的背景光影响最小化或大量消除。在实现方式中,指纹感测帧速率可以是显示帧速率的一半。

来自指纹照明区613中oled像素的光中的一部分还可以穿过盖板顶面,并进入手指组织。这部分的光功率被散在周围,并且该散射光中的一部分可以穿过oled面板基板上的小孔,并最终被光学传感器模块中的成像传感器阵列收集。该散射的光的光强度取决于手指的肤色和手指组织中的血液浓度,并且手指上的散射光携带的这种信息对指纹感测是有用的,并且可以作为指纹感测操作的一部分被检测。例如,通过集成用户手指图像的区域的强度,可能会观察到,血液浓度的增加/减少取决于用户心跳的相位。这种特征可以用于确定用户的心跳速率,确定用户的手指是活体手指,还是具备伪造的指纹图案的欺骗设备。

返回至图3中的oled显示器示例,oled显示器通常具有不同的颜色像素,如相邻的红色、绿色和蓝色像素形成一个彩色oled像素。通过控制开启每个彩色像素内的某种颜色的像素并记录相应的测量强度,可以确定用户的肤色。例如,当用户注册了用于指纹认证操作的手指时,光学指纹传感器还测量来自手指的颜色a和b的散射光的强度,作为强度ia和ib。可以记录ia/ib的比率,以与用户的手指放在感测区域上测量指纹时的后续测量结果作比较。该方法可以帮助拒绝可能与用户肤色不匹配的欺骗设备。

在一些实现方式中,为了在oled显示面板为不开启时使用上述光学传感器模块提供指纹感测操作,如图4b所示,可以将为提供指纹感测照明指定的一个或多个额外的led灯源703设置在透明块701的侧面上。这种指定的led灯703可以由用于控制块702中的图像传感器阵列的相同的电子器件704(如mcu)控制。该指定的led灯703可以以低占空比在短时间内脉冲,以间歇性地发光并提供脉冲光进行图像感测。图像传感器阵列可以被操作为以相同的脉冲占空比监控从oled面板盖板基板反射的光图案。如果有人类手指触摸屏上的感测区域615,则块702中的成像感测阵列处采集的图像可以用于检测触摸事件。连接到块702中的图像传感器阵列的控制电子器件或mcu704可以被操作为确定该触摸是否为人类手指的触摸。如果确定是人类手指触摸事件,则mcu704可以被操作为唤醒智能手机系统,打开oled显示面板(或至少关闭指纹照明区613中的oled像素,以进行光学指纹感测),并使用正常模式获取完整的指纹图像。块702中的图像传感器阵列会向智能手机主处理器705发送获取的指纹图像,该智能手机主处理器705可以被操作为将采集的指纹图像与注册的指纹数据库进行匹配。如果存在匹配的,则智能手机会解锁手机,并启动正常操作。如果获取的该图像没有被匹配到,则智能手机会向用户反馈该认证失败。用户可以再次尝试,或输入密码。

在图4a至图4b的示例中(尤其是图4b示出的某些细节),屏下光学传感器模块使用光学透明块701和具有光电检测器感测阵列的成像感测块702,将与显示屏的顶面接触的触摸手指的指纹图案光学地成像在光电检测器感测阵列上。图4b中示出了从感测区615至块702中光电检测器阵列的光学成像轴或检测轴625。光学透明块701和光电检测器感测阵列之前的成像感测块702的前端形成了体成像模块,以实现用于光学指纹感测的合适的成像。由于该成像过程中的光学失真,如上所释,可以使用失真校正来实现期望的成像操作。

在本文公开的通过图4a至图4b中的屏下光学传感器模块进行的光学感测中,从顶部透明层431上的感测区615到屏下光学传感器模块的光学信号包括不同的光组分。图5a和5b示出了用于两种不同的光学条件下从感测区615返回的光的信号生成,以便于理解屏下光学传感器模块的操作。

图5a示出了来自oled显示模块433的oled发射的光如何在穿过顶部透明层431后生成到屏下光学传感器模块的不同的返回的光信号,该返回的光信号包括携带指纹图案信息的光信号。示出了两个不同位置处的两个oled像素71和73,以发射oled输出光束80和82,该oled输出光束80和82被指向顶部透明层431,而在顶部透明层431的界面处不经历全反射。手指60与顶部透明层431上的感测区615接触。如图所示,oled光束80在穿过顶部透明层431后,到达与顶部透明层431接触的手指脊,以在手指组织中生成光束183和向oled显示模块433返回的另一光束181。oled光束82在穿过顶部透明层431后,到达位于顶部透明层431上方的手指谷,以生成从顶部透明层431的界面返回至oled显示模块433光束185、进入手指组织的第二光束189以及由该手指谷反射的第三光束187。

在图5a的示例中,假设手指皮肤在550nm处的等效折射率约为1.44,并且顶部透明层431的盖板玻璃折射率约为1.51。在这些假设下,在手指皮肤脊位置61处开启显示oled像素71以产生光束80。手指脊-盖板玻璃的界面反射光束80的部分光,作为到oled显示模块433下的底层524的反射的光181。其反射率低,约为0.1%。光束80中的大部分光变为传输至手指组织60中的光束183,手指组织60造成光183的散射,产生向oled显示模块433和底层524返回的散射光191。来自oled像素73的透射光束189在手指组织中的散射也对返回的散射光191有贡献。

对于来自显示oled组73的手指皮肤谷位置63处的光束82,盖板玻璃表面将入射光82功率的约3.5%(光185)反射到底层524,并且手指谷表面将该入射光功率的3.3%(光187)反射至底层524。总反射率约为6.8%。大部分光189被传输至手指组织60中。手指组织中的透射光189中的光功率中的一部分被手指组织散射,贡献到朝向并进入底层524中的散射光191中。

因此,来自在触摸手指的手指谷和手指脊处的各种界面或表面的光反射是不同的,反射比差携带指纹地图信息,并且可以测量该反射比差以提取与顶部透明层431接触且被oled光照射到的部分的指纹图案。

图5b示出了来自oled显示模块433的oled发射的光在与顶部透明层431的界面处的全反射条件下,如何生成到屏下光学传感器模块的不同的返回的光信号,该返回的光信号携带指纹图案信息。假设盖板玻璃431和oled显示模块433被粘合在一起,两者之间没有任何气隙,使得由oled像素73发出的、对盖板玻璃431具有大的入射角的oled光束,会在盖板玻璃-空气界面处被全反射。当显示oled像素73被开启时,发散光束可以被分成以下三组:(1)中心光束82,对盖板玻璃431具有小的入射角且没有全反射,(2)高对比度光束201、202、211和212,当盖板玻璃表面没有被触摸时,在盖板玻璃431处被全反射,并且当手指触摸盖板玻璃431时,可以耦合到手指组织中,以及(3)具有很大入射角的逃离光束,即使在手指组织触摸的位置处,也在盖板玻璃431处被全反射。

对于中心光束82,盖板玻璃表面对光束185反射约为0.1%~3.5%的光,这部分光被传输到底层524中,手指皮肤对光束187反射约为0.1%~3.3%的光,这部分光也被传输到底层524中。反射差取决于光束82是否与手指皮肤脊61或谷63相遇。剩余的光束189被耦合到指组织60中。

对于高对比度光束201和202,如果盖板玻璃表面没有被触摸,盖板玻璃表面分别将光束201和202的几乎100%的光反射至光束205和206。当手指皮肤脊在光束201和202的位置处触摸盖板玻璃表面时,光功率中的大部分通过光束203和204耦合到手指组织60中。

对于高对比度光束211和212,如果盖板玻璃表面没有被触摸,盖板玻璃表面分别将光束211和212的几乎100%的光反射至光束213和214。当手指触摸盖板玻璃表面且手指皮肤谷恰好处于光束211和212的位置时,没有光功率耦合到手指组织60中。

与图5a中的情况相似,耦合到手指组织60中的光束会经历手指组织的随机散射,以形成低对比度光191。

因此,在高对比度光束照射的区域中,手指皮肤脊和谷引起不同的光学反射,并且反射差异图案携带指纹图案信息。高对比度指纹信号可以通过比较这种差异来实现。

基于图2a和2b中的设计,所公开的屏下光学感测技术可以以各种配置来光学地采集指纹。

例如,可以以各种配置来实现图4b中的具体实现,该实现是基于通过使用光学感测模块中的体成像模块的光学成像。图6a至图6c、图7、图8a至图8b、图9、图10a至图10b、图11和图12示出了用于光学指纹感测的屏下光学传感器模块设计的各种实现、附加特征和操作的示例。

图6a、图6b和图6c示出了基于通过透镜进行光学成像的屏下光学传感器模块的示例,用于从按压显示盖板玻璃423的手指445采集指纹。图6c是图6b所示的光学传感器模块部分的放大视图。如图6b所示的屏下光学传感器模块位于oled显示模块433下,该屏下光学传感器模块包括与oled显示模块433的底面接触的光学透明间隔物617,以接收来自顶部透明层431的顶面上的感测区615返回的光,该屏下光学传感器模块还包括位于间隔物617和光电探测器阵列623之间的成像透镜621,成像透镜621将接收到的来自感测区615的返回的光成像在光电探测器阵列623上。类似于图4b示例中的成像系统,图6b中用于光学传感器模块的成像系统可能经历图像失真,并且可以使用合适的光学校正校准来减少这种失真,例如,对图4b中系统所描述的失真校正方法。

与图5a和图5b中的假设相似,假设手指皮肤在550nm处的等效折射率约为1.44,并且对于盖板玻璃423,裸的盖板玻璃的折射率约为1.51。当oled显示模块433粘合在盖板玻璃431上且没有任何气隙时,在等于或大于界面的临界入射角的大角度时会发生全内反射。如果盖板玻璃顶面未被接触,则全反射入射角约为41.8°,如果手指皮肤触摸盖板玻璃顶面,则全反射角约为73.7°。对应的全反射角差约为31.9°。

在该设计中,微透镜621和光电二极管阵列623限定了用于采集感测区615中接触手指的图像的视角θ。为了检测感测区615中盖板玻璃表面中的期望的部分,可以通过控制物理参数或配置来适当地对准该视角。例如,可以对准视角以检测oled显示组件的全内反射。具体地,对准视角θ来感测盖板玻璃表面上的有效感测区615。有效感测盖板玻璃表面615可以被视为镜子,使得光电探测器阵列有效地检测视区或oled显示器中指纹照明区613的图像,该图像由感测盖板玻璃表面615投射到光电探测器阵列上。如果打开视区/指纹照明区613中的oled像素来发光,则光电二极管/光电探测器阵列623可以接收由感测盖板玻璃表面615反射的区域613的图像。当手指触摸感测区615时,光中的一部分可以耦合到指纹的脊中,这会引起光电探测器阵列接收来自脊位置的光,以呈现为更暗的指纹图像。由于光学的检测路径的几何形状是已知的,所以可以校正在光学传感器模块中的光学路径中引起的指纹图像失真。

作为具体的示例,考虑到图6b中从检测模块中心轴到盖板玻璃顶面的距离h为2mm。这种设计可以直接覆盖5mm的有效感测区域615,其在盖板玻璃上的宽度为wc。调整间隔物617的厚度可以调整检测器位置参数h,并且可以优化有效感测区宽度wc。由于h包括盖板玻璃431和显示模块433的厚度,所以该申请设计应当考虑这些层。间隔物617、微透镜621和光电二极管阵列623可以集成在顶部透明层431的底面上的彩色涂层619的下方。

图7示出了用于图6a至图6c示出的光学传感器模块的光学成像设计的另一设计考虑的示例,通过使用特殊的间隔物618代替的图6b至图6c中的间隔物617,以增加感测区域615的尺寸。间隔物618被设计为具有宽度ws,厚度为hs,具有低折射率(ri)ns,并且,间隔物618位于oled显示模块433下,例如,被附接(如粘合)到oled显示模块433的底面。间隔物618的端面是与微透镜621接合的成角度的或倾斜的面。间隔物和透镜的这种相对位置不同于图6b至图6c中透镜位于间隔物617的下方。微透镜621和光电二极管阵列623被组装到具有检测角度大小为θ的光学检测模块中。由于在间隔物618和显示模块433之间的界面处的光学折射以及在盖板玻璃431和空气之间的界面处的光学折射,检测轴625弯曲。局部入射角φ1和φ2是由部件材料的折射率ri、ns、nc和na决定的。

如果nc大于ns,则φ1大于φ2。由此,折射放大了感测宽度wc。例如,假设手指皮肤的等效折射率ri在550nm处约为1.44,并且盖板玻璃的折射率ri约为1.51,如果盖板玻璃顶面没有被触摸,则全反射入射角估计约为41.8°,如果手指皮肤触摸盖板玻璃顶面,则全反射角约为73.7°。对应的全反射角差约为31.9°。如果间隔物618是由与盖板玻璃相同的材料制成,则从检测模块中心至盖板玻璃顶面的距离为2mm,如果检测角为θ=31.9,则有效感测区域宽度wc约为5mm。对应的中心轴的局部入射角为φ1=φ2=57.75°。如果特殊间隔物618的材料具有约为1.4的折射率ns且hs为1.2mm,并且检测模块在φ1=70°处倾斜。有效感测区域宽度增加到大于6.5mm。在这些参数下,盖板玻璃中的检测角宽度被降低到19°。因此,光学传感器模块的成像系统可以设计为期望扩大顶部透明层431上的感测区域615的尺寸。

当特殊间隔物618的折射率ri设计为足够低(如,使用mgf2、caf2或甚至空气来形成间隔物)时,有效感测区域615的宽度wc不再受限于盖板玻璃431和显示模块433的厚度。这种性质使设计者具有想要的灵活性。原则上,如果检测模块具有足够的分辨率,甚至可以将有效感测区域增加到覆盖所有的显示屏。

因为所公开的光学传感器技术可以用于提供大的感测区域来采集图案,所以所公开的屏下光学传感器模块不仅可以用于采集和检测手指的图案,还可以用于采集和检测更大尺寸的图案,例如与人相关联的人的手掌,来进行用户认证。

图8a至图8b示出了用于图7中示出的光学传感器模块的光学成像设计的另一设计考虑的示例,在该设计中,设置光电检测器阵列在显示屏表面中相对的检测角θ’以及透镜621和间隔物618之间的距离l。图8a示出了沿着垂直于显示屏表面的方向的横截面视图,图8b示出了从显示屏底部或顶部看到的设备的视图。填充材料618c可以用于填充透镜621和光电探测器阵列623之间的间隔。例如,填充材料618c可以是与特殊间隔物618相同的材料或者是另一种不同的材料。在一些设计中,填充材料618c可以是空气间隔。

图9示出了基于图7的设计中的屏下光学传感器模块的另一示例,其中oled显示模块433中的视区或指纹照明区613设计为包括一个或多个额外光源614,该额外光源附着或粘合于与视区613相同的位置或区域中,以对感测区615提供附加的照明,从而增加了光学感测操作中的光强度。这是用来提高光学感测灵敏度的方法之一。额外光源614可以是扩展类型或是准直类型的光源,以使得有效感测区615内所有的点被照亮。额外的光源614可以是单元件光源或光源阵列。如上所述,oled显示模块433中的视区或指纹照明区613中的oled像素可以在光学指纹感测操作期间操作于比用于在oled显示器中显示图像的亮度水平更高的亮度水平。

图10a至图10b示出了使用形状为薄楔的光学耦合器628的屏下光学传感器模块的示例,以改善在光学传感器阵列623处的光学检测。图10a示出了具有用于指纹感测的屏下光学传感器模块的设备结构的横截面,图10b示出了设备屏幕的顶视图。光楔628(具有折射率ns)位于显示面板结构的下方,以修改与光楔628接合的显示面板结构的底面上的全反射条件,来允许从显示面板结构提取出穿过底面的光。光学传感器阵列623接收来自光楔628的从显示面板结构提取出的光,光学成像模块621位于光楔628和光学传感器阵列623之间,以将来自光楔628的光成像到光学传感器阵列623上。在所示的示例中,光楔628包括面对着光学成像模块和光学感测阵列623的倾斜光楔面。并且,如图所示,在光楔628和光学成像模块621之间存在自由间隔。

如果光在盖板玻璃431的感测表面处被全反射,则反射率为100%,具有最高的效率。然而,如果光与盖板玻璃表面平行,则光还会在oled底面433b处被全反射。楔形耦合器628用于修改局部表面角,以使得光可以耦合输出以用于在光学传感器阵列623处的检测。oled显示模块433的tft层中的微孔提供使得光穿过oled显示模块433以进行屏下光学感测的期望的光传播路径。如果光透射角变得太大或当tft层变得太厚时,实际的光透射效率可能逐渐减少。当该角度接近于全反射角时,即约为41.8°,且盖板玻璃折射率为1.5时,指纹图像看起来是好的。因此,楔形耦合器628的楔角可以被调整为几个数度,以使得检测效率可以提高或优化。如果选择的盖板玻璃的折射率更高,则全反射角变小。例如,如果盖板玻璃由折射率约为1.76的蓝宝石制成,则全反射角约为34.62°。显示器中的检测光透射效率也提高了。因此,这种设计使用薄楔将检测角设置为高于全反射角,和/或使用高折射率的盖板玻璃材料,来提高检测效率。

在图6a至图10b中的屏下光学传感器模块中,顶部透明表面上的感测区域615不是竖直的或者不垂直于光学传感器模块的检测轴625,使得感测区域的图像平面也不是竖直的或不垂直于检测轴625。因此,光电探测器阵列523的平面相对于检测轴625可以是倾斜的,以实现在光检测阵列623处的高质量成像。

图11示出了这种倾斜的三个示例配置。图11(1)示出了感测区域615a倾斜且不垂直于检测轴625。在(2)所示的特定情况下,感测区域615b对准在检测轴625上,其图像平面也会位于检测轴625上。实践中,可以部分地切掉透镜621以简化封装。在各种实现方式中,微透镜621也可以是透射型或反射型透镜。例如,(3)中示出了特定的途径。感测区域615c由成像镜621a成像。光电二极管阵列623b对齐以检测信号。

在使用透镜621的上述设计中,透镜621的有效孔径可以被设计为大于oled显示层中的孔的孔径,后者允许光透射穿过oled显示器来进行光学指纹感测。这种设计可以减少oled显示模块中的布线结构和其他散射目标的所造成不期望的影响。

在所公开的指纹技术的一些实现方式中,光学传感器阵列623处的指纹感测对比度可以通过控制显示屏的oled像素(613)来提高,该oled像素在指纹触摸感测中提供用于采集指纹图案的照明。当指纹传感器被激活时,例如,由于触摸的存在,局部视区613中的oled像素可以被开启且具有高亮度,以提高指纹感测对比度。例如,局部视区613中的oled像素的亮度可以被控制为高于当该局部视区613中相同的oled像素用作常规显示时的最大亮度。

本专利文件中公开的屏下光学感测可能受到来自各种因素的噪声的不利影响,这种因素包括来自设备使用的环境的背景光。提供了用于减少背景光噪声的各种技术。

例如,可以通过在光路中提供合适的光学滤波来减少指纹感测时不期望的背景光。一个或多个光学滤波器可以用来拒绝环境光,如近红外光和部分的红光等。在一些实施例中,这种光学滤波器涂层可以在光学部件的表面上制造,包括显示器下表面、棱镜表面或传感器表面等。例如,人类手指吸收波长低于~580nm的能量中的大部分,如果一个或多个光学滤波器或光学滤波涂层可以设计为拒绝从580nm至红外的波长的光,则可以大大减少对来自环境光的、指纹感测中光学检测的不期望的贡献。基于光学滤波的背景减少的更多细节在后面部分描述。

图12和13示出了基于在光学传感器模块处采集和处理光学信号的特定方式的技术的两个示例。

图12示出了指纹传感器的用于在指纹感测中减少或消除来自背景光的不期望的影响的操作的示例。光学传感器阵列可以用于采集各种帧,并且采集到的帧可以用于进行多个帧之间的差分和平均操作,以减少背景光的影响。例如,在帧a中,oled显示器被开启,以照亮手指触摸的区域,在帧b中,改变或关闭oled显示器的照明。从帧a的信号减去帧b的信号可以使用在图像处理中,以减少不期望的背景光影响。

图13示出了用于校正光学传感器模块中的图像失真的操作过程的示例。在步骤1301处,控制和操作一些显示像素在特定区域中发光,并且这种像素的光发射由频率f调制。在步骤1302处,显示面板下的成像传感器操作为在相同的频率f下以帧速率采集图像。在光学指纹感测操作中,手指放置在显示面板盖板基板的顶部上,并且手指的存在调制该显示面板盖板基板顶面的光反射强度。该显示器下的成像传感器采集指纹调制的反射光图案。在步骤1303处,利用频率f同步来自图像传感器的信号的解调制,且进行背景过滤。所得的图像减少了背景光的影响,并且包括来自像素发射的光产生的图像。在步骤1304处,处理并校准采集到的图像,以校正图像系统失真。在步骤1305处,将校正后的图像用作用于用户认证的人类指纹图像。

用于采集用户的指纹而使用的相同的光学传感器还可以用于采集来自被照亮手指的散射光,如图5a和5b中的散射到底层中的光191所示。图5a和5b中的散射到底层中的光191的感兴趣区域中的检测器信号可以用于各种测量,包括基于散射到底层的光191的本质的测量,其用于在手指皮肤下方的组织内部以携带可能不存在于光线187或206中的某些信息,这些光线187或206在皮肤外表面处散射或反射。例如,可以对散射到底层中的光191进行集成以产生强度信号,并且可以评估该强度信号的强度变化以确定用户的心率。

上述指纹传感器可以被能够得到授权用户的指纹并且将被偷盗的指纹图案复制在类似于人类手指的载体上的恶意的个体黑客攻击。这种未授权的指纹图案可以用在指纹传感器上,以解锁目标设备。因此,指纹图案,尽管是唯一的生物表征标识符,其本身可能不是完全可靠或安全的标识。屏下光学传感器模块还可以用作光学反欺骗传感器,用于感测具有指纹图案的输入目标是否是来自活的人的手指,并且用于确定指纹输入是否为指纹欺骗攻击。无需使用单独的光学传感器来提供这种光学反欺骗感测功能。光学反欺骗能够提供高速响应,而不损害指纹感测操作的整体响应速度。

图14a示出了在血液中监控的材料的示例性消光系数,血液中的光学吸收在如660nm的红光的可见光谱范围和如940nm的红外光的红外范围之间是不同的。通过使用探测光以在第一可见波长(颜色a)和红外波长(颜色b)等第二不同波长来照亮手指,可以采集输入目标的光学吸收的不同,以确定触摸的目标是否为来自活人的手指。因为oled像素包括发出不同颜色的光的oled像素,发出至少两种不同的光学波长的探测光,以使用血液的不同光学吸收行为来进行活体手指检测。当人的心脏跳动时,脉搏压力泵送血液在动脉中流动,因此在血液中监控的材料的消光比随着脉搏而变化。接收到的信号携带脉搏信号。血液的这些性质可以用于检测被监控的材料是活体指纹还是假指纹。

图14b示出了来自无生命材料(如假手指)和活体手指的反射光中的光学信号行为之间的比较。光学指纹传感器也可以用作心跳传感器来监控活的生物。当检测到探测光的两个或多个波长时,消光比的差可以用于快速地确定被监控的材料是否是活体生物,例如活体指纹。在图14b所示的示例中,使用了不同波长的探测光,如图14a所示,一个是可见波长,另一个为红外ir波长。

当无生命材料触摸指纹传感器模块上方的顶部盖板玻璃时,接收到的信号揭示了与该无生命材料的表面图案相关的强度水平,并且该接收到的信号不包含与活着的人的手指相关联的信号分量。然而,当活人的手指触摸顶部盖玻璃时,接收到的信号显示与活人相关联的信号特征,因为对于不同的波长消光比不同,所以该特征包括明显不同的强度水平。这种方法不需要花很长时间来确定触摸材料是否是活着的人的一部分。图14b中,脉冲状信号反应了多次触摸的情形,而不是血液脉冲。与无生命材料的相似的多次触摸不显示由活体手指引起的差异。

血液在不同光学波长处的不同光学吸收行为的这种光学感测可以在短周期内进行,以用于活体手指检测,并且可以比使用相同光学传感器的人的心跳的光学检测更快。

图15示出了通过操作oled像素以用两种不同颜色的光照亮手指来确定与oled显示屏接触的目标是否是活着的人的手指的一部分的操作过程的示例。

再如,所公开的光学传感器技术可以用于通过除上述血液在不同光学波长下的不同光学吸收之外的其他机制,利用“活体手指”检测机制检测采集到的或检测到的指纹或手掌的图案是否来自活的人的手。例如,由于人的自然移动或运动(有意或无意地)或当血液流过与心跳相关的人体时的脉冲,活人的手指通常是移动或伸展的。在一个实现方式中,光学传感器模块可以检测由于心跳/血流变化而导致的来自手指或手掌的返回的光的变化,从而检测在表现为手指或手掌的目标中是否存在活着的心跳。用户认证可以基于指纹/手掌图案的光学感测和对活体存在的正面确定的结合来增强访问控制。再如,当人触摸olcd的显示屏时,触摸力的变化能够以一种或多种方式反映,包括指纹图案变形、手指和屏幕表面之间的接触面积的变化、指纹脊变宽或血流的动态变化。这些或其他变化能够通过基于所公开的光学传感器技术的光学感测来测量,并且可以用于计算触摸力。除指纹感测之外,这种触摸力感测还可用于为光学传感器模块添加更多功能。

在上述示例中,如图4b和图6b所示,指纹图案经由成像模块被采集在光学传感器整列上,光学失真通常降低了图像感测保真度。这种图像失真可以以各种方式来校正。图16示出了由oled显示器产生的标准校准图案的示例,用于校准由光学传感器阵列输出的用于指纹感测的成像感测信号。指纹感测模块参考标准图案的图像校准输出坐标。

根据本专利文件中公开的内容,可以对公开的光学传感器模块进行各种实施例。

例如,显示面板可以构造成:其中的每个发光像素可以被单独控制;显示面板包括至少部分透明的基板以及实质透明的盖板基板。光学传感器模块位于显示面板下,以感测在显示面板表面的顶部上形成的图像。光学传感器模块可以用于感测从显示面板像素发射的光所形成的图像。光学传感器模块可以包括折射率低于显示面板基板的折射率的透明块,还包括具有成像传感器阵列的成像传感器块以及光学成像透镜。在一些实现方式中,低折射率块的折射率在1.35至1.46或1至1.35的范围内。

又如,可以提供一种用于指纹感测的方法,其中从显示面板发射的光被盖板基板反射,位于盖板基板顶部上的手指与光交互,以通过指纹调制光反射图案。显示面板下的成像感测模块用于感测反射的光图案图像,并且重建指纹图像。在一种实现方式中,在时域中调制来自显示面板的发射光,并且成像传感器与发射像素的调制同步,基于此种设置的解调制过程会过滤背景光(不是来自目标像素的光)中的大部分光。

对所公开的用于光学指纹感测的屏下光学传感器模块的各种设计考虑在作为2016年6月20日提交的、申请号为pct/us2016/038445、发明名称为“具有光学感测能力的多功能指纹传感器”的国际专利申请(要求于2015年6月18日提交的、申请号为62/181,718的美国临时专利申请的优先权,并于2016年12月22日以wo2016/205832公开)中和2016年11月2日提交的、申请号为pct/cn2016/104354、发明名称为“具有防御指纹欺骗的光学感测的多功能指纹传感器”的国际专利申请(要求于2015年11月2日提交的、申请号为62/249,832的美国临时专利申请的优先权,并以wo2017/076292a1公开)中进一步描述。上述专利申请的全部公开内容通过引用并入本专利文件公开内容的一部分。

基于本文件公开的光学感测的移动电话等的便携式设备或其他设备或系统可以被配置为提供附加的操作特征。

例如,oled显示面板可以控制为提供局部闪光模式,以通过操作感测区域613下方的选定的oled显示像素来照亮指纹感测区域613。这可以在oled显示面板下的光学传感器模块中提供,例如,基于光学成像设计的图4a和图4b。在获取指纹图像的情况下,窗口区域613中的oled显示像素可以暂时开启,以产生用于指纹的光学感测的高强度照明,并且同时,与感测区域613下面的oled像素的开启同步,打开光检测传感器阵列621以采集指纹图像。开启这些oled像素的时间可以相对较短,但是发射强度可以设定为高于用于在oled显示面板上显示图像的正常发射强度。为此,用于光学指纹感测的这种模式是闪光模式,其使得光电检测器传感器阵列621能够检测更大量的光以改善图像感测性能。

再如,光学传感器模块可设计为满足oled显示面板的顶部感测表面处的全内反射条件,以实现闪光唤醒功能,其中视区613中的一部分oled像素开启以闪光,而其他oled像素被关闭并处于睡眠模式,以在设备不使用时节省电力。响应于视区613中oled像素的闪烁,光学传感器阵列621中的相应光电传感器操作为接收和检测光信号。当在该闪光唤醒模式期间,手指触摸感测区613时,手指使返回的光被全反射,以产生强烈返回的探测光,该探测光在光学传感器阵列处被检测,并且对光的存在的检测可以用于唤醒睡眠模式下的设备。除了使用视区613中的部分oled像素外,还可以在光学传感器模块附近提供一个或多个额外光源,以在视区613处提供闪光模式照明,用于闪光唤醒功能。当非手指目标触摸oled显示面板上方的顶面上的视区613时,可能不会出现全内反射条件,因为其他材料很少具有手指皮肤特性。因此,即使非手指目标触摸视区613,触摸位置处缺少全内反射也可能导致返回的探测光不足以到达光学传感器阵列以触发闪光唤醒操作。

上述公开的用于感测光学指纹的光学传感器可以用于采集指纹的高质量图像,以便能够区分在不同时间采集的采集指纹中的微小变化。需要注意的是,当人用手指按压设备时,由于按压力的变化,与显示屏上的顶部触摸表面的接触可能会发生变化。当手指触摸盖板玻璃上的感测区时,触摸力的变化可能导致光学传感器阵列发生以下几种可检测的变化:(1)指纹变形,(2)接触区域的变化,(3)指纹脊变宽,以及(4)受压区域处血流动力动态变化。这些变化可以被光学采集,并可以用于计算触摸力的相应变化。触摸力感测为指纹感测增加了更多功能。

参见图17,接触轮廓面积随着按压力的增加而增大,同时脊压印随着按压力的增加而扩大。相反地,接触轮廓面积随着按压力的减少而减小,同时脊压印随着按压力的减少而紧缩或收缩。图17示出了不同按压力下相同手指的两个不同的指纹图案:轻度按压的指纹3301和重度按压的指纹3303。来自触摸表面上的指纹的选定集成区3305的返回的探测光可以被光学传感器阵列上的一部分光学传感器采集,这部分光学传感器与触摸表面上的选定集成区3305相对应。下文进一步解释了对来自那些光学传感器的检测信号进行分析,以提取有用的信息。

当手指触摸传感器表面时,手指组织吸收光功率,从而减小集成在光电二极管阵列上的接收功率。尤其是在不感测低折射率材料(水、汗液等)的全内反射模式下,通过分析接收功率变化趋势,传感器可以用于检测是手指触摸传感器,还是其他目标意外触摸传感器。基于这种感测过程,传感器可以确定触摸是否是真实的指纹触摸,从而可以基于触摸是否是真实的手指按压来检测是否要唤醒移动设备。因为检测是基于集成功率检测进行的,所以用于光学指纹感测的光源处于节电模式。

在详细的指纹图谱中,当按压力增加时,指纹脊扩大,并且通过扩大的指纹脊,在触摸界面处吸收更多的光。因此,在相对小的观察区3305内,集成的接收到的光功率变化反映了按压力的变化。基于此,可以对按压力进行检测。

因此,通过分析在小区域内集成的接收到的探测光功率变化,可以监测指纹脊图案变形的时域演变。然后,可以使用关于指纹脊图案变形的时域演变的信息来确定手指上的按压力的时域演变。在应用中,人的手指的按压力的时域演变可以用于通过手指的触摸来确定用户交互的动态,包括确定人是在按压触摸表面,还是将按压手指从触摸表面移开。这些用户交互动态可以用于触发移动设备的某些操作或者移动设备上的某些应用的操作。例如,人的手指的按压力的时域演变可以用于确定人的触摸是用于操作移动设备的有意触摸还是意外的无意触摸,基于这样的确定,移动设备控制系统可以确定是否唤醒睡眠模式下的移动设备。

此外,参照14a和图14b所释,在不同按压力下,与触摸表面接触的活人手指在两个不同探测光波长下获得的光学消光比方面可以表现出不同的特性。返回到图17,轻度按压的指纹3301可能不会明显地限制流入手指的按压部分的血液,从而产生表明活人组织的在两种不同探测光波长下获得的消光比。当人用力按压手指以产生重度按压的指纹3303时,流向按压手指部分的血液可能会严重减少,因此,在两种不同探测光波长下获得的相应的消光比将不同于轻度按压的指纹3301的在两种不同探测光波长下获得的消光比。因此,在两种不同探测光波长下获得的消光比随着不同的按压力和不同的血流条件而变化。这种变化与根据人造材料制成的假指纹图案使用不同的力按压时在两种不同探测光波长下获得的消光比不同。

因此,在两种不同探测光波长下获得的消光比还可以用来确定触摸来自用户的手指还是其他目标。这种确定也可以用于确定是否唤醒睡眠模式下的移动设备。

又如,所公开的光学传感器技术可以用于监测活人的自然运动,这种自然运动是由于人的自然移动或运动(有意或无意的)或当血液流过人体时与心跳相关的脉动而出现的活人手指的行为。唤醒操作或用户认证可以基于指纹图案的光学感测和对活人的存在的正面确定的结合来增强访问控制。又如,光学传感器模块可以包括感测功能,以基于来自手指或手掌的返回的光的光学感测来测量血糖水平或血氧饱和度。再如,当人触摸显示屏时,触摸力的变化能够以一种或多种方式反映,包括指纹图案变形、手指和屏幕表面之间的接触面积的变化、指纹脊变宽或血流的动态变化。这些或其他变化能够通过基于所公开的光学传感器技术的光学感测来测量,并且可以用于计算触摸力。除指纹感测之外,这种触摸力感测还可用于为光学传感器模块添加更多功能。

上述光学传感器模块设计和特征旨在将光学信号收集到屏下光学传感器模块中的光学检测器,并通过实施至少一个成像透镜或准直器或针孔阵列经由光学成像来提供期望的光学成像质量(例如,检测到的图像分辨率)。如上所述,如图12和图13中所示的两个示例,通过执行某些控制和信号处理可以在屏下光学传感器模块中提供背景减少技术。另外,可以将一个或多个附加的光学设计特征添加到上述公开的光学传感器模块设计中,以基于背景光过滤或添加额外的照明光源来减少背景光。基于操作控制/信号处理、光学滤波和添加额外的照明光源的不同的背光减少技术可以以各种方式结合在实现方式中。

用于减少背景光的光学滤波技术可以以本文件中公开的各种光学传感器模块设计来实现。虽然在光学传感器模块的光路中插入光学滤波器的总体目标是过滤环境光波长,例如,近红外光和部分红光以及其他不期望的波长,但是这种光学滤波器的具体实现方式可以基于每个应用的具体需求而变化。可以通过在通向光学检测器阵列621的光路中的光学部件的选定表面,包括例如显示器底部表面、光学棱镜等其他光学组件的表面、光学检测器阵列621的上传感器表面等,形成光学滤波器涂层来形成这种光学滤波器。例如,人手指吸收特定波长(例如约~580nm)下的大部分波长的能量,如果光学滤波器设计为拒绝从波长在约~580nm附近到红外线的波长中的光,则不期望的环境光影响可以大大降低。

图18示出了在从约525nm到约940nm的几个不同光学波长处典型的人类大拇指和小拇指的光学透射光谱轮廓的示例。对于短波长,例如波长小于610nm的波长,0.5%以下的环境光可以穿过手指。红光和近红外光具有更高的透射率。由于手指组织的散射,穿过手指的环境光传输至大范围内的多个方向,从而可以与屏下光学传感器模块待检测的信号光混合。在太阳光下操作时,因为太阳光的光功率较高,所以必须谨慎处理来自太阳光的不期望的环境光,以减少或最小化对光学指纹传感器性能的不利影响。

图19示出了屏下光学传感器模块600a中的背景光的影响。可能对光学指纹感测产生不利影响的不期望的环境光可以穿过不同路径到达光学指纹传感器600a。在某些情况下,环境光路可以根据其光路分成不同的情况:像937这样的一些光穿过手指进入光学指纹传感器600a,以及像937a这样的一些光不穿过手指,而是从手指周围的一个或多个侧面进入光学指纹传感器600a。

在所示出的用于指纹感测的屏下光学传感器模块600a中,传感器封装罩600b形成于屏下光学传感器模块600a的外部,可以由光学不透明材料或吸收材料形成为背景阻挡物,至少用于阻挡一些入射背景光,例如像937a这样不穿过手指,而是从手指周围的一个或多个侧面进入光学指纹传感器600a的背景光中的部分大角度光。

对于穿过手指60a传播的环境光937,手指60a吸收一些入射光,使得光939的一部分透过手指60a到达盖板玻璃431,随后透过盖板玻璃431到达oledtft层。oledtft层中的小孔450阻挡这种背景光中的大部分,而这种背景光939的一小部分光941穿过小孔450进入光学指纹传感器封装罩600a/600b。

一些环境光937a透过手指直接传播到盖板玻璃431。这种透射光被折射到盖板玻璃431中并变成光939a。oledtft层小孔450允许光941a的一小部分通过以到达光学指纹传感器封装罩600a/600b。这种环境光的组分往往包括具有大入射角的光组分。检测光路可以设计成使得这部分环境光不与信号光混合。

光学指纹传感器封装罩可被设计为使光学传感器模块600a仅接收来自检测光路窗口的光,同时阻挡大入射角的不期望的环境光。例如,在一些实现方式中,oled显示器的oled光源可以用作探测光源,以照亮手指进行光学指纹感测。在这种设计下,只打开与oled显示模块的底部接合(例如粘合)的光学传感器模块600a的顶侧,以接收光,例如图19所示的光学指纹传感器封装罩的顶部的光学窗口600c,并且传感器底部和侧壁在检测光波长带内不是光学透明的,这样就会减少可以进入光学指纹传感器的环境光。因此,对于起先没有透过手指而后进入光学传感器模块的环境光,光学传感器模块的封装罩可以设计为利用光阻挡侧壁或适当设计的光学接收孔提供对这种光的吸收或阻挡,使得这种光在到达接收光的材料或封装材料时被吸收或阻挡。

不期望的环境光可以包括不同的波长组分,因此在实现所公开的技术时,不同的环境光组分应进行不同处理,以减少其对光学指纹感测的影响。

例如,不期望的环境光可以包括红色波长(例如,长于580nm)以及更长波长下透过手指的光组分以及比红色波长短的波长(例如,小于580nm)下未透过手指的光组分。由于手指对光的吸收依赖于波长,穿过手指的透射环境光通常包括一些近红外光和部分红光组分。因此,光学指纹传感器封装罩中可以包括光学滤波,以滤除会另外进入光学检测器阵列的不期望的环境光。

示例设计是使用一个或多个红外光阻挡滤波器涂层(例如红外光截止滤光器涂层)来减少来自手指的透射光中的红外光或近红外光。然而,用于成像设备的各种红外光截止滤光器通常仅限制大于710nm的波长。当设备暴露在直接或间接日照下时,这种过滤性能可能不足以减少光学指纹感测中的红外光背景光。在一些应用中,合适的红外光过滤涂层应该将短端截止波长延伸至低于710nm的较短波长,例如610nm。

由于各种红外光截止涂层的光谱响应,具有用于较短波长的延伸的工作频带的单个红外光截止滤光器可能无法提供期望的红外光阻挡性能。在用于屏下光学传感器模块的一些滤波器设计中,可以组合使用两个或两个以上光学滤波器,以在传感器光路中实现期望的红外光阻挡性能。使用两种或两个以上滤波器的部分原因是存在来自太阳的自然日光的强背景光,这是一个重要技术问题。在oled显示面板下的公开的光学传感器的示例中,可以在屏下光学传感器叠层中内置光学滤波机构,以阻挡或减少来自太阳的自然日光的进入光学传感器阵列600a的强背景光。因此,一个或多个光学滤波器层可以集成到光学传感器阵列上方的屏下光学传感器叠层中,以阻挡来自太阳的不期望的背景日光,同时允许用于光学指纹感测的照明光穿过以到达光学传感器阵列。

例如,在一些实施方式中,照明光可以在显示器的oled发射的可见范围内,例如400nm到650nm之间,并且oled面板和光学传感器阵列之间的一个或多个滤波器可以是对400nm至650nm之间的光具有透光性,同时阻挡具有大于650nm的光波长的光,包括日光中的强红外光。实际上,一些商业光学滤波器具有透射带,这种透射带对于本文件中公开的屏下光学传感器的特定应用而言可能是不需要的。例如,一些商业多层带通滤波器可以阻挡600nm以上的光,但是600nm以上的光谱范围内应该会有透射峰,例如630nm与900nm之间的光学透射带。这种光学透射带内的日光中的强背景光可以穿过以到达光传感器阵列,并对用于光学指纹感测的光学检测产生不利影响。通过将具有不同光谱范围的两个或两个以上的不同光学滤波器组合在一起,使得一个滤波器中的不期望的光学透射带可以处于另一光学滤波器的光学阻挡频谱范围内,可以消除或减少这些光学滤波器中的不期望的光学透射带。这样,两个或两个以上这种滤波器的组合可以共同消除或减少630nm至900nm之间的不期望的光透射带。具体地,例如,通过使用一个滤波器来过滤波长从610nm至1100nm的光,同时透射波长在610nm以下的可见光,另一个滤波器来过滤波长从700nm至1100nm的偏移的光谱范围内的光,同时透射波长在700nm以下的可见光,通过上述方式可以将两个滤波器组合起来。两个或两个以上光学滤波器的这种组合可用于在高于较高透射波长的光波长下产生期望的背景光的过滤。这种滤光器可以涂覆在光学传感器阵列待检测的光的光路中的一个或多个表面上。

在一些实施方式中,当使用以上所公开的两个或两个以上光学滤波器时,可以在两个滤波器之间填充光学吸收材料,以对过滤的光带表现出适当的吸收,使得两个光学滤波器之间的反射光可以被吸收。例如,可以将一个滤波器涂覆在间隔物917上,另一个滤波器涂覆在保护材料919上,而准直器617可以制成具有光学吸收性以吸收两个滤波器的过滤光带。作为具体的示例,可以使用在610nm至1100nm之间具有高吸收率的一个蓝色玻璃片作为滤波器的基底。在这种情况下,两个滤波器涂覆在蓝色玻璃的上表面和下表面上,并且该组件可以用作间隔物或保护材料。

除了使用适当的光学滤波来截止屏下光学传感器模块中的红色和红外光范围中的背景光之外,通过光学滤波应减少的背景光可以包括包含uv波长的较短波长光谱范围中的光。在一些实现方式中,应减少或消除uv波段中的环境光,因为这种光带会产生噪声。这种消除可以通过uv截止涂层或材料吸收来实现。手指组织、硅和黑油墨等易于强烈吸收uv光。uv光的材料吸收可用来减少uv光对光学指纹感测的影响。

图20示出了用于设计根据以上描述的用于减少背景光的屏下光学传感器模块中的光学滤波的设计算法的示例。因此,除了在向光学传感器模块的光路中设计合适的光学滤波器外,也可以将用于减少背景光的附加的设计特征添加到光学传感器模块中的光学检测器阵列的接受光学器件的设计中。在操作这种光学传感器模块时,可以将经由操作控制和信号处理来考虑的这些光学滤波和进一步减少背景光进行组合,以实现期望的光学感测性能。

在一些实现方式中,可以使用一个或多个光学滤波器作为支撑针孔照相机型光学器件的基板,使得多个功能部件能够被组合或集成到一个硬件中。这种不同背景光减少机制的集成或组合可以降低设备成本,并且还可以减小设备厚度。

屏下的光学传感器模块也可以利用传感器初始化过程来操作,以减少不期望的背景光的影响。同图12和图13所示的技术一样,该传感器初始化过程实质上是可操作的。图21示出了该传感器初始化过程的示例,在每次获得指纹时,测量光学传感器阵列处的基线背景水平。在执行实际指纹感测之前,在没有任何环境光影响的暗室环境中,开启用于光学感测的照明光或光学探测光(oled显示器),将手指模拟器设备放置在盖板玻璃上,以记录图像数据。手指模拟器设备设计成模拟手指皮肤反射行为,但没有任何指纹图案。将从手指模拟器设备获得的图像数据作为基数1数据保存到存储器中,用于实际感测操作中的背景光减少处理。该过程可以在运送设备之前在工厂完成设备校准过程。

在实时指纹感测中,存在环境影响。在操作中,首先关闭照明光或光学探测光(例如,oled屏),将图像数据记录为基数2,这是在具有环境光的条件下进行的。该基数2表示所有环境光残留物的总影响。基数1和基数2的总和为实时基数。接下来,打开照明光或光学探测光以执行指纹感测,来采集实时信号,该实时信号混合了来自指纹的真实指纹信号和实时基数。可以在信号混合与实时基数之间进行差分,作为信号处理的一部分,以减少来自环境光的信号影响,从而可以获得指纹图像的图像质量。图21中的上述示例示出了一种用于操作能够通过光学感测检测指纹的电子设备的方法,该方法通过操作触摸显示面板(为该设备提供触摸感测操作)下方的光学传感器模块,产生探测光以照亮触摸显示面板的顶部透明层,进而操作光学传感器模块内的光学传感器阵列,以获得来自顶部透明层的返回的探测光中的第一图像。该方法包括操作光学传感器模块内的光学传感器阵列,同时关闭探测光,以获得仅有环境光的照明下的第二图像,而不用任何探测光照亮触摸显示面板的顶部透明层;以及处理第一图像和第二图像,以去除该设备的成像操作中的环境光的影响。

基于以上所述,背景光对屏下光学传感器模块的性能的不期望的影响可以通过不同的技术来减缓,这些技术包括在到光学传感器阵列的光路中实施光学滤波以减少背景光、设计用于光学传感器阵列的接收光学器件以减少背景光,或控制光学传感器模块和信号处理的操作以进一步减小背景光对光学感测性能的影响。这些不同的技术可以单独使用也可以结合使用,以满足期望的设备性能。

在公开的光学感测技术中,除了使用来自oled显示模块的oled发射光之外,还可以使用一个或多个额外光源来照亮待检测的手指,以改善光学指纹感测,例如通过改善检测中的信噪比。包含的一个或多个额外照明光源用于增加除返回的oled显示光引起的信号电平之外的携带指纹或其他有用信息的光学信号电平,以提高光学感测灵敏度,这种包含可以单独使用,也可以结合上述公开的技术使用,以减少进入屏下光学传感器模块中的光学传感器阵列的背景光的数量。

就这点而言,能够通过光学感测检测指纹的电子设备可以设计为包括:设备屏幕,提供触摸感测操作并且包括具有发光显示器像素的显示面板结构,每个像素可操作以发光,以形成显示图像的一部分;顶部透明层,形成于设备屏幕之上,作为界面用于用户触摸以进行触摸感测操作,并用于传输来自显示结构的光以将向用户显示图像;以及一个或多个额外照明光源,定位成向顶部透明层提供额外照明光,顶部透明层形成于设备屏幕上方且作为用于用户触摸的界面。该设备还进一步包括光学传感器模块,位于显示面板结构的下方,以接收由显示结构的发光显示器像素的至少一部分发出的,以及由一个或多个额外照明光源发出的,并从顶部透明层返回的光,以检测指纹,该光学传感器模块包括光学传感器阵列,用于检测光学传感器模块中接收到的光中的图像。在实现方式中,例如在各种oled屏中,显示面板结构包括在显示面板结构的发光显示像素之间的开口或孔,以允许返回的光穿过显示面板结构到达光学传感器模块。光学传感器模块包括光学准直器阵列或针孔阵列,以收集来自显示面板结构的返回的光,并且分离来自顶部透明层中的不同位置的光,同时将收集到的返回的光引导至光学传感器阵列。

使用额外照明进行照亮的第一个示例在图9中示出,包括一个或多个额外光源614,该额外光源614附着或粘合于与视区613相同的位置或区域中,以对感测区615提供附加的照明,从而增加光学感测操作中的光强度。额外光源614可以是扩展类型或是准直类型,以使得有效的感测区615内所有的点被照亮。额外光源614可以是单元件光源或光源阵列。此外,在光学指纹感测操作期间,oled显示模块433中的视区或指纹照明区613中的oled像素可以操作于比用于在oled显示器中显示图像的亮度水平更高的亮度水平,以增强用于光学感测操作的照明度。

图22和图23示出了具有额外照明光源以通过oled显示光提供用于补充光学指纹感测照明的屏下光学传感器模块的示例中的各种光学信号的光学行为。

图22和图23的示例包括组装在光学传感器模块中的额外光源971。具体地,两个或两个以上额外光源971置于光学传感器模块600a外部,并且在封装壁600b的外部。每个额外光源971可以是一个光源,也可以包括多个光源,例如led光源。额外光源971可以操作以一个单一波长或多个波长(例如,绿色led、红色led、近红外光led)发光。额外光源971可以被调制以产生调制的照明光,或被操作以在不同的阶段打开进行发光。在每个额外光源971的输出端口处,适当的耦合材料972设置在每个额外光源971与oled显示模块之间。耦合材料972可以包括合适的光学透明材料,以使得来自额外光源971的探测光973耦合到盖板431表面朝向手指的显示器中。在一些实施方式中,可以期望避免显示器中的探测光973的大输出角度,并且耦合材料972可以配置为限制探测光的数值孔径。耦合材料972可以是例如气隙等的低折射率材料,并且可以构造成具有期望的输出孔径,该输出孔径限制显示器中的探测光973的输出角度。

oled显示模块的tft层中的小孔450将探测光束973散射到各个方向。如图22所示,一些散射光977以大角度向光学传感器模块660a传播,由于光学传感器模块660a的接收光学器件的小孔径的吸收或阻挡,这些散射光977不太可能进入光学传感器模块。一些散射光977a向远离光学传感器模块660a的孔径的其他方向传播,因此不影响光学感测。值得注意的是,来自每个额外光源971的探测光973的一部分穿过tft层作为朝向顶部透明层431的顶面的探测光975。该探测光975可以耦合到手指60a中。手指60a中的组织对探测光975进行散射,以在各个方向上产生散射的探测光979,包括反向散射探测光981。反向散射探测光981反向穿过顶部透明层431,进入朝向光学传感器模块600a的tft层。tft层使反向散射探测光981发生折射或散射,其中一部分折射或散射后的光成为探测光组分983,可以由光学传感器模块600a中的光电探测器阵列进行检测。

当探测光979传播穿过手指皮肤时,指纹脊区域和谷区域呈现具有不同亮度的光信号,该亮度对比形成指纹图案,并且该亮度对比是由手指组织吸收、折射和反射,手指皮肤结构阴影以及手指皮肤显示盖板玻璃界面处的反射差异引起的。由于指纹对比的复杂机制,即使手指干燥、潮湿或手指脏时,也可以检测指纹。

图23进一步示出了存在于设备处的背景光,通常可以包括不同的两部分,一部分是入射到手指60a的环境光或背景光937,另一部分是入射到顶部透明层431而未进入手指60a的环境光或背景光937c。由于环境光或背景光937传播到手指60a中,所以手指组织将接收到的背景光937散射为不同方向的散射背景光937b,并与探测光979混合。散射背景光937b中的一些散射光939通过手指60a传播回光学传感器模块600a。散射背景光939和未穿过手指60a且进入光学传感器模块600a的一部分环境光937c对光学传感器模块600a的光学感测操作产生了不利影响。因此,期望通过参考图20至图21所述的光学滤波、接收光学器件的设计或对光学传感器模块的操作和信号处理的控制来减少或消除进入光学传感器模块600a的环境光。

图24示出了设计算法的示例,该设计算法用于设计用于光学感测的具有额外光源的屏下光学传感器模块中的光学滤波。图24中的设计考虑是为了减少或消除光学传感器模块处的环境光,包括透过手指和不透过手指的环境光。这与图20所示的设计类似。由于手指的吸收性,透射环境光包括一些近红外光和/或部分的红光组分。因此,光学滤波器涂层应设计为处理剩余的环境光。一个示例设计是使用红光或红外光带通滤波器,因为红光和近红外光在手指组织中可以传播相对较长的距离。考虑到日照强烈,带通滤波器可以基于探测光源波段设计。结合图20的上述讨论,uv波段也应该被消除,因为这个光带会产生噪声。这种消除可以通过uv截止涂层或材料吸收来实现。手指组织、硅和黑油墨等强力吸收uv光。在一些设计中,材料吸收可以用来消除uv光的影响。对于不透过手指的环境光,可以通过设计接收光学元件吸收来实现消除。这部分光具有大入射角的特点,可以通过适当设计的接收数值孔径来阻挡。

图19至图24中用于减少背景光的技术也可应用于进行光学感测的具有额外光源的光学传感器模块,以减少环境光。

当提供额外光源用于光学感测时,光学感测的照明功率不再受来自oled显示光的光功率限制。这种额外光源可以设计成提供用于光学感测的足够照明,以改善光学检测信号的信噪比,以抵消环境光影响。在实现方式中,可以调制额外光源而不影响显示功能和使用寿命。此外,在指纹感测期间,额外光源可以在短时间内以高输出功率闪光,以获得最佳检测。此外,在确定检测到的手指是否是活人手指时使用额外光源可以提供灵活性,从而可以避免假指纹检测。例如,绿色led和近红外led可以用作额外光源,以辅助实现图14a和图14b所描述的活人手指检测,其中,手指组织强力吸收绿色光,使得手指图像呈现出期望的大亮度梯度,并且近红外光穿过手指全部照亮,使得手指图像亮度看起来更均匀。

在本文公开的用于指纹感测的屏下光学传感器模块技术的各种实现方式中,可以使用具有至少一个成像透镜的成像模块,来实现手指被照亮的触摸部分在屏下光学传感器模块中的光学检测器阵列上的光学成像。成像模块的透镜效应部分用于控制返回的光的空间扩散,这种空间扩散可能在光学传感器阵列处空间地扰乱手指触摸部分的不同位置上返回的光,因此,当成像透镜引导返回的光使其到达光学传感器阵列时,通过具有期望的空间成像分辨率的成像透镜,可以保存与手指的指纹图案对应的返回的光的空间信息。具有单个成像透镜或者具有两个或两个以上成像透镜的组件的成像模块的空间成像分辨率,与成像模块的数值孔径成比例。因此,高分辨率成像透镜需要大的数值孔径,因此需要大直径的透镜。基于透镜的成像模块的这一方面必然需要庞大的透镜系统来产生高分辨率成像系统。此外,给定的成像透镜具有有限的视场,该视场随着焦距的减小而增加,随着焦距的增加而减小。

在许多指纹感测应用中,例如在移动设备中的显示屏下实现的光学指纹传感器中,期望具有高空间成像分辨率和大视场的紧凑型成像系统。考虑到对上面讨论的基于透镜的成像系统的各种成像特征的权衡,下面通过组合基于透镜的成像系统来提供用于光学指纹感测的紧凑型光学成像系统,以通过透镜实现高空间成像分辨率,并实现光学探测器阵列处的采集的图像的尺寸的减小,从而通过相同的透镜减小光学探测器阵列的尺寸。针孔被置于透镜的前方,以在不需要大直径透镜的情况下,通过实现针孔相机产生光学成像中的视场。传统的针孔相机可以包括用于光学成像的小孔径,由于小孔径和低空间成像分辨率,可以在图像亮度受限的同时产生大视场。成像透镜和针孔相机的组合被合理设计后,可以受益于成像透镜的高空间成像分辨率和针孔相机的大视场。

图25示出了置于oled显示屏下方的光学传感器模块620的一个示例,其中使用针孔和透镜来形成光学传感器模块620的光学成像系统。在该示例中,光学感测模块620是使用具有小直径的微透镜621e的紧凑型模块,该微透镜621e可以与针孔的尺寸大致相同,略微大于针孔。微透镜621e接合到针孔结构621g,针孔结构621g是光学不透明的,并且可以是形成在针孔基板621f的表面上的涂黑的或金属材料的层,该针孔基板621f为光学透明材料并具有开口作为针孔643。微透镜621e置于针孔基板621f的底侧上。在操作中,针孔结构621g中的针孔643上方的光学层被构造为,在收集来自oled显示面板的返回的光时产生大的光学视场,并且将收集的光传输到光学传感器阵列623e。光学传感器阵列623e中的光学检测器响应于所接收的光学图案以产生检测器信号,检测器电路模块623f耦合到光学传感器阵列623e以接收和处理检测器信号。在一些实现方式中,检测器电路模块623f可以包括柔性印刷电路(pfc)。微透镜621e接收来自针孔的透射光并将接收到的光聚焦到光学传感器阵列623e上,与将光投射到没有微透镜621e的光学传感器阵列623e上时的较低空间成像分辨率相比,微透镜621e以增强的空间成像分辨率在光学传感器阵列623e处进行光学成像。在该设计中,利用微透镜621e来补偿针孔的低分辨率,并且通过针孔643的大视场来补偿微透镜621e的有限视场。

图25中用于光学成像的针孔-透镜组件的所示示例中,针孔-透镜组件的目标平面靠近透明层431的顶面上的顶部有效感测区615,例如用于触摸感测oled显示面板的盖板玻璃,并且针孔-透镜组件的成像平面是光学传感器阵列623e的光学检测器的接收表面。除了针孔基板621f外,在针孔基板621f和oled显示面板之间设置折射率低于针孔基板621f的光学透明间隔物618e。在针孔基板621f上方使用较低折射率材料是光学设计的一部分,以实现用于接收来自oled显示面板的光的大视场。在一些实现方式中,较低折射率间隔物618e可以是气隙。该设计提供了在较低折射率间隔物618e和较高折射率针孔基板621f之间的两种不同光学材料的光学界面,并且该界面处的光学折射将来自较低折射率间隔物618e中的oled显示面板的入射光的大视场(fov)(例如,在一些情况下约140度),转换成较高折射率针孔基板621f中的较小的fov。因此,由针孔-透镜组件产生的输出光线具有相对小的fov。

这种减少fov的设计在以下几方面是有利的。首先,光学传感器模块620的较低折射率间隔物618e中的光学输入fov是大fov。其次,由位于较高折射率针孔基板621f下方的针孔-透镜组件处理的实际fov,相对于光学输入fov是减小的fov,使得具有大入射角的光线受限于该减小的fov。这是有益的,因为这种减小的fov降低了针孔-透镜组件处的大入射角中的光线引起的图像失真。此外,针孔-透镜组件处的这种减小的fov降低了不希望的针孔阴影效应,而这种针孔阴影效应会使光学传感器阵列处的图像的亮度分布产生失真。

与一些针孔相机设计中使用约40微米直径针孔的传统针孔相机不同,针孔643被设计成具有远大于针孔相机中的典型针孔尺寸的直径,例如在一些设计中大于100微米或200微米(例如250微米)。在透镜和针孔的这种组合中,针孔643上方的针孔基板612f的高折射率材料的使用,以及针对针孔基板612f上方的低折射率层618e的使用,使得针孔643具有远大于针孔相机中的典型针孔尺寸的直径,同时仍然实现大fov。例如,在一些实现方式中,当透镜621e构造为半球透镜,具有面向针孔643的平面和将来自针孔643的光引导至光电探测器阵列621e的部分球面时,针孔643的直径可以与透镜621e的曲面的曲率半径大致相同或相似。

还可以实现附加的设计特征,以改善基于针孔-透镜组件的光学成像系统的整体光学性能和紧凑性。例如,如图25所示,可以在透镜-针孔组件和光电二极管阵列623e之间放置附加的光学层。在该示例中,在从针孔-透镜组件到光学传感器阵列623e的光路中设置光学透明间隔物621h和保护材料623g。在一些实现方式中,间隔物621h可以是低折射率层例如气隙等,保护材料623g可以是覆盖光学传感器阵列623e的光学检测器的顶部的层,且折射率高于间隔物621h的折射率。层621h和623g可以被构造为减小或消除光学传感器阵列623e处的成像失真。当光在介质界面折射时,折射光线的方向上存在非线性,并且在光学传感器阵列623e处产生图像失真。当入射角大时,这种失真变得更为明显。为了减少这种失真,可以根据针孔-透镜组件的光学结构和针孔-透镜组件的光学物场(例如,从顶部玻璃层431的顶部感测表面至针孔基板621f的光学层)来选择间隔物621h和623g的光学厚度比。

光学失真发生在沿olcd显示面板的顶部到光学传感器阵列623e的光的光路的不同光学材料的每个界面处。一种用于减少这种光学失真的设计技术是,在针孔-透镜组件的底侧(即针孔-透镜组件的成像侧上的光学层)上提供光学匹配结构,以对应于针孔-透镜组件的顶侧的光学结构(即针孔-透镜组件的目标侧上的光学层),使得沿olcd面板到针孔-透镜组件的光路的、在针孔-透镜组件的目标侧的一个界面处引起的光学失真,通过沿针孔-透镜组件到光学传感器阵列623e的光路的、在针孔-透镜组件的成像侧的匹配界面处的光学折射对抗或抵消。针孔-透镜组件的成像侧的光学匹配层是通过考虑针孔-透镜组件中透镜的光焦度来设计的。

图26示出了具有针孔-透镜组件的光学成像系统,该针孔-透镜组件在针孔643上方具有一系列层(633,635,637,639,641等),在针孔643下方具有相应的材料层645,647,649等。在没有透镜621e,只有针孔643的针孔成像系统中,当介质在目标与像场之间不匹配时存在光学失真。当fov较大时,这种光学失真可以是桶形失真的形式。例如,如图26所示,具有如图所示的网格图案的目标651被置于顶部感测表面上而非手指447上来测试失真。由目标和针孔643的像场之间的不匹配光学层引起的桶形失真可以由失真图案653表示。这种失真是不期望的,因为它们直接影响光学传感器阵列623e采集的指纹图案的准确性。需要注意的是,这种失真程度通常在光学传感器阵列623e的成像场的中心部分高于周边部分,如失真图像653所示。

为了减轻这种失真,成像场中的针孔下方的材料层645,647,649等可以根据它们的折射率和厚度值来构造,以逆转材料层在目标侧引入的失真。这是通过匹配大入射角内的折射行为来实现的,以便校正在检测器表面上线性形成的图像。例如,在成像放大率为1/5的针孔成像系统中,如果针孔643上方存在2mm厚的玻璃层和1mm厚的气隙层,则可以在针孔643下方且在光学传感器阵列623e上方提供0.4mm厚的玻璃层和0.25mm厚的气隙层,以减少光学传感器阵列623e处的光学失真。该技术可应用于针对针孔643上方的复杂材料层,在针孔643下方提供匹配层。

在图25的示例中用于光学成像的针孔-透镜组件可以实现较高空间成像分辨率以采集所采集的图像中的精细特征,超过只有针孔643没有透镜621e的系统的空间成像分辨率。这种较高的空间成像分辨率是具有透镜621e的结果。图27a至图27b示出了只有针孔的成像操作和针孔-透镜组件的成像操作。

图27a示出了没有透镜的针孔成像系统,针孔643衍射入射光束661以产生衍射的输出光束673,由于针孔643的衍射该输出光束673是发散的。该发散光束673在成像平面667处形成反映该成像系统的分辨率的图像光点679。

图27b示出了在针孔643下方增加微透镜621e,并且微透镜621e的曲率修改了由针孔643衍射的光束的波前,以在成像平面667处产生光点681,该光点681小于只有针孔643没有透镜621e所产生的光点679。

针孔-透镜组件可以实现为提供图25的示例中的紧凑型光学传感器模块620。由于介质界面的折射,光传播角度可以通过使用不同的光学材料来控制。例如,如图28所示,如果针孔基板621f上方的介质中的折射率n1低于针孔基板621f的折射率n2,则具有大入射角的光束683在进入针孔基板621f后弯曲为具有较小角度的光束685。因此,使用较高折射率材料用于针孔基板621f,可以实现非常大的视场以在针孔-透镜组件的目标侧接收输入光。在一些实现方式中,使用高折射率材料用于针孔基板621f可以实现大的fov(例如,接近或高于140度),以在针孔基板621f和针孔基板621f上面的层之间实现足够大的折射率差异。

实现针孔基板621f的顶面处的光线的大的衍射弯曲的上述设计,可以通过在光路中合并一些低折射率间隙(诸如气隙)用来减小光学传感器模块的厚度。另外,由于针孔基板621e顶部的大的折射导致进入到针孔基板下面的透镜的光线的倾斜角度以较小的fov减小,所以可以改善来自针孔-透镜组件的图像的均匀性。

在针孔-透镜组件中,微透镜位于针孔643下方,由于针孔643的小开口,所以微透镜的光学孔径小。同样,由于微透镜收集的来自针孔643的光线通常接近微透镜的弯曲表面的轴线,所以微透镜显示出较低像差。

在实现该针孔-透镜组件时,针孔643的中心位于微透镜表面的中心或靠近微透镜表面的中心。在图28的示例中,半球透镜作为示例示出并被接合(例如胶合)到针孔板上以实现这种配置。半球透镜621e的平坦表面面朝上接合到针孔643,并且半球透镜621e的平面的中心在针孔643的中心或在针孔643的中心附近。这种设计下,通过针孔643到半球透镜621e的平面的任何入射光,不管以小入射角还是大入射角,都将使其光线方向与半球透镜621e的半径方向一致,为透镜在这个方向上的光轴。这种配置减少了光学像差。对于在针孔基板621f的顶部具有不同入射角的光束663和683,它们的光路在进入针孔基板621f后被修改为靠近各自的半球透镜表面的光轴689和691。因此,该具体设计下,图像光点681和693表现出低光学像差。

针孔-透镜组件会受到孔径阴影效应的影响,使得成像平面(光学传感器阵列623e)处的最终图像的亮度沿着径向方向从中心到周边区域逐渐变化,在中心处看起来较亮,在周边区域较暗。该效应使得在光学传感器阵列623e处采集的图像降级,并且通过使用修改空间亮度分布的矫正光学滤波可以减小这种效应的影响。例如,具有空间梯度透射轮廓的光学滤波器可以插入到由光学传感器模块接收的光的光路中,例如在oled显示面板和光学传感器阵列之间的位置。该梯度透射滤波器被构造为在针孔的中心处或附近表现出高的光学衰减和从针孔的中心径向向外减小的光学衰减,以抵消由针孔引起的光的光强度分布的空间变化。图29示出了这种梯度透射滤波器的光学衰减轮廓的示例,具有从中心向边缘衰减的径向梯度衰减。

在实现方式中,梯度透射滤波器可以包括可以制作在光路的表面上的一个或多个涂层,以校正图像亮度的不均匀性,例如,显示器底面、模块部件表面或光学传感器阵列顶面。除了通过孔径遮蔽效应抵消空间不均匀性之外,滤波器还可以被配置为校正其他类型的亮度不均匀性,并且还可以包括可以减小其他光学失真和光学像差的特征。

如上参照图18至24所述,不期望的背景或环境光可能会对光学感测操作产生不利影响,并且可以通过各种技术来减少。用于降低环境光效果的这些和其他技术也可以用于改善基于针孔-透镜组件的这种屏下光学传感器模块的性能。

例如,图19、图22和图23中所述的光学传感器模块外部的光屏蔽封装罩的使用也可以应用于基于针孔-透镜组件的屏下光学传感器模块。图30示出的示例中,传感器模块620被集成到封装罩620a中,以阻挡环境光进入光学传感器阵列。在显示器的保护层中形成窗口。模块620和620a安装在保护层下面。间隔物材料631可以用于修改显示器的视图并保护显示器。如果间隔物618e是气隙,则传感器模块不直接接触显示器,因此使用期间显示器不受影响。

本专利文件中所公开的屏下光学感测技术可以实现为各种配置。下面将提供此类配置的各种示例。

配置1是一种能够通过光学感测检测指纹的电子设备,该电子设备包括:显示面板,具有发光显示像素,每个像素可操作发光以显示图像;顶部透明层,形成于该显示面板之上,作为用于用户触摸的界面并且作为用于传输来自该显示面板的光以显示图像的界面;以及光学传感器模块,位于该显示面板下方,以接收由该发光显示像素中的至少一部分发出的并从该顶部透明层返回的光来检测指纹。光学传感器模块包括光学检测器的光学传感器阵列,以将来自显示面板携带用户的指纹图案的返回的光转换成表示指纹图案的检测器信号;针孔层,位于显示面板和光学传感器阵列之间,并构造成包括针孔,该针孔被构造成在收集来自显示面板的返回的光时产生大的光学视场并将收集的光向光学传感器阵列传输;以及透镜,位于针孔层和光学传感器阵列之间,接收来自针孔的透射光并将接收到的光聚焦到光学传感器阵列上,与利用针孔将光投射到没有透镜的光学传感器阵列上时的较低空间成像分辨率相比,透镜以增强的空间成像分辨率在光学传感器阵列处进行光学成像。

配置2是如配置1所述的设备,其中针孔的中心和透镜的中心沿着从针孔层垂直导向光学传感器阵列的方向对准。

配置3是如配置1所述的设备,其中光学传感器模块包括光学透明结构,位于透镜和光学传感器阵列之间,用于将来自透镜的光引导至光学传感器阵列,并构造为具有折射特性和厚度,以减小光学传感器阵列处的光学失真。

配置4是如配置3所述的设备,其中透镜和光学传感器阵列之间的光学透明结构包括光学透明间隔层和形成在光学传感器阵列的光学检测器上的光学透明保护层。

配置5是如配置4所述的设备,其中光学透明保护层包括光学带通滤波器,用于透射由显示面板发射的光,同时阻挡其他波长的光。

配置6是如配置4所述的设备,其中光学透明间隔层包括气隙。

配置7是如配置1所述的设备,其中光学传感器模块包括位于显示面板和针孔层之间的第一光学透明层和位于针孔层和透镜下方且在光学传感器阵列上方的第二光学透明层。第二光学透明间隔层和第二光学透明层的折射率和厚度值是基于(1)第一光学透明间隔层的折射率和厚度值以及(2)透镜的光学功率选择的,以减少光学传感器阵列处采集的光学图像中的光学失真。

配置8是如配置7所述的设备,其中位于显示面板和针孔层之间的第一光学透明层和位于针孔层和透镜下方且在光学传感器阵列上方的第二光学透明层相对于针孔层对称设置。

配置9是如配置1所述的设备,其中光学传感器模块包括光学透明层,位于显示面板和针孔层之间并与针孔层接触,其中针孔层的折射率高于与针孔层接触的光学透明层的折射率。

配置10是如配置1所述的设备,其中位于针孔层和光学传感器阵列之间的透镜与针孔直接接触。

配置11是如配置1所述的设备,进一步包括梯度透射滤波器,位于显示面板和光学传感器阵列之间,用于修改穿过针孔和透镜后在光学传感器阵列处接收的光的空间光强度分布。该梯度透射滤波器被构造为在针孔的中心处或附近表现出高的光学衰减,从针孔的中心径向向外减小的光学衰减,以抵消由针孔引起的光的光强度分布的空间变化。

配置12是如配置11所述的设备,其中梯度透射滤波器位于显示面板和光学传感器模块之间。

配置13是如配置11所述的设备,其中梯度透射滤波器位于光学传感器模块内部。

配置14是如配置1所述的设备,还包括一个或多个光学滤波器,置于顶部透明层的顶面和光学传感器模块的光学传感器阵列之间,以阻挡或减少进入光学传感器阵列的环境光的数量。

配置15是如配置14所述的设备,其中一个或多个光学滤波器设计为过滤掉红外光ir。

配置16是如配置14所述的设备,其中一个或多个光学滤波器设计为过滤掉紫外光uv。

配置17是如配置1所述的设备,还包括形成于光学传感器阵列的侧面上的侧壁,以阻挡环境光以大入射角进入光学传感器阵列。

配置18是如配置1所述的设备,还包括一个或多个额外照明光源,定位成向形成于设备屏幕上方的作为用于用户触摸的界面的顶部透明层提供额外照明光,以及光学传感器模块定位成接收由发光显示像素中的至少一部分以及一个或多个额外照明光源发出并从顶部透明层返回的光来检测指纹。

配置19是一种用于操作能够通过光学感测检测指纹的电子设备的方法,该方法包括:操作触摸显示面板(为该设备提供触摸感测操作)下方的光学传感器模块,产生探测光以照亮触摸显示面板的顶部透明层;将返回的探测光从顶部透明层引导至光学传感器模块内的针孔中,以允许在大视场内以不同角度在返回的光的针孔处接收;使用位于针孔和光学传感器阵列内的光学检测器的光学传感器阵列之间的透镜以接收来自针孔的光,并将从针孔接收到的光聚焦到光学传感器阵列上,与利用针孔将光投射到没有透镜的光学传感器阵列上时的较低空间成像分辨率相比,透镜以增强的空间成像分辨率在光学传感器阵列处进行光学成像;以及阻挡或减少进入光学传感器阵列的环境光的数量,以增强光学传感器阵列处的探测光的光学检测。

配置20是如配置19所述的方法,还包括将梯度透射滤波器置于显示面板和光学传感器阵列之间,在针孔的中心处或附近呈现出高的光学衰减,从针孔的中心径向向外递减的光学衰减,以抵消由针孔引起的光的光强度分布的空间变化。

配置21是如配置19所述的方法,还包括使用一个或多个光学滤波器来阻挡或减少进入光学传感器阵列的环境光的数量。

配置22是如配置21所述的方法,其中一个或多个光学滤波器设计为过滤掉红外光ir。

配置23是如配置21所述的方法,其中一个或多个光学滤波器设计为过滤掉紫外光uv。

配置24是如配置19所述的方法,还包括提供形成于光学传感器阵列的侧面上的侧壁,以阻挡环境光以大入射角进入光学传感器阵列。

配置25是如配置19所述的方法,还包括操作光学传感器模块以测量由显示面板中的发光显示像素发射的两个或两个以上不同波长的返回的探测光;并比较两个或两个以上不同波长的探测光的消光比,以确定返回的光是否携带指示用户是活人的信号。

配置26是如配置19所述的方法,还包括操作光学传感器模块以在不同的时间采集不同的指纹图案,以监测指纹脊图案变形的时域演变,指纹脊图案变形的时域演变表示来自接触输入的按压力的时域演变。

配置27是如配置19所述的方法,还包括:以闪光模式操作显示面板,以使得显示面板中的发光显示像素的部分以高于显示图像时的发光水平的发光水平闪光,以检测手指的存在并获取手指的指纹。

配置28是如配置19所述的方法,还包括:操作光学传感器模块以从来自顶部透明层的返回的探测光中获得第一图像;操作光学传感器模块,同时关闭探测光,以获得不用任何探测光照亮触摸显示面板的顶部透明层而仅有环境光的照明下的第二图像;以及处理第一图像和第二图像以去除设备的成像操作中的环境光的影响。

配置29是一种能够通过光学感测检测指纹的电子设备,该电子设备包括:显示面板,具有可操作发光的发光显示像素,用于显示图像;顶部透明层,形成于该显示面板之上,作为用于用户触摸的界面并且作为用于传输来自该显示面板的光以显示图像的界面;以及光学传感器模块,位于该显示面板下方,以接收由该发光显示像素中的至少一部分发出的并从该顶部透明层返回的光来检测指纹。光学传感器模块包括:光学检测器的光学传感器阵列,将来自显示面板的携带用户的指纹图案的返回的光转换成表示指纹图案的检测器信号;针孔层,位于显示面板和光学传感器阵列之间,且被构造成包括具有高折射率的光学透明针孔层材料,用于接收来自顶部透明层和显示面板的光,以及形成在光学透明针孔层材料的一个表面上的不透明层,用于包括针孔,以透射由光学透明针孔层材料接收的光;光学间隔层,形成于显示面板和针孔层之间,以接触针孔层的光学透明针孔层材料,以将来自顶部透明层和显示面板的接收的光导向形成于光学透明针孔层材料的相对侧上的针孔;以及透镜,位于针孔层和光学传感器阵列之间,接收来自针孔的透射光并将接收到的光聚焦到光学传感器阵列上,与利用针孔将光投射到没有透镜的光学传感器阵列上时的较低空间成像分辨率相比,透镜以增强的空间成像分辨率在光学传感器阵列处进行光学成像。在配置29中,光学间隔层被配置为具有低于光学透明针孔层材料的高折射率的折射率,以在收集来自顶部透明层和显示面板的返回的光时产生大的光学视场,用于通过针孔向光学传感器阵列透射。

配置30是如配置29所述的设备,其中透镜是半球透镜,具有平坦表面,与形成在光学透明针孔层材料上的不透明层接合,用于覆盖针孔的针孔并从针孔接收光,以及部分球形表面,用于将从针孔接收的光导向光学传感器阵列,以及半球透镜的平坦表面的中心位于针孔的中心处或附近。

配置31是如配置30所述的设备,其中针孔的直径接近或等于半球透镜的部分球形表面的曲率半径。

配置32是如配置30所述的设备,其中针孔的直径超过100微米。

配置33是如配置32所述的设备,其中针孔的直径超过200微米。

配置34是如配置29所述的设备,进一步包括梯度透射滤波器,位于显示面板和光学传感器阵列之间,用于修改穿过针孔和透镜后在光学传感器阵列处接收的光的空间光强度分布。该梯度透射滤波器被构造为在针孔的中心处或附近表现出高的光学衰减,从针孔的中心径向向外减小的光学衰减,以抵消由针孔引起的光的光强度分布的空间变化。

配置35是如配置34所述的设备,其中梯度透射滤波器位于显示面板和光学传感器模块之间。

配置36是如配置34所述的设备,其中梯度透射滤波器位于光学传感器模块内部。

配置37是如配置29所述的设备,还包括一个或多个光学滤波器,置于顶部透明层的顶面和光学传感器模块的光学传感器阵列之间,以阻挡或减少进入光学传感器阵列的环境光的数量。

配置38是如配置37所述的设备,其中一个或多个光学滤波器设计为过滤掉红外光ir。

配置39是如配置37所述的设备,其中一个或多个光学滤波器设计为过滤掉紫外光uv。

配置40是如配置29所述的设备,还包括外壳,用于包封光学传感器模块,以阻挡环境光以大入射角进入光学传感器阵列。

配置41是如配置29所述的设备,还包括一个或多个额外照明光源,定位成向形成于设备屏幕上方的作为用于用户触摸的界面的顶部透明层提供额外照明光,以及光学传感器模块定位成接收由发光显示像素中的至少一部分以及一个或多个额外照明光源发出并从顶部透明层返回的光来检测指纹。

(上边这段开始)虽然本专利文件包含许多细节,但是不应将这些细节解释为对任何发明或可要求保护的范围的限制,而应解释为对特定发明的特定实施例的特有的特征的描述。本专利文件中在单独实施例的上下文中描述的某些特征也可以在单个实施例中组合实现。相反,在单个实施例的上下文中描述的各种特征还可以在多个实施例中单独实现或以任何合适的子组合形式实现。而且,虽然特征可以在上面描述为在某些组合中起作用,并且甚至最初如此要求保护,但是来自要求保护的组合的一个或多个特征在一些情况下可以从组合中删除,并且要求保护的组合可以涉及子组合或子组合的变形。

类似地,虽然在附图中以特定顺序描述了操作,但是这不应理解为要求这些操作以所示的特定顺序或按照顺序依次执行,或者要求执行所有所示的操作,以实现期望的结果。此外,在本专利文件中描述的实施例的各种系统组件的分离不应理解为要求在所有实施例中进行分离。

本文仅描述了几个实现方式和示例,并且可以基于本专利文件中描述和示出的内容来做出其他实施例、改进和变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1