一种基于Jiles-Atherton模型的钕铁硼磁滞回线描述方法

文档序号:24874896发布日期:2021-04-30 12:49阅读:551来源:国知局
一种基于Jiles-Atherton模型的钕铁硼磁滞回线描述方法

本发明涉及钕铁硼磁化特性领域,具体涉及一种基于jiles-atherton模型的钕铁硼磁滞回线描述方法。



背景技术:

随着钕铁硼性能的不断提升,以钕铁硼稀土永磁材料为重要功能件的装置越来越多地应用在了生产生活中,钕铁硼的磁化与反磁化特性对装置的性能影响巨大,然而目前对于钕铁硼的磁化反磁化特性的描述较多地停留在实验层面,对于其理论描述较少。周寿增等从磁畴理论出发,解释了剩磁、矫顽力以及居里温度产生的原因,但未能给出磁滞回线的解析描述;junquanchen等采用了一种分段线性磁滞模型来对钕铁硼的磁滞特性进行了拟合,但相交于非线性磁滞模型,线性磁滞模型在拟合精度上存在较大缺陷;jiles和atherton在1983年提出了一种非线性的标量磁滞模型,该模型中的参数较少且具有明确的物理意义,在铁芯的建模方面有很好的应用,但如何将jiles-atherton模型应用于钕铁硼,并没有相应的理论研究。



技术实现要素:

本发明的目的在于提出了一种基于jiles-atherton模型的钕铁硼磁滞回线描述方法,为钕铁硼的工程化应用提供相应的理论依据。

实现本发明目的的技术解决方案为:一种基于jiles-atherton模型的钕铁硼磁滞回线描述方法,具体步骤如下:

步骤1、确定jiles-atherton模型的物理意义,即饱和磁化强度、形状参数、磁畴耦合参数、打破钉扎阻碍的平均能量和可逆磁化系数在模型中的参数表示,构建jiles-atherton模型的计算程序;

步骤2、将jiles-atherton模型中的参数辨识问题转化为优化问题,对厂家提供的钕铁硼磁滞回线采用遗传算法对目标函数进行优化,获取参数值;

步骤3、对不同温度下钕铁硼的磁滞回线进行参数辨识,拟合jiles-atherton模型中的参数与温度的关系。

进一步的,步骤1中,确定jiles-atherton模型的物理意义,即饱和磁化强度、形状参数、磁畴耦合参数、打破钉扎阻碍的平均能量和可逆磁化系数在模型中的参数表示,编写jiles-atherton模型的计算程序,具体方法为:

jiles-atherton模型数学描述如下:

总磁化强度m可分为:

m=mrev+mirr

其中,mrev为可逆磁化分量,mirr为不可逆磁化分量;

mrev与mirr二者均依赖于无磁滞磁化强度man,三者的具体关系为:

mrev=c·(man-mirr)

其中,c为可逆磁化系数;

根据jiles-atherton模型中的描述,采用朗之万函数描述铁磁材料的磁化特性,其表达式为:

其中,ms为饱和磁化强度;a为形状参数;he为等效磁场强度;

he=h+αm

其中α为根据bloch模型的磁畴耦合参数;

jiles-atherton模型中的磁滞回线m(h)由下式给出:

其中,c∈(0,1)为畴壁弯曲常数,表征了可逆磁化程度,又叫可逆磁化系数,描述了磁化的可逆性过程;k为打破钉扎阻碍的平均能量;δ为磁场的变化系数,即磁场增大时δ=1,磁场减小时δ=-1;附加系数δm防止出现非物理解,对该微分方程进行求解,即得到永磁体的磁滞回线;

永磁体的磁感应强度b与h的关系按下式计算:

b=μ0(m+h)

据此,确定了饱和磁化强度ms、形状参数a、磁畴耦合参数α、打破钉扎阻碍的平均能量k以及可逆磁化系数c这五个物理量的参数;

将上述的数学模型在matlab中改写为计算程序,通过对dm/dh微分方程的求解即获得磁滞回线m(h)。

进一步的,步骤2中,将jiles-atherton模型中的参数辨识问题转化为优化问题,对厂家提供的钕铁硼磁滞回线采用遗传算法对目标函数进行优化,获取参数值,其中,转变后的目标函数如下所示:

其中,bmeas为厂家测量的磁感应强度b的值;bj-a为模型计算的磁感应强度的值;n为数据点的个数,计算时通过最小化bmeas和bj-a的值使得jiles-atherton模型中的5个参数向真值逼近。

进一步的,步骤3中,对不同温度下钕铁硼的磁滞回线进行参数辨识,拟合jiles-atherton模型中的参数与温度的关系,具体方法为:对不同温度下钕铁硼的磁滞回线进行参数辨识,采用最小二乘法获得jiles-atherton模型中的参数与温度的关系。

一种基于jiles-atherton模型的钕铁硼磁滞回线描述系统,基于任一项所述的方法进行基于jiles-atherton模型的钕铁硼磁滞回线描述。

一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现任一项所述的方法进行基于jiles-atherton模型的钕铁硼磁滞回线描述。

一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现任一项所述的方法进行基于jiles-atherton模型的钕铁硼磁滞回线描述。

本发明与现有技术相比,其显著优点为:本发明同时考虑到温度场与外磁场的作用,采用非线性jiles-atherton模型将钕铁硼的磁滞回线进行理论描述,为钕铁硼的工程化应用与磁热耦合分析提供相应的理论依据。

附图说明

图1为本发明采用jiles-atherton模型对厂家实测的钕铁硼磁滞回线进行参数识别的流程图。

图2为本发明jiles-atherton模型与实测钕铁硼磁滞回线在不同温度下的拟合对比结果图。

图3为识别的jiles-atherton模型中的参数与温度的定量关系图,其中(a)~(c)分别为饱和磁化强度ms、磁畴耦合参数α、打破钉扎阻碍的平均能量k与温度的定量关系图。

具体实施方式

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。

如图1所示,一种基于jiles-atherton模型的钕铁硼磁滞回线描述方法,具体步骤如下:

步骤1、明确jiles-atherton模型的物理意义,编写jiles-atherton模型的计算程序;

jiles-atherton模型数学描述如下:

总磁化强度m可分为:

m=mrev+mirr

其中,mrev为可逆磁化分量,mirr为不可逆磁化分量。

mrev与mirr二者均依赖于无磁滞磁化强度man,三者的具体关系为

mrev=c·(man-mirr)

其中,c为可逆磁化系数。

根据jiles-atherton模型中的描述,采用朗之万函数描述铁磁材料的磁化特性,其表达式为

其中,ms为饱和磁化强度;a为形状参数;he为等效磁场强度。

he=h+αm

其中α为根据bloch模型的磁畴耦合参数。

jiles-atherton模型中的磁滞回线m(h)由下式给出:

其中,c∈(0,1)为畴壁弯曲常数,表征了可逆磁化程度,又叫可逆磁化系数,描述了磁化的可逆性过程;k为打破钉扎阻碍的平均能量;δ为磁场的变化系数,即磁场增大时δ=1,磁场减小时δ=-1;附加系数δm防止出现非物理解。

对该微分方程进行求解则可以得到永磁体的磁滞回线。进一步的,永磁体的磁感应强度b与h的关系可以按下式计算:

b=μ0(m+h)

从上述对jiles-atherton模型的描述来看,共有饱和磁化强度ms,形状参数a,磁畴耦合参数α,打破钉扎阻碍的平均能量k以及可逆磁化系数c这五个具有明确物理量的参数。将上述的数学模型在matlab中改写为计算程序,通过对dm/dh微分方程的求解即可获得磁滞回线m(h)。

步骤2、将jiles-atherton模型中的参数辨识问题转化为优化问题,对厂家提供的钕铁硼磁滞回线采用遗传算法对目标函数进行优化,获取参数值,转变后的目标函数如下所示:

其中,bmeas为厂家测量的磁感应强度b的值;bj-a为模型计算的磁感应强度的值;n为数据点的个数。计算时通过最小化bmeas和bj-a的值使得jiles-atherton模型中的5个参数向真值逼近。

步骤3、对不同温度下钕铁硼的磁滞回线进行参数辨识,采用最小二乘法获得jiles-atherton模型中的参数与温度的关系。

本发明还提出一种基于jiles-atherton模型的钕铁硼磁滞回线描述系统,基于任一项所述的方法进行基于jiles-atherton模型的钕铁硼磁滞回线描述。

一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现任一项所述的方法进行基于jiles-atherton模型的钕铁硼磁滞回线描述。

一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现任一项所述的方法进行基于jiles-atherton模型的钕铁硼磁滞回线描述。

实施例

为了验证本发明方案的有效性,进行如下仿真计算。

本实施例运用matlab对jiles-atherton模型进行编程并计算,结合厂家提供的钕铁硼退磁曲线进行拟合并对比。拟合结果如图2所示。从对比结果可以看到,jiles-atherton模型可对钕铁硼的退磁曲线有较好的描述,参数与温度的关系如图3所示。随着温度的不断上升,饱和磁化强度ms、磁畴耦合参数α与打破钉扎阻碍的平均能量k均线性下降,可逆磁化系数c与形状系数a未发生明显变化。该结果可以为温度与外磁场共同作用下的钕铁硼工程化应用与磁热耦合分析提供相应的理论依据。

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1