基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法与流程

文档序号:24064384发布日期:2021-02-26 12:25阅读:217来源:国知局
基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法与流程

[0001]
本发明属于跨尺度数值模拟技术领域,具体的说,涉及一种基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法。


背景技术:

[0002]
近几十年来,流体力学学者为了达到节能减排的目的,一直致力于开发工程应用中有效的减阻方法。受鲨鱼皮表面齿状肋条的启发,用于微尺度减阻结构作为一种不需要附加设备或能耗的被动流动控制技术备受关注。这种纹理表面结构通过改变近壁面流动,延迟了层流向湍流的转变,从而减小了表面摩擦。
[0003]
微纳米尺度的沟槽结构浸润在边界层粘性底层内,诱导了湍流结构相对于平均流的位移,与光滑表面流动相比相当于在边界上施加了滑移效应,对数区和尾迹区的流动形式几乎不受影响。因此,微纳米尺度的沟槽结构增加了边界层粘性底层的厚度,减小了湍流结构向壁面的动量传递,从而减小表面摩擦。
[0004]
但在实际配置中,由于微/纳米沟槽表面结构和翼型的巨大尺度差异,直接用大量的网格描述全局流场难以进行数值模拟,需要昂贵的计算成本。


技术实现要素:

[0005]
针对现有技术的不足,本发明的目的在于提供一种基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法。该方法提出了一种边界代理模型来重现微观近壁区域在整个流场中的效应,从而实现了跨尺度模拟,大大提高了计算效率。
[0006]
本发明的技术方案具体介绍如下。
[0007]
本发明提出一种基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法,其利用考虑稀薄效应的粒子玻尔兹曼方法模拟近壁区域流动,基于大量模拟数据训练替代模型,通过模型准确地复现了微纳米沟槽表面结构的流动特性,再将该代理模型作为修正的壁面条件施加在宏观模型的边界,在宏观模拟中用rans或les方法对亚音速和跨音速流动进行数值模拟。
[0008]
本发明的技术方案具体介绍如下。
[0009]
一种基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法,具体步骤如下:
[0010]
步骤(1):根据尺度对全局流场进行区域划分,宏观模型表面附着微纳结构的近壁区域为微观流场区域,其余流场的远场部分为宏观流场区域;
[0011]
步骤(2):通过对壁面律的速度修正,实现微观流场区域对宏观流场区域滑移效应的量化;
[0012]
步骤(3):应用粒子玻尔兹曼方法的微观流场区域的数值计算,得到微观流场的流动规律,数据集作为代理模型数据库;
[0013]
步骤(4):利用微观流场代理模型数据库中的数据,运用神经网络训练得到替代表面微纳结构的壁面函数作为自定义边界条件;
[0014]
步骤(5):对表面施加自定义边界条件的光滑宏观模型进行宏观数值模拟,得到表面微纳结构的宏观模型的数值结果。
[0015]
本发明中,所述步骤(2)包括:
[0016]
步骤(21):考虑到速度剖面的经典无量纲表示是以+表示,在光滑壁面上,壁面速度剖面对数定律为:
[0017][0018]
其中为离壁面距离y
+
处的无量纲速度,κ为卡门常数,b为经验常数,通常取5;
[0019]
步骤(22):由于分布在表面的具有减阻效应的微纳米结构只影响边界层的内部,对数区和尾迹区的流动形式几乎不受影响,所以在微纳米沟槽表面,壁面速度剖面修正的对数定律为:
[0020][0021]
其中,为离壁面距离y
+
处的无量纲速度,δu
+
代表相较于光滑壁面的速度修正量,是基于步骤(3)(4)大量模拟数据训练得到的。
[0022]
本发明中,所述步骤(3)包括:
[0023]
步骤(31):应用数值模拟方法对计算的宏观构型进行计算获得贴微结构涂层处的宏观流动数据;其中:数值模拟方法为雷诺平均方程方法rans或大涡模拟方法les,宏观流动数据包括压力、密度和速度;
[0024]
步骤(32):将宏观流动数据作为微结构训练的工况用格子玻尔兹曼方法对微纳结构的表面流动进行模拟获得微结构表面的滑移速度,进而得到以计算工况中的密度,速度为行列的微纳结构表面速度滑移数据库。
[0025]
本发明中,所述步骤(4)包括:
[0026]
步骤(41):应用步骤(3)中获得的微纳结构表面速度滑移数据库作为边界代理模型训练的数据库;
[0027]
步骤(42):针对于不同微结构的数据库复杂形式即非线性程度,选择与之匹配的神经网络模型;
[0028]
步骤(43):采取步骤(42)所选用的神经网络模型作为气动代理模型的结构形式,通过训练获得微结构表面的神经网络边界代理模型。
[0029]
本发明中,所述步骤(5)包括:
[0030]
步骤(51):将步骤(4)中所构建的以n时刻的当地速度压力为输入,以n+1时刻微结构表面等效滑移速度为输出的神经网络代理模型作为宏观模拟中物面处的边界条件;
[0031]
步骤(52):对应于不同的宏观数值模拟方法,采用对应的数值离散方法将新边界条件耦合进流场计算中;
[0032]
步骤(53):应用以上所构建的数值模拟结果对带微结构物面的构型进行数值模拟,得到表面微纳结构的宏观模型的数值结果。
[0033]
和现有技术相比,本发明的有益效果在于:
[0034]
本发明提供了一种准确、高效的跨尺度仿真方法,为进一步在飞机设计领域应用微纳米沟槽结构进行流动控制提供了模拟方法,提高设计和计算效率。
附图说明
[0035]
图1是全局流场的区域划分的示意图。
[0036]
图2是代理模型训练的微纳米表面沟槽结构模拟区域的示意图。
[0037]
图3是将微纳米沟槽表面结构应用于翼型表面的示意图。
具体实施方式
[0038]
下面结合附图和实施例对本发明的技术方案进行详细阐述。
[0039]
实施例1
[0040]
本发明提供一种基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法。
[0041]
步骤(1):全局流场的区域划分
[0042]
如图1所示,为了模拟具有微纳沟槽表面结构的翼型的全局流场ω,我们提出了一种区域分解方法来解决这一多尺度问题。全局流场分为粘性底层、对数层、边界层外部和外流场。流场的实际边界为γ
w
,表示具有人为内部边界γ
δ
(壁面上的第一个网格点内)的微观近壁区域,该区域位于粘性底层内。然后将全局问题分解为两个问题:1)基于微观模拟数据,将微观近壁区域替换为微纳米沟槽表面结构的代理模型。2)采用基于代理模型的修正壁面边界条件在全域ω求解全局流动。
[0043]
步骤(2):通过对壁面律的速度修正,实现微观流场区域对宏观流场区域滑移效应的量化
[0044]
分布在表面的具有减阻效应的微纳米结构只影响边界层的内部,对数区和尾迹区的流动形式几乎不受影响,通过表面摩擦的变化来感知表面的变化。沟槽诱导了湍流结构相对于平均流的位移,从而减少了对壁面的动量传递,从而降低了阻力。考虑到速度剖面的经典无量纲表示(以+表示),在光滑壁面上,壁面速度剖面对数定律为:
[0045][0046]
其中为离壁面距离y
+
处的无量纲速度,κ为卡门常数,b为经验常数,通常取5。
[0047]
在微纳米沟槽表面,壁面速度剖面修正的对数定律为:
[0048][0049]
其中为离壁面距离y
+
处的无量纲速度,δu
+
代表相较于光滑壁面的速度修正量,是基于步骤(3)(4)大量模拟数据训练得到的。
[0050]
步骤(3):应用粒子玻尔兹曼方法的微观流场区域的数值计算,得到微观流场的流动规律,数据集作为代理模型数据库。
[0051]
图2是代理模型训练的微纳米表面沟槽结构模拟区域,计算域长为l
x
,宽为l
y
,单位沟槽长为s,宽为h,在x轴方向呈周期性排布。上边界为对称边界条件,下边界为滑移边界条件,入口为zou-he速度入口,来流角度为α。应用数值模拟方法如雷诺平均方程方法(rans),大涡模拟方法(les)对待计算的宏观构型进行计算获得贴微结构涂层处的宏观流动数据如压力密度速度等。将宏观流动数据作为微结构训练的工况用格子玻尔兹曼方法对微纳结构的表面流动进行模拟获得微结构表面的滑移速度,进而得到以计算工况中的密度,速度为行列的微纳结构表面速度滑移数据库。
[0052]
步骤(4):利用微观流场代理模型数据库中的数据,运用神经网络训练得到替代表面微纳结构的壁面函数作为自定义边界条件。
[0053]
步骤(5):如图3所示,将微纳米沟槽表面结构应用于翼型表面,对宏观流场进行cfd求解,表面施加自定义边界条件替代微纳米沟槽结构,从而得到表面微纳结构的宏观模型的数值结果。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1