基于元学习的网联车辆速度预测方法

文档序号:31078515发布日期:2022-08-09 22:02阅读:206来源:国知局
基于元学习的网联车辆速度预测方法

1.本发明涉及基于元学习的网联车辆速度预测方法,属于智能交通系统车辆速度预测技术领域。


背景技术:

2.智能网联车辆的速度预测技术是推动新能源汽车和自动驾驶汽车发展必不可少的助力之一。网联环境下的车速预测方法可以有效地提高能量管理策略的燃油经济性及自动驾驶安全性,故其相关研究满足一定的市场需求。
3.网联环境下可以获得越来越多的交通和车辆信息,车速预测模型主要基于可以对大量数据进行建模的深度学习方法。然而基于深度学习的速度预测模型的预测精度往往需要通过大量学习来保证,且预测模型只有在遇到与训练数据库相似的驾驶情况下才能表现出良好的预测精度,而遇到变化较大的真实驾驶条件时可能会失去相应的良好性能。因此,考虑到预测模型的适应性,本发明提出一种应用于网联车辆速度预测的模型,该模型适应性好,可以在新道路环境下通过少量数据的学习达到很好的预测精度。


技术实现要素:

4.本发明需要解决的技术问题是提供一种基于元学习的网联车辆速度预测方法,可以在新道路环境下通过少量数据的学习达到很好的预测精度,使智能网联车辆速度预测模型更快的适应新的道路交通环境。
5.为解决上述技术问题,本发明所采用的技术方案是:
6.基于元学习的网联车辆速度预测方法,利用归一化方法对网联车辆驾驶数据进行预处理以及构建预测模型的学习任务集;结合元学习方法构建时间-通道注意力卷积网络速度预测模型以提高预测模型的适应性;将所述基于元学习的网联车辆速度预测模型在大量的学习任务上展开学习并得到元学习器;将元学习器在新道路环境下通过少量数据进行几轮训练即可生成适应新环境的时间-通道注意力卷积网络的参数并可达到很高的预测精度;
7.具体步骤如下:
8.步骤1,采集网联车辆交通信息,对交通驾驶数据进行max-abs归一化预处理;选取预测模型的输入特征,构建学习任务集;
9.步骤2,构造时间-通道注意力卷积神经网络速度预测模型;
10.步骤3,构造基于元学习的网联车辆速度预测模型;
11.步骤4,利用大量学习任务数据集对基于元学习的网联车辆速度预测模型进行训练,获得元学习器;
12.步骤5,利用少量新任务的训练数据对元学习器进行训练,得到时间-通道注意力卷积神经网络模型的网络参数。
13.本发明技术方案的进一步改进在于:所述步骤1具体如下:
14.步骤1-1,在不同的交通道路环境中采集交通网联车辆信息;
15.步骤1-2,对原始数据x(t)进行max-abs归一化预处理,得到归一化数据x

(t),其中max-abs可由下式表示:
[0016][0017]
式中,x∈x(t),x

∈x

(t);abs(x(t))表示原始数据的绝对值,max(
·
)表示数据中的最大值;
[0018]
步骤1-3,选取预测模型的输入特征,包括本车速度、本车加速度、前车速度、前车加速和两车之前的距离;
[0019]
步骤1-4根据不同道路的概率分布,从归一化后的数据中随机选择若干条交通道路数据,构成任务训练集和测试集;并多次选择单个任务,构成任务数据集。
[0020]
本发明技术方案的进一步改进在于:所述步骤2具体如下:
[0021]
步骤2-1,构造时间注意力单元ta:
[0022][0023]
φ
ta
(v)=f
ta
(v,α)
[0024]
式中,v=[v1,v2,

,vc]为ta单元的输入;α为时间注意力权值;softmax是一种激活函数;σ(
·
)和δ(
·
)分别表示sigmoid和selu激活函数;和分别是卷积层的权重和偏置参数;f
ta
(
·
)为特征图和其对应时间注意权重的元素乘法;φ
ta
(
·
)表示ta模块;
[0025]
步骤2-2,构造通道注意力单元ca:
[0026][0027][0028][0029][0030][0031]
φ
ca
(v)=f
ca
(v,β)
[0032]
式中,和分别为最大池化maxpool(
·
)和平均池化avgpool(
·
)表征;和表示卷积层权重参数;和表示卷积层偏置参数;β为通道注意力掩码;f
ca
(
·
)为特征图和其对应的通道注意力权重的元素乘法;φ
ca
(
·
)表示ca模块;
[0033]
步骤2-3,构建tcam模块:
[0034]vta
=φ
ta
(v)
[0035]vca
=φ
ca
(v)
[0036]
φ(v)=w
φ
*[v
ta
,v
ca
]+b
φ
[0037][0038][0039]
式中,v
ta
和v
ca
分别表示ta和ca单元的输出;[
·
]表示特征拼接操作;mi和mo表示tcam模型的输入和输出;和r(
·
)分别代表tcam模块和残差分支;和分别表示在残差分支中卷积层的权值和偏置参数;
[0040]
步骤2-4,构建cnn-tcam网络:
[0041]
cnn-tcam网络由四个相同的卷积结构、一层flatten层和一层dense层构成;其中,每个卷积结构由一层一维卷积、一个tcam模块和一层最大池化层依次连接而成。
[0042]
本发明技术方案的进一步改进在于:所述步骤3中,将cnn-tcam网络作为车速预测基础网络模型,maml算法作为元学习算法,将两者融合一起构造基于元学习的网联车辆速度预测模型。
[0043]
本发明技术方案的进一步改进在于:所述步骤4具体如下:
[0044]
步骤4-1,初始化cnn-tcam网络f的参数θ、maml内层循环学习率α和外层循环学习率β;
[0045]
步骤4-2,从任务集中随机选择一批任务t={t1,t2,

,t
batch_size
};
[0046]
步骤4-3,使用任务数据中的训练数据对cnn-tcam网络进行训练,使每个任务ti均会得到网络参数θi,计算公式如下:
[0047][0048]
式中,为模型f的损失函数l的梯度;
[0049]
步骤4-4,使用任务数据中的测试数据对cnn-tcam网络中的参数θ进行更新,计算公式如下:
[0050][0051]
满足停止条件则训练结束得到元学习器,否则返回步骤4-2继续训练。
[0052]
本发明技术方案的进一步改进在于:所述步骤5中在新的交通道路中,学习器通过少量的交通数据及几轮训练即可生成使cnn-tcam网络适应新道路的网络参数。
[0053]
由于采用了上述技术方案,本发明取得的技术进步是:
[0054]
本发明能够在新道路环境下通过少量数据的学习达到很好的预测精度,使智能网联车辆速度预测模型更快的适应新的道路交通环境。
附图说明
[0055]
图1是本发明基于元学习的网联车辆速度预测模型的结构框图。
具体实施方式
[0056]
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图对本发明展开进一步详细说明。应该理解,这些描述只是示例性的。
[0057]
实施例:
[0058]
本发明公开了一种基于元学习的网联车辆速度预测方法。所述方法概括为:利用归一化方法对网联车辆驾驶数据进行预处理以及构建预测模型的学习任务集;结合元学习方法构建时间-通道注意力卷积网络速度预测模型以提高预测模型的适应性;将上述基于元学习的网联车辆速度预测模型在大量的学习任务上展开学习并得到元学习器;将元学习器在新道路环境下通过少量数据进行几轮训练即可生成适应新环境的时间-通道注意力卷积网络的参数并可达到很高的预测精度。
[0059]
具体工作流程如下:
[0060]
步骤1,采集交通网联车辆信息,对数据进行max-abs归一化预处理。选取预测模型的输入特征并构建学习任务;
[0061]
具体的,步骤1-1,在不同的交通道路环境中采集交通网联车辆信息;
[0062]
步骤1-2,对原始数据x(t)进行max-abs归一化预处理,得到归一化数据x

(t),max-abs可由以下公式表示:
[0063][0064]
式中,x∈x(t),x

∈x

(t);abs(x(t))表示原始数据的绝对值,max(
·
)表示数据中的最大值;
[0065]
步骤1-3,选取预测模型的输入特征,包括本车速度、本车加速度、前车速度、前车加速和两车之前的距离;
[0066]
步骤1-4,根据交通道路概率,从归一化的数据中随机选择若干条交通道路数据,构成一个任务的训练集和测试集,并多次选择单个任务构成任务数据集。
[0067]
步骤2,构造时间-通道注意力卷积神经网络模型;
[0068]
具体的,步骤2-1,构造时间注意力单元ta:
[0069][0070]
φ
ta
(v)=f
ta
(v,α)
[0071]
式中,v=[v1,v2,

,vc]为ta单元的输入;α为时间注意力权值;softmax是一种激活函数;σ(
·
)和δ(
·
)分别表示sigmoid和selu激活函数;和分别为卷积层权重和偏置参数;f
ta
(
·
)为特征图和其对应时间注意权重的元素乘法;φ
ta
(
·
)表示ta模块;
[0072]
步骤2-2,构造通道注意力单元ca:
[0073][0074][0075][0076]
[0077][0078]
φ
ca
(v)=f
ca
(v,β)
[0079]
式中,和分别是最大池化maxpool(
·
)和平均池化avgpool(
·
)表征;和表示卷积层权重参数;和表示偏置参数;β为通道注意力掩码;f
ca
(
·
)为特征图和其对应的通道注意力权重的元素乘法;φ
ca
(
·
)表示ca模块;
[0080]
步骤2-3,构造tcam模块:
[0081]vta
=φ
ta
(v)
[0082]vca
=φ
ca
(v)
[0083]
φ(v)=w
φ
*[v
ta
,v
ca
]+b
φ
[0084][0085][0086]
式中,v
ta
和v
ca
分别表示ta和ca单元的输出;[
·
]表示特征拼接操作;mi和mo表示tcam模型输入和输出;和r(
·
)分别代表tcam模块和残差分支;和分别表示在残差分支中卷积层权值和偏置参数;
[0087]
步骤2-4,构造cnn-tcam网络:
[0088]
cnn-tcam网络由四个相同的卷积结构、一层flatten层和一层dense层构成。其中,每个卷积结构由一层一维卷积、一个tcam模块和一层最大池化层依次连接而成。
[0089]
步骤3,构造基于元学习的网联车辆速度预测模型;
[0090]
具体的,将cnn-tcam网络作为车速预测基础网络模型,maml算法作为元学习算法,并将两者融合构建基于元学习的网联车辆速度预测模型。
[0091]
步骤4,利用大量学习任务数据集对基于元学习的网联车辆速度预测模型进行训练,获得元学习器;
[0092]
具体的,步骤4-1初始化cnn-tcam网络f的参数θ、maml内层循环学习率α和外层循环的学习率β;
[0093]
步骤4-2从任务集中随机选着一批任务t={t1,t2,

,t
batch_size
};
[0094]
步骤4-3使用任务数据中的训练数据对cnn-tcam网络进行训练,对于每一个任务ti得到网络参数θi,计算公式如下:
[0095][0096]
式中,为模型f的损失函数l的梯度;
[0097]
步骤4-4使用任务数据中的测试数据对cnn-tcam网络参数θ进行更新,计算公式如下:
[0098][0099]
满足停止条件则训练结束得到元学习器,否则返回步骤4-2继续训练。
[0100]
步骤5,利用少量新任务的训练数据对元学习器进行训练,得到时间-通道注意力卷积神经网络模型的网络参数;
[0101]
具体的,在新的交通道路中,学习器利用少量的交通数据通过几轮的训练可以生成使cnn-tcam网络适应新道路的网络参数。
[0102]
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1