管道滑坡深部位移监测预警方法和系统及系统的构建方法

文档序号:6732949阅读:270来源:国知局
专利名称:管道滑坡深部位移监测预警方法和系统及系统的构建方法
技术领域
本发明是一种基于光纤光栅的管道滑坡深部位移监测预警方法和系统及系统 的构建方法。涉及测量应力、温度的测量及管道系统技术领域。
背景技术
滑坡是指构成斜坡的岩土体在重力作用下伴随其下部软弱面上的剪切作用过 程而产生整体运动现象。滑坡灾害是造成人类生命财产损失的地质灾害的主要形 式之一。长距离输油或输气管道输送距离可达数千公里,穿越众多地质地貌单元, 常不可避免地要穿过地质条件复杂的地区,如山区、冻土区等。因为选线的不充 分或管道建设诱发滑坡或地震诱发滑坡等原因,在山区敷设的管道有可能在活动 滑坡体内通过,管道的安全运营遭受这些活动滑坡的严重威胁。这些有可能要威 胁管道安全的滑坡称之为管道滑坡。
在过去四十年的管道运输历史中,以滑坡为主的地质灾害曾多次造成管道事
故。欧洲天然气管道事故数据小组(EGIG)调^的1970年到2001年的西欧管道 事故中,7%是由地质灾害导致的;美国交通部统计的1984年到2001天然气输送 数据表明,8.5%的事故是由地质灾害引起的;加拿大国家能源委员会调査显示影 响加拿大运营的管道事故的12%是地质灾害导致的。1987年3月由地震导致的巨 型滑坡使横贯厄瓜多尔管道发生40km长的断裂,停输两个星期,经济损失达7 亿美元。1995年及1996年冬天,由于华盛顿西部的特强降雨诱发滑坡,导致美 国西北输气管线三处管道发生断裂。
我国的管道工业正处在蓬勃发展之中,这些管道大多将我国西部丰富的石油 天然气输送到我国的东部,而我国的西部、西南部集中了我国大多数山地,管道 就不可避免地要穿越地质灾害严重地区。忠武输气管道忠县-宜昌409公里段处于 渝东鄂西山区,山峰层峦叠嶂、高差显著,地形、地质条件复杂,发育有多组地 质灾害易发岩层,是滑坡、危岩崩塌的频发地段。2003年建成投产的兰成渝成品 油管道兰州至广元段,构造活跃,岩性破碎,地形切割发育,投产后投入巨资用 于地质灾害防治,但2007年的调查显示威胁管道安全的地质灾害仍有530处之多。 西气东输工程干线总长约4000公里,遭受各种地质灾害严重威胁,其中査明的滑 坡灾害达39处之多。
5面对众多的管道滑坡灾害,我国的管道运营公司经常采取积极的工程治理措 施,但这些措施也存在一些的弊端,首先是成本高,其次是防治工程也并非"一 劳永逸",设计施工的不确定因素较多,再者治理的周期长。而监测则是一种高效、
低成本的防治措施。意大利SNAM公司将监测管道作为防治滑坡灾害的主要方式,
他们对管道进行了长达三十年的监测,成功避免了大量的管道事故。我国的西气 东输、忠武线等管道投产后对滑坡也进行有效的监测。
传统的滑坡深部位移监测主要釆用多点位移计或钻孔测斜仪,该方法的实时 性都较差,难以满足滑坡监测长期实时的要求。
同轴电缆技术用于监测滑坡深部位移时在成本、实时监测方面都较有优势,
但同轴电缆外径较细(io誦左右),买入土体之后电缆与土体难以协调变形,导
致同轴电缆不能真正反映滑坡体变形。
分布式光纤技术作为一种新技术已经应用于滑坡监测,该技术在精度、自'动
监测等方面较有优势,但该技术监测滑坡深部位移时,其垂向定位精度差(lm 左右),在滑坡监测方面也有一定的局限。

发明内容
'本发明的目的是发明一种精确定位、空间分辨率高、成本低的基于光纤光栅 的管道滑坡深部位移监测预警方法和系统及系统的构建方法。
本发明提出了一种基于光纤光栅传感技术的管道滑坡深部位移监测预警方法 和系统及其构建方法。这种系统釆用光纤光栅传感技术,对滑坡及其影响下的管 道进行联合监测,监测内容包括滑坡深部位移监测、滑坡对管道的推力监测及管 道应变监测。并构建了监测系统,实现了数据的实时自动釆集、远程传输和自动 分析。
光纤布喇格光栅(Fiber Bragg Grating, FBG,简称光纤光栅)是近20年来 迅速发展起来的微光学元件,是利用光纤中的光敏性制成的。所谓光纤中的光敏 性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生相应变化的 特性。而在纤芯内形成的空间相位光栅,其作用的实质就是在纤芯内形成一个窄 带的(透射或反射)滤波器或反射镜。
光纤光栅传感是一种在由光纤刻制而成的波长选择反射器,其背向反射光中 心波长^与光栅周期A和纤芯折射率 '有关,即
义《 = A
FBG光纤光栅传感的基本原理是,当光栅周围的温度、应变、应力或其它待测物理量发生变化时,将导致光栅周期或纤芯折射率的变化,从而使光纤光栅的 中心波长产生位移A弋,通过检测光栅波长的位移情况,即可获得待测物理量的 变化情况。即
=尺£. + Ar
式中&为应变传感灵敏度系数,^为光纤光栅温度传感灵敏度系数。
对于FBG纤芯为纯石英的情况,^为lpm/ue,、为10pm广C。光纤材质、 写入工艺和封装材料都会影响FBG的应变和温度传感灵敏度系数,应用前必须对 以上参数进行标定。
光纤光栅可制成各种传感器件,在传感领域得到广泛应用。与传统的电传感 器相比,光纤光栅传感器具有自己独特的优点l.传感头结构简单、体积小、重 量轻、外形可变,适合埋入各种大型结构中,可测量结构内部的应力、应变及结 构损伤等,稳定性、重复性好;2.与光纤之间存在天然的兼容性,易与光纤连接、 光损耗低、光谱特性好、可靠性高;3.具有非传导性,对被测介质影响小,又具 有抗腐蚀、抗电磁干扰的特点,适合在恶劣环境中工作;4.轻巧柔软,可以在一 根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实 现分布式传感;5.测量信應以波长编码,因而光纤光栅传感器不受光源的光强波 动、光纤连接与耦合损耗、光波偏振态变化等因素的影响,具较强的抗干扰能力; 6.高灵敏度、高分辩力。
与广泛使用的布里渊光时域反射计BOTDR相比,光纤光栅传感器的优点有 l.对测量点能精确定位,分辨率高;2.成本低;3.能对传感部分进行加工、封装, 使其更适合现场的恶劣环境。
由于这些优点,在岩土工程领域中,光纤光栅传感器很容易埋入岩土体中对 其内部的应变和温度进行高分辨率和大范围测量,技术优势非常明显,尤其体现 在能获得长期、可靠的岩土体变形数据。目前光纤光栅传感技术还未用于滑坡的 深部位移监测。
本发明提出的基于光纤光栅传感技术的管道滑坡深部位移监测预警方法如图 l所示,是将监测分为滑坡深部位移监测、滑坡对管道的推力监测及管道应变监 测三部分。滑坡深部位移必将产生对管道的推力,进而在管道上产生应变。
滑坡深部位移监测方法如图2所示,当滑坡体下滑使测斜管1受到滑坡体推 力而发生弯曲时,监测朝向滑坡体滑动方向的测斜管1一侧承受最大的拉应变, 顺向滑坡体滑动方向的测斜管1一侧承受最大的压应变;具体是将粘贴有测斜管光纤光栅传感器16的测斜管1以粘有光纤光栅传感器一侧朝向滑坡潜在滑动的方 向,在滑坡体上沿铅垂方向插入穿过所有潜在滑动面并延伸至基岩面以下3~5m 的钻孔内;将光纤接头与光缆连接,通过光缆5将信号引到监测站;在监测站, 上位计算机8调用自编的程序,控制光纤光栅解调仪7,实现数据的实时自动采 集;就能测出测斜管l承受的最大拉应变。设定基岩里的测斜管l是固定约東的, 利用二重积分算法,通过测斜管1的拉应变分布就可求解出测斜管1的弯曲挠度, 这一挠度即是滑坡深部位移量。
利用二重积分算法求测斜管弯曲挠度(滑坡深部位移量)的公式如下
<formula>formula see original document page 8</formula>
式中
c一一FBG传感器测出测斜管的弯曲应变;
y — 一深度位置;c处(从基岩顶面算起)测斜管的挠度(滑坡深部位移); r— 一测斜管外径;
s(x)—一x处测斜管的弯曲应变,1 = £处应变管无约東,f = 0;
c一一积分常数,x二O处测斜管被固定,故c-0。 光纤光栅传感器沿应变管深度方向呈点式分布,釆用三次样条函数差值或 线性插值的方法求得测量点之间的应变e(;c)。各点之间的f(x)可能各不相同,深 部位移y实质是一个分段积分函数。
滑坡对管道的推力监测方法如图6所示,用固定在管道上的封装土压力盒光 纤光栅传感器4测压力;土压力盒光纤光栅传感器4通过土压力盒支架21固定在 管道14上,并土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动 方向。这样土压力盒光纤光栅传感器4测量的压力就是滑坡13对管道14的正面 推力。
管道应变监测方法如图7和图8所示,在滑坡13的两侧边缘及滑坡的中心 位置的管道14上,均勻布置管道监测截面,且监测截面的间距不宜超过60m;在 管道14的每个监测截面上均匀布置3个管体光纤光栅应变传感器3,监测管道14 轴向的应变。
大量的研究表明,滑坡13对管道14作用应力关键表现在轴向上,对管道14 轴向应力的测量就能较好地判断管道14的可接受应力状态。因此管体光纤光栅应 变传感器3仅测量管道轴向的应变,基于钢材弹性理论,已知应变就可求出应力。由于滑坡13变形自身的复杂性及其对管道14作用的复杂性,釆用多指标预
警的方式对管道滑坡13的安全进行预警。这些指标包括滑面形成、滑坡13的 表部变形量、管道14的附加应变。其中"滑面形成"是定性判断指标,其余2 个指标是定量判断指标。仅当3个指标均达到预警阀值,则对管道滑坡发出安全 预警。滑面15是否形成的判断依据是滑坡13的深部位移分布曲线上是否有突变 点。"滑面形成"有两个评语"已形成"、"未形成",将"已形成"作为预警阀值。 管道14的附加轴向应变阀值受管材、运行压力、建造温度、监测前滑坡已给管道 14造成的应变、管道缺陷等的影响。对于缺陷不明显的X60管道,将管道14的 受拉附加轴向应变阀值定为380"e,受压附加轴向应变阀值定为-300"s。
按照上述的方法构建的管道滑坡深部位移监测预警系统如图3所示,是由滑 坡深部位移监测装置、滑坡对管道的推力监测装置、管道应变监测装置、现场监 测站、办公室的接收终端组成。以一定结构形式安装在滑坡内的现场滑坡深部位 移监测装置的测斜管应变光纤光栅传感器16、滑坡对管道的推力监测装置的土压 力盒应变光纤光栅传感器4和管道应变监测装置的管体应变光纤光栅传感器3输 出接现场监测站的自动光转换开关6,自动光转换开关6输出接光纤光栅解调仪7 的输入,另外上位计算机8的一端输出接自动光转换开关6的一端输入;光纤光 栅解调仪7的输出也接上位计算机8的输入;上位计算机8的输出接GPRS传输模 块9,由办公室的接收终端GPRS接收模块lO接下位计算机ll的输入,下位计算 机11的输出接报警器12和显示器。
该系统的电原理如图4所示,分别监测滑坡深部位移、滑坡对管道的推力和 管道应变的三个光纤光栅传感器--测斜管光纤光栅传感器16、 土压力盒光纤光栅 传感器4、管体光纤光栅传感器3的PC接头用光纤与光转换开关6的PC接头连 接,光转换开关6的R232直接接上位计算机8的R232,光转换开关6的PC接头 连接光纤光栅解调仪7 SM125的CH1端,光纤光栅解调仪7 SM125的LAN端口接 上位计算机8的LAN端口 ,上位计算机8的R232端口接GPRS传输模块9西门子 MC35i的R232端口 , GPRS传输模块9经天线GSM、 GPRS网络,被GPRS接收模块 10天线GSM接收后由R232接到下位计算机11的R232,下位计算机11的输出由 R232接报警器12 DS-7400的R232,下位计算机11的输出由VGA端接显示器的 VGA端。
监测滑坡深部位移、滑坡对管道的推力和管道应变的三种光纤光栅传感器的 输出信号经逐一导通给光纤光栅解调仪7,光纤光栅解调仪7解调出各光纤光栅
9传感器的中心波长位移量输给上位计算机8,光转换开关6给光纤光栅解调仪7导通信号的周期由上位计算机8控制。上位计算机8自动计算出各监测量输给 GPRS传输模块9并接受GPRS传输模块9的信号进行控制,GPRS传输模块9将上 位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端 GPRS接收模块IO,也可接受接收终端的信号,发送给下位计算机ll处理后,由 显示器显示并由报警器12报警。滑坡深部位移监测装置的构成如图1和图2所示,是测斜管1的测斜管光纤 光栅传感器16输出接光转换开关6输入,光转换开关6输出接光纤光栅解调仪7 输入,光纤光栅解调仪7的输出接现场上位计算机8。而测斜管1上的测斜管光 纤光栅传感器16是将串联的光纤光栅传感器组成传感器组直接粘贴于测斜管1 轴向的外侧,各测斜管光纤光栅传感器16的引纤熔接后接至连接光纤。在滑坡 13的钻孔里放入粘贴有光纤光栅传感器的测斜管1,下放时将测斜管1粘有测斜 管光纤光栅传感器16的一侧朝向滑坡潜在滑动方向。将光纤接头与光缆5连接, 通过光缆5将信号引到监测站;在监测站,上位计算机8调用自编的程序,控制 光纤光栅解调仪7,实现数据的实时自动釆集。''该装置的工作原理的是这样的,当滑坡13沿滑动面15下滑时,测斜管l受 到滑坡13推力而发生弯曲,则朝向滑坡13滑动方向的测斜管l一侧承受最大的 拉应变,顺向滑坡13滑动方向的测斜管1 一侧承受最大的压应变。置于测斜管1 上朝向滑坡13滑动方向 一侧的测斜管光纤光栅传感器16组就能测出测斜管承受 的最大拉应变。设定基岩里的测斜管l是固定约東的,利用二重积分算法,通过 测斜管1的拉应变分布就可求解出测斜管1的弯曲挠度,这一挠度即是滑坡深部位移量》 其中测斜管光纤光栅传感器16分为测轴向应变和测温度两种;测轴向应变的测斜 管光纤光栅传感器16采用快干胶粘贴于测斜管1外壁,然后用泡沬密封胶密封测 斜管光纤光栅传感器16,避免测斜管光纤光栅传感器16与周围岩土体直接接触; 测温度的测斜管光纤光栅传感器16在测斜管1上一定距离处自由放置,这种未粘 贴的光纤光栅传感器只对温度敏感,是对测斜管光纤光栅应变传感器16组进行温 度补偿,而不受测斜管变形的影响;测斜管光纤光栅传感器16等间距粘贴,在潜在滑动面附近粘贴间距缩小;测斜管1选用ABS或PVC材质;测斜管光纤光栅传感器16的连接光纤布置在测斜管1外壁刻的凹槽内,以防 在下放测斜管的过程中,钻孔孔壁刮伤光纤。滑坡深部位移监测装置的构建方法(见图2 )如下1) 在拟监测的滑坡13上用地质钻进工艺钻孔,钻孔需穿过所有潜在滑动面 15,并延伸至基岩面以下3 5m;要求钻孔终孔口径为OllOmm,孔斜小于1°钻 井过程中除基岩孔外要求全套管护壁;2) 准备好一节ABS或PVC常规测斜管1;按钻孔深度将测斜管1逐节进行预 连接,并在对接处作对准标记和编号,然后拆除连接;3) 下放测斜管1前,在钻孔内进行清孔作业,直至泥浆水变成清混水为止, 确保钻孔通畅,保证测斜管l的顺利下放;提钻后立即下放粘贴有传感器的测斜 管l;4) 在第一根测斜管1外壁上粘贴光纤光栅应变片,并在测斜管1外壁上刻槽, 将连接光纤用胶布固定于凹槽内;为了对本装置的监测结果进行验证,将光纤光 栅传感器组粘贴在测斜管l内壁十字导槽所处的某一平面内,这样光纤光栅监测 的变形就与测斜仪测量的变形 一 致;5) 下放第一节测斜管l至孔口一定高度,按测斜管l的对准标记和编号连接 第二根测斜管i,并在第二节测斜管l外壁上粘贴测斜管光纤光栅应变传感器16、 刻槽、固定连接光纤后,下放第二节测斜管l;依此方法,下放所有测斜管l至 孔内;当钻孔内水的浮力致使测斜管l上浮时,可在测斜管l注入适量清水以减 小下放阻力;6) 待所有测斜管l下放至孔内后,调整导槽方向,使导槽方向及测斜管光纤 光栅应变传感器16组的方向朝向滑坡体的位移方向;7) 向基岩与测斜管1间隙里注入M5细砂水泥砂浆,砂浆用注浆管引导,当 注浆管下至离孔底lm处后开始注浆;在土体与测斜管1间隙内回填细砂;8) 在孔口做混凝土墩,在墩内埋设钢套简,以保护测斜管光纤光栅应变传感 器16组的信号接头;将光纤信号接头与光缆5连接,通过光缆5将信号引到监测 站。滑坡对管道的推力监测装置的构成如图6所示,是滑坡13对管道14推力监测的土压力盒光纤光栅传感器4输出接光转换开关6输入,光转换开关6输出接 光栅解调仪7输入,光栅解调仪的输出接现场上位计算机8。而滑坡13对管道14 推力监测的光纤光栅传感器釆用光纤光栅封装土压力盒光纤光栅传感器4; 土压力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,并土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅 传感器3测量的压力就是滑坡13对管道14的正面推力。滑坡对管道的推力监测装置的构建方法如图6所示,土压力盒光纤光栅传感 器4通过土压力盒支架21固定在管道14上,土压力盒光纤光栅传感器4感受压 力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器4测量的压力 就是滑坡13对管道14的正面推力。土压力盒支架21由两块圆弧形钢板卡箍组成, 其中一段圆弧形钢板上焊有底座,土压力盒光纤光栅传感器4嵌入底座中,并保 持一定的裕量,使土压力盒能自由变形。土压力盒支架21两端的卡箍连接件23 通过螺帽连接。当滑坡13滑动时,滑坡13对土压力盒的推力可通过土压力盒光 纤光栅传感器4测量,该测量值减去土压力盒光纤光栅传感器4承受的土体自重 压力,即为滑坡13变形对管道14产生的推力。管体应力的监测装置的构成如图7、图8所示,是在滑坡的两侧边缘及滑坡 的中心位置各布置一管道监测截面,在管道14的每个监测截面的外周均匀布置3 个管体光纤光栅传感器3且3个管体光纤光栅传感器3布置在与管道14轴线垂直 的平面上。管体光纤光栅传感器3输出接光转换开关6输入,光转换开关6输出 接光纤光栅解调仪7输入,光纤光栅解调仪7的输出接现场上位计算机8。管体应力的监测装置的构建方法如图7、图8所示,在滑坡的两侧边缘及滑 坡的中心位置各布置一管道监测截面,且监测截面的间距不宜超过60m。在管道 14的每个监测截面的外周均勻布置3个管体光纤光栅传感器3且3个管体光纤光 栅传感器3布置在与管道14轴线垂直的平面上。安装管体光纤光栅传感器3时, 完全刮开管道14防腐层,并打磨管道14表面至光滑,用快干胶3粘贴管体光纤 光栅传感器封装24封装好管体光纤光栅传感器3。待三个管体光纤光栅传感器3 全部粘贴好后,将管体光纤光栅传感器3的引纤一并引至地面,并进行保护。当管道14轴向承受拉/压应力时,三个管体光纤光栅传感器3承受拉/压应变; 按照一定的算法,由该截面三处应变,即可求出该管道14截面上最大应变的大小 和位置。基于钢材弹性理论,即可求出管道14截面上最大的拉/压应力的大小。 监测截面的选择对监测效果很重要。大量的研究表明,滑坡13对管道14作用应力关键表现在轴向上,对管道14 轴向应力的测量就能较好地判断管道14的可接受应力状态。因此,管体光纤光栅 传感器3仅测量管道14轴向的应变。现场监测站设置在滑坡现场,包括光纤接线盒、连接光缆5、光转换开关6、光纤光栅解调仪7、上位计算机8、 GPRS传输模块9;由各光纤光栅传感器的光纤 接线盒和连接光缆5将滑坡13上各个位置的光纤光栅传感器接到监测站的光转换 开关6,光转换开关6输出接光纤光栅解调仪7,光纤光栅解调仪7输出接上位计 算机8,上位计算机8输出接GPRS传输模块9。各光纤光栅传感器的光纤接线盒 和连接光缆5将滑坡13上各个位置的光纤光栅传感器信号集中传输到监测站的光 转换开关6,光转换开关6将各通道信号依次转换给光纤光栅解调仪7,光纤光栅 解调仪7解调出各光纤光栅传感器的中心波长位移量给上位计算机8,上位计算 机8自动计算出各监测量输给GPRS传输模块9并接受GPRS传输模块9的信号进 行控制,GPRS传输模块9将上位计算机8计算的各监测量通过公众无线通信网络 传输到位于办公室的接受终端,也可接受接收终端的信号,发送给下位计算机11。 其中光转换开关6:由于监测滑坡和管道的光纤光栅传感器很多,信号通道众多, 无法一次连接到光纤光栅解调仪7上,用光转换开关6将各通道信号依次转换给 光纤光栅解调仪7分析;该光转换开关6选用巿销产品;光纤光栅解调仪7:用于解调出各光纤光栅传感器的中心波长位移量;选用 巿销产品;上位计算机8及程序用于控制光纤光栅解调仪7解调的频率,并将光纤光 栅解调仪7解调出的中心波长位移量自动计算出各监测量,如滑坡的深部位移、 表部位移、管体最大应变等,将监测量发送给GPRS传输模块9,并接受GPRS传 输模块9的信号进行控制;上位计算机8选用巿销产品,程序自编;GPRS传输模块9:用于将上位计算机8计算的各监测量通过公众无线通信网 络传输到位于办公室的接受终端,也可接受接收终端的信号,发送给下位计算机 11。位于办公室的接收终端包括如下2个部分1) GPRS接收模块IO,用于接收现场监测站GPRS传输模块9发送的监测量, 并传输给终端下位计算机11,也可给现场GPRS传输模块9发送反馈指令;2) 下位计算机ll及程序,用于下载终端GPRS接收模块10的信号,并调用程序进行自动分析,将分析结果与报警阀值进行对比,必要的时候实施报警;3) 报警器12,用于当分析结果超过报警阀值时,发生声音警示信号;报警 器12由下位计算机11及程序控制。13该系统的工作原理是这样的,当滑坡13滑动时,埋于滑坡13深部的测斜管 1受滑坡13 土体推力而发生弯曲应变,测斜管1上的测斜管光纤光栅传感器16 感受到拉应变,通过计算可得出测斜管上的水平位移,即滑坡13深部的水平位移。 同时滑坡13的滑动,对管道产生的推力由土压力光纤光栅传感器4测到,最终导 致的管体应变由管体光纤光栅传感器3测到。通过连接光缆5,将滑坡上的各传 感器信号传输到光转换开关6,光转换开关6将信号转换给光纤光栅解调仪7,光 纤光栅解调仪7解调出各传感器波长中心波长位移量并传给上位计算机8,上位 计算机8将解调仪解调出的各中心波长位移量自动计算为监测量,并将各监测量 发送给现场GPRS传输模块9, GPRS传输模块9通过公众无线通信网络将信号传输 给终端GPRS接收模块10,终端GPRS接收模块10发送给终端下位计算机11,终 端下位计算机11将监测量与报警阆值对比,必要的时候给出报警。本方法和系统及系统的构建方法的优点表现在1 )将光纤光栅传感技术应用于管道滑坡13的深部位移监测及对管道14的影 响,该技术抗干扰、耐腐蚀、易于组网等有时明显;通过构筑特定的载体,实现 了用光纤光栅传感技术监测滑坡深部位移,与传统的监测滑坡深部位移的技术手 段相比,光纤光栅传感技术易于实现自动实时监测,且成本较低;2) 定位精确、空间分辨率高;3) 监测量通过光纤光栅传感技术来实现,易于构建监测系统,易于实现管道滑坡深部位移监测数据的实时自动釆集分析及远程发布,远程实时自动报警;避免了繁瑣的人工釆集数据,减少了报警时间,这对管道应急措施的釆取至关重要。


图1管道滑坡深部位移监测预警系统构成示意2管道滑坡深部位移监测预警系统光纤光栅传感器安装图 图3管道滑坡深部位移监测系统原理框图 图4管道滑坡深部位移监测系统电原理5滑坡深部位移监测结果与活动式钻孔测斜仪监测结果的效果对比图 图6土压力光纤光栅传感器安装结构图 图7管体光纤光栅传感器安装结构图(横断面图) 图8管体光纤光栅传感器安装结构图 其中l一测斜管3—管体光纤光栅传感器 5 —光缆
7—光纤光栅解调仪
9一GPRS传输模块
ll一下位计算机
13-滑坡
15-滑动面
18-边坡
21-土压力盒支架 23-卡箍连接件
22-支架卡箍
24-管体光纤光栅传感器封装
4一土压力盒光纤光栅传感器
6—光转换开关
8—上位计算机 IO—GPRS接收模块 12-报警器 14-管道
16-测斜管光纤光栅传感器
具体实施例方式
实施例.本例是一试验方法和系统,并在一宽300m、滑坡厚29m、基覆截面即 为滑面的覆盖层慢速滑坡体上作试验。本管道滑坡深部位移监测预警系统构成如 图1所示,电原理框图如图3所示。是由滑坡深部位移监测装置、滑坡对管道的 推力监测装置、管道应变监测装置、魂场监测站、办公室的接收终端组成。以一 定结构形式安装在滑坡内的现场滑坡深部位移监测装置的测斜管应变光纤光栅传 感器16、滑坡对管道的推力监测装置的土压力盒应变光纤光栅传感器4和管道应 变监测装置的管体应变光纤光栅传感器3输出接现场监测站的自动光转换开关6, 自动光转换开关6输出接光纤光栅解调仪7的输入,另外上位计算机8的一端输 出接自动光转换开关6的一端输入;光纤光栅解调仪7的输出也接上位计算机8 的输入;上位计算机8的输出接GPRS传输模块9,由办公室的接收终端GPRS接 收模块10接下位计算机11的输入,下位计算机11的输出接报警器12和显示器。
该系统的电原理如图4所示,分别监测滑坡深部位移、滑坡对管道的推力和 管道应变的三个光纤光栅传感器一测斜管光纤光栅传感器16、 土压力盒光纤光栅 传感器4、管体光纤光栅传感器3的PC接头用光纤与光转换开关6的PC接头连 接,光转换开关6的R232直接接上位计算机8的R232,光转换开关6的PC接头 连接光纤光栅解调仪7 SM125的CH1端,光纤光栅解调仪7 SM125的L認端口接 上位计算机8的LAN端口 ,上位计算机8的R232端口接GPRS传输模块9西门子 MC35i的R232端口, GPRS传输模块9经天线GSM、 GPRS网络,被GPRS接收模块 10天线GSM接收后由R232接到下位计算机11的R232,下位计算机11的输出由R232接报警器12 DS-7400的R232,下位计算机11的输出由VGA端接显示器的 VGA端。
监测滑坡深部位移、滑坡对管道的推力和管道应变的三种光纤光栅传感器的 输出信号经逐一导通给光纤光栅解调仪7,光纤光栅解调仪7解调出各光纤光栅 传感器的中心波长位移量输给上位计算机8,光转换开关6给光纤光栅解调仪7 导通信号的周期由上位计算机8控制。上位计算机8自动计算出各监测量输给 GPRS传输模块9并接受GPRS传输模块9的信号进行控制,GPRS传输模块9将上 位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端 GPRS接收模块IO,也可接受接收终端的信号,发送给下位计算机ll处理后,由 显示器显示并由报警器12报警。
滑坡深部位移监测装置的构成如图3所示,是测斜管1的测斜管光纤光栅传 感器16输出接光转换开关6输入,光转换开关6输出接光纤光栅解调仪7输入, 光纤光栅解调仪7的输出接现场上位计算机8。而测斜管1上的测斜管光纤光栅 传感器16是将串联的光纤光栅传感器组成传感器组直接粘贴于测斜管1轴向的外 侧,各测斜管光纤光栅传感器16的引纤熔接后接至连接光纤。在滑坡13的钻孔 里放入粘贴有光纤光栅传感器的渺斜管1,下放时将测斜管1粘有测斜管光纤光 栅传感器16的一侧朝向滑坡潜在滑动方向。将光纤接头与光缆5连接,通过光缆 5将信号引到监测站;在监测站,上位计算机8调用自编的程序,控制光纤光栅 解调仪7,实现数据的实时自动釆集。

测斜管光纤光栅传感器16分为测轴向应变和测温度两种;测轴向应变的测斜 管光纤光栅传感器16釆用快干胶粘贴于测斜管1外壁,然后用泡沬密封胶密封测 斜管光纤光栅传感器16,避免测斜管光纤光栅传感器16与周围岩土体直接接触; 测温度的测斜管光纤光栅传感器16在测斜管1上一定距离处自由放置,这种未粘 贴的光纤光栅传感器只对温度敏感,是对测斜管光纤光栅应变传感器16组进行温 度补偿,而不受测斜管变形的影响;
测斜管光纤光栅传感器16等间距粘贴,在潜在滑动面附近粘贴间距缩小;
测斜管l选用ABS材质;
测斜管光纤光栅传感器16的连接光纤布置在测斜管1外壁刻的凹槽内,以防 在下放测斜管的过程中,钻孔孔壁刮伤光纤。
该装置单通道的电原理如图4所示,监测滑坡深部位移的测斜管光纤光栅传感器16的PC接头用光纤与光转换开关6的PC接头连接,光转换开关6的R232 直接接上位计算机8的R232,光转换开关6的PC接头连接光纤光栅解调仪7 SM125的CH1端,光纤光栅解调仪7 SM125的LAN端口接上位计算机8的L認端 口 。
其中
光纤光栅传感器选用自行设计封装的光纤光栅传感器。 光转换开关选用光隆SUM-FSW; 光栅解调仪选用SM125。
具体是将串联的光纤光栅传感器组成传感器组直接粘贴于测斜管1轴向的外 侧,按测轴向应变和测温度两种间隔等间距粘贴,在潜在滑动面附近粘贴间距缩 小到0.8米;各光纤光栅传感器的引纤熔接后接至连接光纤;然后在滑坡体上的 钻孔里放入粘贴有光纤光栅传感器的测斜管1,下放时将测斜管1粘有光纤光栅 传感器的一侧朝向滑坡潜在滑动方向;将光纤接头与光缆连接,通过光缆将信号 引到监测站。
该装置的工作原理的是这样的,当滑坡13沿滑动面15下滑时,测斜管1受 到滑坡13推力而发生弯曲,则朝向滑坡13滑动方向的测斜管1 一侧承受最大的 拉应变,顺向滑坡13滑动方向的测斜管1 一侧承受最大的压应变。置于测斜管l 上朝向滑坡13滑动方向 一侧的测斜管光纤光栅传感器16组就能测出测斜管承受 的最大拉应变。设定基岩里的测斜管l是固定约束的,利用二重积分算法,通过 测斜管1的拉应变分布就可求解出测斜管1的弯曲挠度,这一挠度即是滑坡深部 位移量。
其构成方法如下
1)在拟监测的滑坡13上用地质钻进工艺钻孔,钻孔需穿过所有潜在滑动面 15,并延伸至基岩面以下3 5m;要求钻孔终孔口径为OllOmm,孔斜小于1°钻 井过程中除基岩孔外要求全套管护壁;
2 )准备好一节ABS或PVC常规测斜管1;按钻孔深度将测斜管1逐节进行预 连接,并在对接处作对准标记和编号,然后拆除连接;
3) 下放测斜管1前,在钻孔内进行清孔作业,直至泥浆水变成清混水为止,
确保钻孔通畅,保证测斜管l的顺利下放;提钻后立即下放粘贴有传感器的测斜 管i;
4) 在第一根测斜管1外壁上粘贴光纤光栅应变片,并在测斜管1外壁上刻槽,将连接光纤用胶布固定于凹槽内;为了对本装置的监测结果进行验证,将光纤光 栅传感器组粘贴在测斜管1内壁十字导槽所处的某一平面内,这样光纤光栅监测
的变形就与测斜仪测量的变形 一 致;
5) 下放第一节测斜管1至孔口一定高度,按测斜管1的对准标记和编号连接 第二根测斜管l,并在第二节测斜管1外壁上粘贴测斜管光纤光栅应变传感器16、 刻槽、固定连接光纤后,下放第二节测斜管1;依此方法,下放所有测斜管1至 孔内;当钻孔内水的浮力致使测斜管1上浮时,可在测斜管1注入适量清水以减 小下放阻力;
6) 待所有测斜管1下放至孔内后,调整导槽方向,使导槽方向及测斜管光纤 光栅应变传感器16组的方向朝向滑坡体的位移方向;
7) 向基岩与测斜管1间隙里注入M5细砂水泥砂浆,砂浆用注浆管引导,当 注浆管下至离孔底lm处后开始注浆;在土体与测斜管1间隙内回填细砂;
8) 在孔口做混凝土墩,在墩内埋设钢套筒,以保护测斜管光纤光栅应变传感 器16组的信号接头;将光纤信号接头与光缆5连接,通过光缆5将信号引到监测 站。
图5是本发明的光纤光栅深部位移监测系统的监测结果与活动式钻孔测斜仪 的监测结果的对比图。对比监测的条件是滑坡体深29m,下覆基岩,测斜管1 底部埋置于基岩内3m,测斜管1外径70咖,内径60mm,在测斜管1外的2. 5m、 7.5m、 12.5m、 17. 5m、 21. 5m、 30m处各布置一个光纤光栅传感器;活动式钻孔测 斜仪釆用某进口知名品牌,在钻孔测斜仪领域有较长的监测历史,稳定性好。
滑坡对管道的推力监测装置的构成如图6所示,是滑坡13对管道14推力监 测的土压力盒光纤光栅传感器4输出接光转换开关6输入,光转换开关6输出接 光栅解调仪7输入,光栅解调仪的输出接现场上位计算机8。而滑坡13对管道14 推力监测的光纤光栅传感器釆用光纤光栅封装土压力盒光纤光栅传感器4; 土压 力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,并土压力盒光纤 光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅 传感器3测量的压力就是滑坡13对管道14的正面推力。
滑坡对管道的推力监测装置的构建方法如图6所示,土压力盒光纤光栅传感 器4通过土压力盒支架21固定在管道14上,土压力盒光纤光栅传感器4感受压 力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器4测量的压力 就是滑坡13对管道14的正面推力。土压力盒支架21由两块圆弧形钢板卡箍组成,
18其中一段圆弧形钢板上焊有底座,土压力盒光纤光栅传感器4嵌入底座中,并保
持一定的裕量,使土压力盒能自由变形。土压力盒支架21两端的卡箍连接件23 通过螺帽连接。当滑坡13滑动时,滑坡13对土压力盒的推力可通过土压力盒光 纤光栅传感器4测量,该测量值减去土压力盒光纤光栅传感器4承受的土体自重 压力,即为滑坡13变形对管道14产生的推力。
管体应力的监测装置如图7和图8所示,是在滑坡的两侧边缘及滑坡的中心 位置各布置一管道监测截面,在管道14的每个监测截面的外周均匀布置3个管体 光纤光栅传感器3且3个管体光纤光栅传感器3布置在与管道14轴线垂直的平面 上。管体光纤光栅传感器3输出接光转换开关6输入,光转换开关6输出接光纤 光栅解调仪7输入,光纤光栅解调仪7的输出接现场上位计算机8。
该装置单通道的电原理如图4所示,管体光纤光栅传感器3的PC接头用光纤 与光转换开关6的PC接头连接,光转换开关6的R232直接接上位计算机8的R232, 光转换开关6的PC接头连接光纤光栅解调仪7 SM125的CH1端,光纤光栅解调仪 7 SM125的L緒端口接上位计算机8的LAN端口 。
管体应力的监测装置的构建方法如图7、 8所示,在滑坡的两侧边缘及滑坡的 中心位置各布置一管道监测截面,且监测截面的间距不宜超过60m。在管道14的 每个监测截面的外周均匀布置3个管体光纤光栅传感器3且3个管体光纤光栅传 感器3布置在与管道14轴线垂直的平面上。安装管体光纤光栅传感器3时,完全 刮开管道14防腐层,并打磨管道14表面至光滑,用快干胶3粘贴管体光纤光栅 传感器封装24封装好管体光纤光栅传感器3。待三个管体光纤光栅传感器3全部 粘贴好后,将管体光纤光栅传感器3的引纤一并引至地面,并进行保护。
当管道14轴向承受拉/压应力时,三个管体光纤光栅传感器3承受拉/压应变; 按照一定的算法,由该截面三处应变,即可求出该管道14截面上最大应变的大小 和位置。基于钢材弹性理论,即可求出管道14截面上最大的拉/压应力的大小。 监测截面的选择对监测效果很重要。
大量的研究表明,滑坡13对管道14作用应力关键表现在轴向上,对管道14 轴向应力的测量就能较好地判断管道14的可接受应力状态。因此,管体光纤光栅 传感器3仅测量管道14轴向的应变。
现场监测站设置在滑坡现场,包括光纤接线盒、连接光缆5、光转换开关6、 光纤光栅解调仪7、上位计算机8、 GPRS传输模块9;由各光纤光栅传感器的光纤 接线盒和连接光缆5将滑坡13上各个位置的光纤光栅传感器接到监测站的光转换开关6,光转换开关6输出接光纤光栅解调仪7,光纤光栅解调仪7输出接上位计
算机8,上位计算机8输出接GPRS传输模块9。各光纤光栅传感器的光纤接线盒 和连接光缆5将滑坡13上各个位置的光纤光栅传感器信号集中传输到监测站的光 转换开关6,光转换开关6将各通道信号依次转换给光纤光栅解调仪7,光纤光栅 解调仪7解调出各光纤光栅传感器的中心波长位移量给上位计算机8,上位计算 机8自动计算出各监测量输给GPRS传输模块9并接受GPRS传输模块9的信号进 行控制,GPRS传输模块9将上位计算机8计算的各监测量通过公众无线通信网络 传输到位于办公室的接受终端,也可接受接收终端的信号,发送给下位计算机11。 其中
光转换开关选用光隆科技SUM-FSW; 光纤光栅解调仪选用SM125; 上位计算机及程序选用研华IPC-610,程序自编; GPRS传输模块西门子MC35i。 位于办公室的接收终端包括如下2个部分 ,(1 )GPRS接收模块IO,用于接收现场监测站GPRS传输模块9发送的监测量, 并传输给终端下位计算机11,也可给现场GPRS传输模块9发送反馈指令;
(2) 下位计算机ll及程序,用于下载终端GPRS接收模块10的信号,并调 用程序进行自动分析,将分析结果与报警阀值进行对比,必要的时候实施报警;
(3) 报警器12,用于当分析结果超过报警阀值时,发生声音警示信号;报 警器12由下位计算机11及程序控制。
该系统的工作原理是这样的,当滑坡13滑动时,埋于滑坡13深部的测斜管 1受滑坡13 土体推力而发生弯曲应变,测斜管1上的测斜管光纤光栅传感器16 感受到拉应变,通过计算可得出测斜管上的水平位移,即滑坡13深部的水平位移; 滑坡13活动过程中,管道14承受滑坡13推力而发生管体14应变变化,通过管 体光纤光栅传感器3测量;在管道14与滑坡13的接触面上,滑坡13对管道14 的推力通过土压力盒光纤光栅传感器4测量。通过连接光缆5,将上述三个传感 器信号传输到光转换开关6,光转换开关6将信号转换给光纤光栅解调仪7,光纤 光栅解调仪7解调出传感器波长中心波长位移量并传感给上位计算机8,上位计 算机8将解调仪解调出的中心波长位移量自动计算为监测量,并将监测量发送给 现场GPRS传输模块9, GPRS传输模块9通过公众无线通信网络将信号传输给终端 GPRS接收模块10,终端GPRS接收模块10发送给终端下位计算机11,终端下位计算机ll将各监测量与报警阀值对比,必要的时候给出报警。最终就可测量出管
道14上所受到的应力。 其中
GPRS接收模块10:选用西门子MC35i;
下位计算机ll及程序下位机选用研华IPC-610;程序自编。 报警器12:选用博世DS-7400。 就可测量出管道14上所受到的应力。
经长时间的监测,本例定位精确、空间分辨率高;易于构建监测系统,易于 实现管道滑坡13监测数据的实时自动釆集分析及远程发布,远程实时自动报警。 避免了繁瑣的人工釆集数据,减少了报警时间,这对管道应急措施的釆取至关重
权利要求
1.一种管道滑坡深部位移监测预警方法,其特征是将监测分为滑坡深部位移监测、滑坡对管道的推力监测及管道应变监测三部分滑坡深部位移监测方法是将粘贴有光纤光栅传感器的测斜管(1)以粘有光纤光栅传感器一侧朝向滑坡(13)潜在滑动的方向,在滑坡(13)上插入穿过所有潜在滑动面(15)并延伸至基岩面以下3~5m的钻孔内;将光纤接头与光缆(5)连接,通过光缆(5)将信号引到监测站;在监测站,上位计算机(8)调用自编的程序,控制光纤光栅解调仪(7),实现数据的实时自动采集,测出测斜管(1)承受的最大拉应变;设基岩里的测斜管(1)是固定约束的,利用二重积分算法,通过测斜管(1)的拉应变分布就可求解出测斜管(1)的弯曲挠度,这一挠度即是滑坡深部位移量;滑坡对管道的推力监测方法是用固定在管道(14)上的封装土压力盒光纤光栅传感器(4)并土压力盒光纤光栅传感器(4)感受压力的敏感面朝向滑坡(13)的滑动方向测压力;这样土压力盒光纤光栅传感器(4)测量的压力就是滑坡(13)对管道的正面推力;管道应变监测方法是在滑坡(13)的两侧边缘及滑坡的中心位置的管道(14)上,均匀布置管道(14)监测截面,且监测截面的间距不宜超过60m;在管道(14)的每个监测截面上均匀布置3个管体应变光纤光栅传感器(3),监测管道(14)轴向的应变。
2. —种如权利要求1所述管道滑坡深部位移监测预警方法的管道滑坡深部位移监测预警系统,其特征是由滑坡深部位移监测装置、滑坡对管道的推力监测装置、管道应变监测装置、现场监测站、办公室的接收终端组成;现场滑坡深部位移监测装置的测斜管光纤光栅传感器U6)、滑坡对管道的推力监测装置的土压力盒光纤光栅传感器(4)和管道应变监测装置的管体光纤光栅传感器(3)输出分别接现场监测站的自动光转换开关(6),自动光转换开关(6)输出接光纤光栅解调仪(7)的输入,光纤光栅解调仪(7)的输出也接上位计算机(8)的输入;上位计算机(8 )的输出接GPRS传输模块(9 ),由办公室的接收终端GPRS接收模块(10)接下位计算机(11)的输入,下位计算机Ul)的输出接报警器(12)和显示器。
3. 根据权利要求2所述的管道滑坡深部位移监测预警系统,其特征是该系统的电原理是分别监测滑坡深部位移、滑坡对管道的推力和管道应变的三个光纤光栅传感器--测斜管光纤光栅传感器U6)、 土压力盒光纤光栅传感器(4)、管体光纤光栅传感器(3)的PC接头用光纤与光转换开关(6)的(PC)接头连接,光转换开关(6)的(R232 )直接接上位计算机(8)的(R232 ),光转换开关(6)的(PC)接头连接光纤光栅解调仪(7) SM125的(CH1)端,光纤光栅解调仪(7 )SM125的(LAN)端口接上位计算机(8 )的(L腦)端口 ,上位计算机(8 )的(R232 )端口接GPRS传输模块(9)西门子MC35i的(R232 )端口, GPRS传输模块(9)经天线GSM、 GPRS网络,被GPRS接收模块(10 )天线GSM接收后由(R232 )接到下位计算机(ll)的(R232 ),下位计算机(ll)的输出由(R232)接报警器(12)DS-7400的(R232 ),下位计算机(11)的输出由(VGA)端接显示器的(VGA)端;监测滑坡深部位移、滑坡对管道的推力和管道应变的三光纤光栅传感器的输出信号经光纤光栅解调仪(7)光纤光栅(7)解调出各光纤光栅传感器的中心波长位移量输给上位计算机(8);上位计算机(8)自动计算出各监测量输给GPRS传输模块(9)并接受GPRS传输模块(9)的信号进行控制,GPRS传输模块(9)将上位计算机(8 )计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端GPRS接收模块(IO),也可接受接收终端的信号,发送给下位计算机(ll)处理后,由显示器显示并由报警器(12)报警;
4. 一种如权利要求2所述管道滑坡深部位^监测预警系统的管道滑坡深部位移监测预警系统的构建方法,其特征是其构建方法如下滑坡深部位移监测装置的构建方法1)在拟监测的滑坡(13 )上用地质钻进工艺钻孔,钻孔需穿过所有潜在滑动面(15),并延伸至基岩面以下3 5m;要求钻孔终孔口径为O IIO誦,孔斜小于1°井过程中除基岩孔外要求全套管护壁;2 )准备好一节ABS或PVC常规测斜管(1);按钻孔深度将测斜管(1)逐节进行预连接,并在对接处作对准标记和编号,然后拆除连接;3) 下放测斜管(1)前,在钻孔内进行清孔作业,直至泥浆水变成清混水为止,确保钻孔通畅,保证测斜管(1)的顺利下放;提钻后立即下放粘贴有传感器的测斜管(1);4) 在第一根测斜管(1)外壁上粘贴光纤光栅应变片,并在测斜管(1)外壁上刻槽,将连接光纤用胶布固定于凹槽内;为对本监测结果进行验证,将光纤光栅传感器组粘贴在测斜管(1)十字导槽所处的某一平面内;5) 下放第一节测斜管(1)孔口一定高度,按测斜管(1)的对准标记和编号连接第二根测斜管(1 ),并在第二节测斜管(1)外壁上粘贴光纤光栅应变传感器(16)、刻槽、固定连接光纤后,下放第二节测斜管(1);依此方法,下放所有测斜管(1)至孔内;当钻孔内水的浮力致使测斜管(1)上浮时,可在测斜管(1) 注入适量清水以减小下放阻力;6) 待所有测斜管(1)下放至孔内后,调整导槽方向,使导槽方向及光纤光 栅应变传感器16组的方向朝向滑坡体的位移方向;7) 向基岩与测斜管(1)间隙里注入M5细砂水泥砂浆,砂浆用注浆管引导, 当注浆管下至离孔底lm处后开始注浆;在土体与测斜管(1)间隙内回填细砂;8) 在孔口做混凝土墩,在墩内埋设钢套简,以保护光纤光栅应变传感器(16) 组的信号接头;将光纤信号接头与光缆(5)连接,通过光缆(5)将信号引到监 测站;滑坡对管道的推力监测装置的构建方法土压力盒光纤光栅传感器(4 )通过土压力盒支架(21)固定在管道(14 )上, 土压力盒光纤光栅传感器(4)感受压力的敏感面朝向滑坡(13)的滑动方向;土 压力盒支架(21)由两块圆弧形钢板卡箍组成,其中一段圆弧形钢板上焊有底座, 土压力盒光纤光栅传感器(4)嵌入底座中,并保持一定的裕量,使土压力盒能自 由变形;土压力盒支架(21)两端的卡箍连接件(23)通过螺帽连接;管体应力的监测装置的构建方法.-在滑坡的两侧边缘及滑坡的中心位置各布置一管道监测截面,且监测截面的 间距不宜超过60m;在管道(14)的每个监测截面的外周均匀布置3个管体光纤 光栅传感器(3),且3个管体光纤光栅传感器(3)布置在与管道(14)轴线垂直 的平面上;管体光纤光栅传感器(3)安装在光滑的管道(14)表面,用快干胶粘贴 管体光纤光栅传感器封装(24 )封装好管体光纤光栅传感器(3);将管体光纤光栅 传感器(3)的引纤一并引至地面,并进行保护。
5.根据权利要求4所述的管道滑坡深部位移监测预警系统的构建方法,其特 征是所述测斜管光纤光栅传感器16分为测轴向应变和测温度两种;测轴向应变的 测斜管光纤光栅传感器16采用快干胶粘贴于测斜管1外壁,然后用泡沬密封胶密 封测斜管光纤光栅传感器16;测温度的测斜管光纤光栅传感器16在测斜管1上 一定距离处自由放置,对测斜管光纤光栅应变传感器16组进行温度补偿。
全文摘要
本发明是一种管道滑坡深部位移监测预警方法和系统及系统的构建方法。它是将监测分为滑坡深部位移监测、滑坡对管道的推力监测及管道应变监测三部分将粘贴有光纤光栅传感器的测斜管(1)插入滑坡(13),穿过所有潜在滑动面(15)并延伸至基岩面以下3~5m的钻孔内,测出测斜管(1)承受的最大拉应变;用固定在管道(14)上的封装土压力盒光纤光栅传感器(4)测量滑坡(13)对管道的正面推力;在滑坡(13)两侧边缘及滑坡的中心的管道(14)上均匀布置管道(14)监测截面,每个监测截面上均匀布置3个管体应变光纤光栅传感器(3),监测管道(14)轴向的应变。
文档编号G08B21/00GK101667327SQ20081011955
公开日2010年3月10日 申请日期2008年9月3日 优先权日2008年9月3日
发明者刘建平, 胡志新, 荆宏远, 郝建斌, 陈朋超, 冰 韩 申请人:中国石油天然气股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1