一种预测γ-TiAl中不同γ/γ界面类型出现比例的相场模拟方法与流程

文档序号:23419462发布日期:2020-12-25 11:41阅读:300来源:国知局
一种预测γ-TiAl中不同γ/γ界面类型出现比例的相场模拟方法与流程

本发明涉及冶金铸造技术领域,具体涉及一种预测γ-tial中不同γ/γ界面类型出现比例的相场模拟方法。



背景技术:

钛铝金属间化合物作为替代高温合金的下一代新型结构材料,近年来已受到广泛关注。特别是包含γ和α2两相的全片层组织的钛铝合金(γ-tial),具有低密度、高比强度、良好的阻燃性和抗氧化等特点,适合应用于航空发动机的高压压气机叶片与低压涡轮叶片。实验中对γ/γ界面类型的统计分析表明,多数情况下孪晶(tt)关系片层比例较高,伪孪晶(pt)及有序畴(od)关系界面比例相对较低。这与随机分布理论下三种界面的比例tt:pt:od=3:6:6严重偏离。相关研究表明,孪晶与有序畴界面的强度要优于伪孪晶;而在塑性方面,有序畴界面最优,孪晶次之,伪孪晶相对较差。

由于α2→γ转变是形成全片层组织的一个非常重要的固态相变过程,体系内弹性应变能与γ/γ界面界面能差对不同γ/γ界面类型出现比例起着决定性作用。因此,借助计算机模拟阐明该相变过程中弹性应变能与界面能对全片层组织演变过程的影响规律,对于通过调整合金成分、改进热处理工艺制度来调控γ-tial合金中三种γ/γ界面类型的比例,优化钛铝合金的力学性能具有重要意义。



技术实现要素:

为了改善及优化钛铝合金的力学性能,本发明提供一种预测γ-tial中不同γ/γ界面类型出现比例的相场模拟方法,该方法能够再现α2→γ固态转变过程,为调控不同γ/γ界面类型的出现比例提供有效的预测方法。

为实现上述目的,本发明所采用的技术方案如下:

一种预测γ-tial中不同γ/γ界面类型出现比例的相场模拟方法,包括以下步骤:

s1:根据γ-tial合金的具体相变温度、α2与γ相的gibbs自由能曲线及其公切点对应的两相平衡时的平衡成分,获取α2→γ固态转变时各相的局域自由能密度。采用动力学数据库中al成分在各相内的原子迁移率,经过插值计算获得α2/γ及γ/γ界面处的化学迁移率;

s2:根据步骤s1获取的γ-tial合金α2→γ固态相变时各相的gibbs自由能密度以及化学迁移率等信息,建立相场动力学模型并确定多个输入参数,通过相场控制方程计算相场序参量结果值;

s3:保持弹性应变能贡献不变,改变不同γ/γ界面的界面能差,计算获得不同γ/γ界面类型出现比例结果值;保持不同γ/γ界面的界面能差不变,改变弹性应变能,计算获得不同γ/γ界面类型出现比例的结果值;

s4:将s3中微观组织演化结果进行可视化处理,获得不同γ/γ界面类型出现比例受界面能差值以及弹性应变能贡献的影响规律。

上述步骤s1中,自由能如下:

基于一定温度下的α2和γ两相自由能,按照以下landau型多项式(公式(1a))表达γ-tial体系α2和γ相局域自由能密度:

公式(1a)中,f(c,φp)为局域自由能密度;c为γ-tial合金中al的原子百分浓度;c1和c2分别是接近α2和γ相当前平衡浓度的常数,单位为at.%;a1~a4是拟合局域自由能密度与实验热力学数据所得的四个无量纲自由能常数;φp(p=1,···,6)表示6种γ相变体,上述自由能密度已经耦合了结构场变量与成分场变量。

为了避免同一计算节点上被不同相场变量所占据,引入了表征不同变体间势垒项,如公式(1b):

考虑上述不同变体间势垒项,局域自由能密度公式变为公式(1):

相场模型中,界面能是与界面处结构与成分非均匀相关的附加自由能。通过加入梯度项将界面能引入化学自由能中,梯度项表达式如公式(2a):

公式(2a)中,ρ和是梯度能系数,ri和rj为计算节点空间位置分量,前后两项分别代表成分非均匀和结构非均匀所产生的附加化学自由能。考虑到α2/γ间界面能各向异性:

考虑γ/γ间孪晶(tt)、伪孪晶(pt)以及有序畴(od)界面,将三种不同的能垒系数引入到梯度项系数张量内,如公式(2b);

公式(2b)中,htt表示孪晶关系变体间能垒系数,hpt代表伪孪晶关系变体间能垒系数,hod表示有序畴关系变体间的能垒系数。可根据实验获得的界面能数据,在模拟中设置上述相应的三个系数。

综上考虑,体系化学自由能可以表达为公式(2);

步骤s2中,所述相场序参量包括长程序参量场(结构场)和浓度序参量场(浓度场),其中:

长程序参量场随时间的演化由弛豫方程描述,通常指时间相关的ginzburg-landau(tdgl)方程或allen-cahn方程,如公式(3);

公式(3)中,l是表征结构弛豫的动力学系数,其数值越大代表结构弛豫越快,t为时间,r为计算节点空间位置。

浓度场随时间的演化由扩散方程控制,通常指cahn-hillaird方程,如公式(4);

公式(4)中,m是化学迁移率,表征溶质扩散速率,可以是温度等参数的变量。

步骤s3中弹性应变能表达式如公式(5);

公式(5)中,n为单位倒格矢量,cijkl表征体系的弹性常数张量,是体系宏观的平均应变,v是体系的体积。

bpq(n)为两体相互作用势,表达式为:

是对应的相变应力,表达式为:

其中为第p个变体的无应力应变。

ωjk(n)为格林函数张量,满足:

的共轭,表达式为:

本发明具有以下优点和有益效果:

γ-tial合金作为新一代可替代高温合金的结构材料,进行优化其力学性能的实验成本较高,且在固态相变转变时,各相间的界面能及弹性应变能很难通过实验表征,考察上述两种因素对不同γ/γ界面出现比例的影响规律具有很大的局限性。本发明利用数值模拟的方法研究界面能及弹性应变能对γ/γ界面出现比例的影响规律,可以有效地避免实验研究的局限性。

本发明可以将γ相的形核、长大、溶质扩散以及γ/γ界面形成等机理引入到数值模拟中,能够真实地再现γ-tial合金中α2→γ固态相变的层片状组织形貌,较为精准地模拟微观组织的演变过程,为改善和优化γ-tial合金的力学性能提供可靠信息。而相场法作为数值模拟方法的一种,可定量地研究α2/γ和γ/γ界面的界面能差异及各向异性、弹性应变能、噪声扰动等物性参数对微观形貌生长的影响。

附图说明

图1为本发明预测γ-tial中不同γ/γ界面类型出现比例的相场模拟方法的流程;

图2为本发明中数值模型程序建立的具体流程图;

图3为本发明具体实施例中γ-tial合金自由能曲面及α2与γ相自由能曲线图;其中:(a)γ-tial合金自由能曲面;(b)α2与γ相自由能曲线;

图4为本发明具体实施例中界面能与弹性应变能对γ-tial合金微观组织演化过程影响结果图;其中:(a)界面能影响;(b)弹性应变能影响;

图5为本发明具体实施例中多种不同参数条件下对三类不同γ/γ界面出现比例的统计结果图;其中:(a)不同界面能差对三类不同γ/γ界面出现比例的影响;(b)不同弹性应变能系数对三类不同γ/γ界面出现比例的影响。

具体实施方式

为了更好的解释本发明,以便于理解,下面通过具体实施方式,对本发明作详细描述。

如图1所示,本发明提供一种预测γ-tial中不同γ/γ界面类型出现比例的相场模拟方法,包括如下步骤:

(1)热力学计算

首先根据γ-tial合金的相变温度,由热力学计算获得α2与γ两相的gibbs自由能曲线,然后确定α2与γ两相内溶质原子的平衡成分,同时依据自由能曲线并且耦合相场结构场变量φp拟合出landau型多项式,来表达γ-tial体系α2和γ相局域自由能密度,求解出a1-a4参数。

landau型多项式如下:

其中c1和c2分别是接近α2和γ相当前平衡浓度的常数,单位为at.%。a1-a4是拟合局域自由能密度与实验热力学数据所得的四个无量纲自由能常数。φp(p=1,···,6)表示6种γ相变体,上述自由能密度已经耦合了结构场变量与成分场变量。

为了避免同一计算节点上被不同相场变量所占据,引入了表征不同变体间势垒项,即:

考虑到不同γ相变体间的势垒,体系总的局域自由能密度为:

相场模型中,界面能是与界面处的结构或浓度非均匀相关的附加自由能。通过加入梯度项将界面能引入体系总的化学自由能中,梯度项表达式为:

其中ρ和是梯度能系数,前后两项分别代表成分非均匀和结构非均匀所产生的附加化学自由能。

忽略掉溶质原子扩散的各向异性,仅考虑结构场变量的梯度项来表征α2/γ间界面能各向异性:

考虑不同γ/γ界面类型,即孪晶(tt)、伪孪晶(pt)以及有序畴(od)界面,将三种不同的能垒系数引入到梯度项系数张量内,即:

其中,htt表示孪晶关系变体间能垒系数,hpt代表伪孪晶关系变体间能垒系数,hod表示有序畴关系变体间的能垒系数。根据实验获得的界面能数据,在模拟中设置上述相应的三个系数。改变上述三个参数数值,即调整了对应三种界面的界面能差值。

综上考虑,体系化学自由能fch可以表达为:

(2)相场控制方程的建立

长程序参量场随时间的演化由弛豫方程描述,通常指时间相关的ginzburg-landau(tdgl)方程或allen-cahn方程:

l是表征结构弛豫的动力学系数,其数值越大代表结构弛豫越快。体系总的自由能f包含化学自由能fch与弹性应变能eel。即,f=fch+eel

浓度场随时间的演化由扩散方程控制,通常指cahn-hillaird方程:

m是化学迁移率,表征溶质扩散速率,可以是温度等参数的变量。该参数可通过相关动力学数据库获得。ξp(r,t)与ζ(r,t)分别为相场结构场变量与浓度场变量的噪声扰动项。

(3)固态相变中弹性应变能计算

在固态相变中,合金的微观组织演化通常包含晶格重排,其将导致共存相间的晶格匹配。如果相邻相间界面是共格或半共格的,在界面附近区域会产生弹性应变场。弹性应变能取决于共存相的体积与形貌,分布储存在共存相之中。弹性应变能表达式为:

其中n为单位倒格矢量,cijkl表征体系的弹性常数张量,是体系宏观的平均应变,v是体系的体积。

bpq(n)为两体相互作用势,表达式为:

是对应的相变应力,表达式为:

其中为第p个变体的无应力应变。

ωjk(n)为格林函数张量,满足:

的共轭,为:

实际合金中,随着溶质原子溶度、相变温度等条件的改变,弹性应变能项中的无应力应变会有变化。考虑到该变化,在相场模型中成倍数改变对应的无应力应变数值来考察弹性应变能贡献。

(4)结果输出

主要是根据相场模型及其计算参数,基于半隐式傅里叶谱方法求解结构场和浓度场控制方程。本发明实施方式采用fortran语言编写出描述γ-tial合金全片层微观组织演变过程的程序,再根据程序输出的序参量演化结果,利用可视化软件转化为更为直观的图像形式,这样就达到了γ-tial合金中固态相变过程可视化的目的。数值模型程序建立的具体流程如图2所示。

实施例1:

针对al元素浓度为46at.%的γ-tial合金,在恒定温度t=1000k下发生α2→γ固态转变,主要物性参数如表1:

表1物性参数数值

本实施例具体实施方式如下:

(1)基于热力学/动力学数据库,获取某一相变温度下各相的gibbs自由能及原子迁移率参数信息,其中γ-tial合金自由能曲面及α2与γ相自由能曲线如图3所示。搜集γ-tial合金弹性常数张量参数,α2/γ界面能以及不同类型γ/γ间界面能比例信息。

(2)根据相场方程,带入以上参数对γ-tial合金体系建立相场模型,并求解两个相场控制方程,即allen-cahn与cahn-hilliard方程。

(3)利用fortran语言对以上所建立的模型及方程进行编程,带入初始值及周期性边界条件,运行程序,得出相对应结果并进行可视化处理。其中界面能(γtt:γpt:γod=60:180:120)与弹性应变能(φ=20)对γ-tial合金微观组织演化过程影响结果如图4所示,多种不同参数条件下对三类不同γ/γ界面出现比例的统计结果如图5所示。

γ-tial合金作为新一代可替代高温合金的结构材料,进行优化其力学性能的实验成本较高,且在固态相变转变时,各相间的界面能及弹性应变能较难通过实验表征,考察上述两因素对γ/γ界面出现比例的影响规律具有很大的局限性。本发明则利用数值模拟的方法研究界面能及弹性应变能对γ/γ界面出现比例的影响规律,可以有效地避免实验研究的上述局限性。

本发明可以将γ相的形核、长大、溶质扩散以及γ/γ界面形成等机理引入到数值模拟中,能够真实地再现γ-tial合金中α2→γ固态相变的层片状组织形貌,较为精准地模拟微观组织的演变过程,为改善和优化γ-tial合金的力学性能提供可靠信息。而相场法作为数值模拟方法的一种,可定量地研究α2/γ,γ/γ界面的界面能差异及各向异性、弹性应变能、噪声扰动等物性参数对微观形貌生长的影响。

需要理解的是,以上对本发明的具体实施例进行的描述只是为了说明本发明的技术路线和特点,其目的在于让本领域内的技术人员能够了解本发明的内容并据以实施,但本发明并不限于上述特定实施方式。凡是在本发明权利要求的范围内做出的各种变化或修饰,都应涵盖在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1