一种路线规划方法、装置、设备和计算机存储介质与流程

文档序号:21734574发布日期:2020-08-05 01:30阅读:126来源:国知局
一种路线规划方法、装置、设备和计算机存储介质与流程

本申请涉及计算机应用技术领域,特别涉及大数据技术领域。



背景技术:

路径规划已经广泛的应用于包含导航功能的地图类应用中,其能够为用户提供路线推荐、拥堵状况和预估到达时间等信息的丰富展现结果。但由于现实道路交通状况变化很快,目前的导航系统只能根据当前的准实时状态给用户以路线规划。而在实际导航过程中,规划路线可能会途径一些拥堵可能性大、出事故概率高等高风险路段,导致用户无法在计划时间到达目的地。对于一些对时间要求非常严格的需求场景上,比如商务会议、接送朋友、搭乘飞机等,如果这类风险发生,则无法预期抵达目的地。这就给用户造成规划的路线质量低、用户体验差等问题。



技术实现要素:

有鉴于此,本申请提供了一种路线规划方法、装置、设备和存计算机储介质,以便于提高规划的路线质量以及用户体验。

根据第一方面,本申请提供了一种路线规划方法,该方法包括:

获取路网的实时交通流特征数据;

利用所述路网的实时交通流特征数据对所述路网中各路段的状态变化风险进行预测,获得各路段的状态变化风险信息;

利用各路段的状态变化风险信息,进行路线规划。

根据第二方面,本申请提供了一种路线规划装置,该装置包括:

数据获取单元,用于获取路网的实时交通流特征数据;

风险预测单元,用于利用所述路网的实时交通流特征数据对所述路网中各路段的状态变化风险进行预测,获得各路段的状态变化风险信息;

路线规划单元,用于利用各路段的状态变化风险信息,进行路线规划。

根据第三方面,本申请提供了一种电子设备,包括:

至少一个处理器;以及

与所述至少一个处理器通信连接的存储器;其中,

所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上任一项所述的方法。

根据第四方面,本申请提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行如上任一项所述的方法。

通过以上技术方案,本申请在路线规划中融入对各路段的状态变化风险的考虑,使得规划的路线从全局上考虑了用户在通过各路段时可能面临的状态变化风险,从而提高规划的路线质量以及用户体验。

应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。

附图说明

附图用于更好地理解本方案,不构成对本申请的限定。其中:

图1示出了可以应用本发明实施例的示例性系统架构;

图2为本申请实施例提供的方法流程图;

图3为本申请实施例提供的拥堵状态预测模型的结构示意图;

图4为本申请实施例提供的事故预测模型的结构示意图;

图5为本申请实施例提供的推荐路线的展现界面示例图;

图6为本申请实施例提供的装置结构图;

图7是用来实现本申请实施例的路线规划方法的电子设备的框图。

具体实施方式

以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。

图1示出了可以应用本发明实施例的示例性系统架构。如图1所示,该系统架构可以包括终端设备101和102,网络103和服务器104。网络103用以在终端设备101、102和服务器104之间提供通信链路的介质。网络103可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。

用户可以使用终端设备101和102通过网络103与服务器104交互。终端设备101和102上可以安装有各种应用,例如地图类应用、语音交互类应用、网页浏览器应用、通信类应用等。

终端设备101和102可以是能够支持并展现地图类应用的各种电子设备,包括但不限于智能手机、平板电脑、智能穿戴式设备等等。本发明所提供的装置可以设置并运行于上述服务器104中。其可以实现成多个软件或软件模块(例如用来提供分布式服务),也可以实现成单个软件或软件模块,在此不做具体限定。

例如,路线规划装置设置并运行于上述服务器104中,服务器104可以预先收集并维护各终端设备(包括101和102)在使用地图类应用过程中上传的用户轨迹数据、通过各种交通传感器上传的交通流数据,这些数据可以构成路网的交通流特征数据。路线规划装置使用本发明实施例提供的方式进行路线规划。当终端设备101或102的用户在使用地图类应用的过程中需要进行路线规划,则可以由设置并运行于服务器104中的路线规划装置进行路线规划,该路线规划结果可以返回终端设备101或102。

服务器104可以是单一服务器,也可以是多个服务器构成的服务器群组。应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。

本申请的核心思想在于,在路线规划中融入对各路段的状态变化风险的考虑,使得规划的路线从全局上考虑了用户在通过各路段时可能面临的状态变化风险,从而提高规划的路线质量以及用户体验。下面结合实施例对本申请提供的方法和装置进行详细描述。

图2为本申请实施例提供的方法流程图,如图2中所示,该方法可以包括以下步骤:

在201中,获取路网的实时交通流特征数据。

在本申请实施例中,可以以预设时长的时间分片为周期,获取路网在当前时间分片的实时交通流特征数据,供在后续步骤中确定各路段的状态变化风险系数进而进行路线规划。例如,以5分钟的时间分片为例,每隔5分钟获取路网的实时交通流特征数据。

其中获取的交通流特征数据可以包括各路段的交通流量统计数据、速度数据以及急减速次数中的一种或任意组合。其中,交通流量统计数据主要针对的是车流量的统计。速度数据可以包括诸如平均速度、速度中位数、最快速度、最慢速度等中的至少一种。急减速次数可以是车辆在路段上行驶时发生的急减速次数,所谓急减速可以是单位时间内速度减小的幅度超过预设阈值。

在202中,利用路网的实时交通流特征数据对路网中各路段的状态变化风险进行预测,获得各路段的状态变化风险信息。

本申请中对各路段进行的状态变化风险预测可以包括拥堵状态变化预测、事故发生预测、可通行性预测、交通规则变化预测以及道路质量劣化预测中的至少一种。下面分别对各种预测进行详细描述。

1)拥堵状态变化预测。

本申请中可以采用拥堵状态预测模型来进行拥堵状态变化预测。该拥堵状态预测模型能够在输入当前路网的实时交通流特征数据、道路属性特征数据以及未来环境特征数据的情况下,输出各路段未来的预测通行时长。

为了方便理解,首先对拥堵状态预测模型的训练过程进行描述。如图3中所示,本申请中的拥堵状态预测模型主要包括gcn(graphconvolutionalnetwork,图卷积网络)和全连接层。

首先获取训练数据。训练数据可以从路网中各路段的历史信息中获取。每一条训练数据可以包括四个数据:路段的历史第一时间分片的交通流特征数据、道路属性特征数据以及历史第二时间分片的环境特征数据和平均通行时长。其中第二时间分片为相对于第一时间分片的未来时间分片。例如,第二时间分片可以为第一时间分片之后的第1个时间分片、第2个时间分片、第3个时间分片或第4个时间分片等等。需要说明的是,本申请实施例中涉及的“第一”、“第二”等限定仅仅为了在名称上对两个时间分片进行区分,并不具备顺序、数量、重要程度等含义的限定。

以5分钟为一个时间分片为例,若第二时间分片是第一时间分片后的第1个时间分片,那么以此训练数据训练出的拥堵状态预测模型用以预测5分钟之后的路段拥堵状态变化风险。若第二时间分片是第一时间分片后的第2个时间分片,那么以此训练数据训练出的拥堵状态预测模型用以预测10分钟之后的路段拥堵状态变化风险。以此类推,可以分别建立多个拥堵状态预测模型来分别预测未来不同时间分片路段的拥堵状态变化风险。

其中,第一时间分片的交通流量特征数据可以包括路段在第一时间分片的交通流量统计数据、速度数据以及急减速次数。道路属性特征数据可以包括路段的长度、道路等级等信息。第二时间分片的环境特征数据可以包括在该路段在该第二时间分片对应的天气、时间、是否为节假日、季节等信息。为了方便计算,这些特征数据可以以离散数值的形式表示。

如图3中所示,将路段的历史第一时间分片的交通流特征数据进行编码。为了拟合出不同路段间的关联关系,可以使用gcn进行关联关系建设,将编码后到的向量表示与路网链接关系矩阵输入到gcn。gcn输出的向量表示可以与道路属性特征数据、历史第二时间分片的环境特征数据进行拼接后输入全连接层,由全连接层得到对该路段在历史第二时间分片的预测通行时长。

训练gcn和全连接层直至达到训练目标,训练目标为最小化路段的预测通行时长和训练数据中该路段的平均通行时长的差值,也就是说,最小化预测误差。

训练结束后,在利用训练得到的拥堵状态预测模型进行未来某时间分片的预测时,如图3中所示,将当前时间分片对应的路网中各路段的实时交通流特征数据进行编码,然后将编码后得到的向量表示与路网链接关系矩阵输入到gcn,gcn输出的向量表示与道路属性特征数据、上述未来某时间分片的环境特征数据进行拼接后输入全连接层,由全连接层得到对该路段的上述未来某时间分片的预测通行时长。

依据各路段在未来时间分片的预测通行时长,就能够确定各路段在未来时间分片的拥堵状态变化。比如,预测得到的预测通行时长比同时期的历史平均通行时长多,且多的幅度超出预设的幅度阈值,则可以认为发生拥堵。也可以设置不同的幅度阈值来区分不同程度的拥堵。

2)事故发生预测。

本申请中可以采用事故预测模型来进行是否发生事故的预测。该事故预测模型能够在输入当前时间分片对应的路网的交通流特征数据、道路属性特征数据和未来时间分片的环境特征数据的情况下,输出对各路段在上述未来时间分片是否发生事故的预测。

为了方便理解,首先对事故预测模型的训练过程进行描述。如图4中所示,与拥堵状态预测模型类似地,事故预测模型主要包括gcn和全连接层。

首先获取训练数据。训练数据可以从路网中各路段的历史信息中获取,每一条训练数据可以包括四个数据:路段的历史第一时间分片的交通流特征数据、道路属性特征数据和历史第二时间分片的环境特征数据和该路段在历史第二时间分片是否发生事故的信息。其中,第二时间分片为相对于第一时间分片的未来时间分片。

历史第一时间分片的交通流特征数据可以包括历史第一时间分片中路段的交通流量统计数据、速度数据以及急减速次数。道路属性特征数据可以包括路段的长度、道路等级等信息。环境特征数据可以包括该路段在该历史第二时间分片对应的天气、时间、是否为节假日、季节等信息。为了方便计算,这些特征数据可以以离散数值的形式表示。

如图4中所示,将路段的历史第一时间分片的交通流特征数据进行编码。为了拟合出不同路段间的关联关系,可以使用gcn进行关联关系建设,将编码后到的向量表示与路网链接关系矩阵输入到gcn。gcn输出的向量表示可以与道路属性特征数据、历史第二时间分片的环境特征数据进行拼接后输入全连接层,由全连接层得到对该路段在第二时间分片是否发生事故的预测。全连接层可以具体输出路段发生事故的概率,依据概率是否高于预设的概率阈值来确定是否发生事故。例如概率高于预设的概率阈值,则确定发生事故。

训练gcn和全连接层直至达到训练目标,训练目标为使各路段是否发生事故的预测结果与训练数据一致,也就是说,最小化预测误差。

训练结束后,在利用训练得到的事故预测模型进行预测时,如图4中所示,将当前时间分片对应的路网中各路段的实时交通流特征数据进行编码,然后将编码后得到的向量表示与路网链接关系矩阵输入到gcn,gcn输出的向量表示与道路属性特征数据、未来时间分片的环境特征数据进行拼接后输入全连接层,由全连接层得到对该路段在上述未来时间分片是否发生事故的预测。具体地,全连接层可以输出路段发生事故的概率,依据概率是否高于预设的概率阈值来确定是否发生事故。例如概率高于预设的概率阈值,则确定发生事故。

3)可通行性预测。

本申请中进行的可通行性预测是预测路段是否可通行,而并非因各种因素而阻断。造成路段不可通行即阻断的因素可以是诸如修路、封路、其他工程造成的阻断等,本申请对此不加以限制。

由于路段阻断是独立发生的事件,与路网中其他路段并没有直接关联,因此不使用gcn进行预测,而直接采用分类器进行建模预测。

在进行预测时,获取各路段的当前流量特征,该流量特征可以包括路段的交通流量、前序路段的交通流量以及后序路段的交通流量。其中交通流量主要指车流量。对于一个路段而言,其前序路段可能有多个,后续路段也可能有多个。那么上述前序路段的交通流量可以为多个前序路段的平均交通流量,同理,后续路段的交通流量可以为多个后续路段的平均交通流量。

然后获取各路段的历史流量特征。该历史流量特征可以是与当前属于同一时间片段的历史流量特征。例如假设当前为上述10:01,那么可以获取历史上10:00~10:05的时间分片的流量特征数据。历史流量特征也可以是一定历史时间区间的平均流量特征。例如昨天之前一周、一个月等的平均流量特征。

将同一路段的当前流量特征和历史流量特征进行差分后得到的特征与道路属性特征输入可通行性预测模型,得到对该路段是否可通行的预测。其中,可通行性预测模型可以基于分类器预先训练得到,其中分类器可以是诸如svm(supportvectormachine,支持向量机)等二分类器。其输出的可以是该路段不可通行的概率,依据概率确定该路段是否不可通行。例如若不可通行的概率高于预设的概率阈值,则确定该路段不可通行。

在训练可通行性预测模型时,可以获取路段可通行时所对应时间片段的流量特征和该时间片段的历史流量特征,以及获取路段不可通行时所对应时间片段的交通高流量和该时间片段的历史流量特征,作为训练数据。将同一训练数据中,两个流量特征进行差分后得到的特征与同一路段的道路属性特征输入分类器,分类器输出该路段是否可通行的分类结果。训练分类器,直至达到训练目标。训练目标为分类器的分类结果与训练数据中路段是否可通行的信息一致。

4)交通规则变化预测。

在一些情况下,因为交通规则的变化也会使得用户在路线中行驶时面临一些通行风险。本申请中所涉及的交通规则变化主要包括转向禁行。例如禁止直行、禁止左转、禁止右转、禁止掉头等等。在本申请中,可以通过观察路段前后轨迹的差异来挖掘出路段是否出现交通规则变化。

具体地,可以获取各路段上来自前序路段的当前交通流量比例,以及获取与各路段上来自前序路段的历史流量比例。若路段的当前交通高流量比例相比较历史流量比例的下降程度超过预设比例阈值,则预测得到该路段存在交通规则变化。

举个例子,假设经由路段a穿行路段b,那么路段a为路段b的前序路段。确定路段b的交通流量中来自路段a的交通流量所占的比例,若该比例相比较历史流量比例发生明显下降,则预测该路段b存在交通规则变化。其中,历史流量比例可以是一定历史时间区间的平均流量比例。例如昨天之前一周、一个月等的平均流量特征。

另外,除了比较当前交通流量比例和历史流量比例的方式之外,还可以进一步结合路段的交通流量的绝对值,即同时需要满足路段的交通流量相比较历史交通流量的下降程度超过预设阈值,才预测得到该路段存在交通规则变化。

5)道路质量劣化预测。

道路质量劣化预测主要是预测路段的道路质量是否比之前变差。路线质量变差的因素可以是诸如道路损坏导致颠簸、行人随意穿行、违章停车、坡度变化、新增障碍物等,本申请对此不加以限制。

在进行道路质量劣化预测时,可以获取各路段的当前速度数据以及急减速次数。其中速度数据可以包括诸如轨迹点速度的中位数、平均数等。

并且获取各路段与历史速度数据以及急减速次数。若路段的当前速度数据相比较历史速度数据存在明显的速度下降,例如速度下降程度超过预设的速度阈值,并且当前急减速次数与历史急减速次数存在明显上升,例如上升程度超过预设次数阈值,则预测得到该路段出现道路质量劣化。

上述的历史速度数据可以是与当前属于同一时间片段的历史速度数据。例如假设当前为上述10:01,那么可以获取历史上10:00~10:05的时间分片的历史速度数据。历史速度数据也可以是一定历史时间区间的平均速度数据。例如昨天之前一周、一个月等的平均流量特征。

得到上述各种预测结果后,可以根据各种预测结果分别得到路段的各种预测对应的风险系数;然后针对各路段得到的各种预测对应的风险系数分别进行加权处理,得到各路段的状态变化风险系数。

例如,依据拥堵状态变化预测出的路段i的预测通行时长,确定出路段i的拥堵状态变化风险系数r1。其中预测通行时长与历史平均通行时长的差异越大,r1值越大。

依据事故发生预测出的路段i是否发生事故,确定出路段i的事故发生风险系数r2。例如,若预测出路段i发生事故,则可以依据预测出的路段i发生事故的概率确定r2,概率值越大,r2越大。也可以简单地设置发生事故时,r2值取1,不发生事故时,r2值取0。

依据可通行性预测出的路段i是否可通行,确定出路段i的可通行性风险系数r3。例如,若预测出路段不可通行,则可以依据预测出的路段不可通行的概率确定r3,概率值越大,r3值越大。也可以简单地设置不可通行时,r3值取1,可通行时,r3值取0。

依据交通规则变化预测出的路段i是否发生交通规则变化,确定出路段i的交通规则变化风险系数r4。例如,若预测出路段发生交通规则变化,则可以依据流量比例下降的程度来确定r4,下降的程度越大,r4值越大。也可以简单地设置发生交通规则变化,r4值取1,未发生交通规则变化,r4值取0。

依据道路质量劣化预测出的路段i是否疑似道路质量劣化,确定出路段i的可通行性风险系数r5。例如,若预测出路段的道路质量劣化,则依据速度的下降程度和/或急减速次数的上升程度来确定r5。速度的下降程度越大,r5值越大;急减速次数的上升程度越大,r5值越大。也可以简单地设置路段的道路质量劣化,r5值取1,未发生道路质量劣化,r5值取0。

然后通过如下公式确定出路段i的状态变化风险系数rall:

λ1*r1+λ2*r2+λ3*r3+λ4*r4+λ5*r5=rall

上述加权系数λ1、λ2、λ3、λ4和λ5可以采用人工设置的经验值或实验值等。

采用类似方式可以确定出路网中各个路段的状态变化风险系数。

在203中,利用各路段的状态变化风险信息,进行路线规划。

在路线规划产品中,会将路网上所有路段根据彼此的连通关系建立一个网状的拓扑图,该拓扑图中节点为路口,边为路段。现有技术中,根据静态的路网属性和实时的路况信息,为图上的每条边赋予权值。也就是说,每个路段都被赋予权值。当用户输入起始位置和终点位置进行路线规划时,会通过图搜索的方式进行路线查找计算。在路线查找过程中,对于可选的几条路段优先选取权值高的路段。查找得到的候选路线中,考虑通行时长、距离、红路灯数量、道路等级等多个维度中的一种或任意组合进行候选路线的排序,最终确定向用户推荐的路线。

本申请可以在路线查找过程中融入路段的状态变化风险信息,也可以在候选路线的排序过程中融入路段的状态变化风险信息,或者也可以在路线查找和候选路线的排序过程中均融入路段的状态变化信息。

当在路线查找过程中融入路段的状态变化风险信息时,可以执行以下处理:

s11、利用各路段的状态变化风险信息更新各路段的权值,其中状态变化风险越高,对路段权值的降低程度越大。

也就是说,对于存在状态变化风险的路段,利用其状态变化风险的状况对该路段的权值进行“打压”。

例如,更新后的路段权值wrighti_new为:

λall*rall+weighti=weighti_new

weighti为路段原本的权值,λall为加权系数,通常可以设置为一个负值,具体取值可以由人工设置为经验值或实验值。

s12、基于更新后各路段的权值,对用户输入的起始位置和终点位置进行路线查找,得到至少一条候选路线。

在路线查找过程中,会确定到达各路段的预计时间,然后采用对该路段在该预计时间所在时间片段的状态变化风险的预估。具体如何确定到达各路段的预计时间,可以利用途径各路段的预计通行时长来叠加确定,这部分内容在此不做赘述。然后从候选路线中确定向用户推荐的路线。

s13、从候选路线中确定向用户推荐的路线。

可以采用现有技术中的排序方式,考虑通行时长、距离、红路灯数量、道路等级等多个维度中的一种或任意组合进行候选路线的排序,最终确定向用户推荐的路线。

当在候选路线的排序过程中融入路段的状态变化风险信息时,可以执行以下处理:

s21、对用户输入的起始位置和终点位置进行路线查找,得到至少一条候选路线。

在此可以采用现有技术中的路线查找方式,不考虑各路段的状态变化风险对各路段的权值的影响。

s22、融合候选路线中各路段的状态变化风险信息,对各候选路线进行排序。

在本步骤中,可以利用候选路线中包含的各路段的状态变化风险系数,确定候选路线的状态变化风险系数,例如进行所包含各路段状态变化风险系数的加和、求平均等。然后在考虑路线的状态变化风险系数的基础之上,进一步考虑通行时长、距离、红路灯数量、道路等级等多个维度中的一种或任意组合,对各候选路线进行排序。

也可以基于用户对所推荐路线的选择行为,以及候选路线的状态变化风险特征、道路等级、通行时长、距离、红绿灯数量、车流信息等特征,训练排序模型。然后利用训练得到的排序模型对各推荐路线进行排序。

s23、依据排序结果,确定向用户推荐的路线。

经过排序后,可以选择排在前n个的路线向用户推荐,n为预设的正整数。也可以将采用不同排序策略分别排列出的第一个路线向用户推荐。等等。

在204中,展现向用户推荐的规划路线。

本步骤中可以采用以下方式中的一种或任意组合:

方式一、对向用户推荐的规划路线中所包含各路段的状态变化风险系数的总和最低的路线,展现指示该路线风险最低的信息。

如图5中所示,在方案a所指示的路线能够展示标签“风险最低”,以方便用户进行选择。

方式二、对向用户推荐的路线中状态变化风险满足预设条件的路段,展示针对该路段预测的状态变化风险信息。

如图5中所示,当前界面上所展现的推荐路线b中,存在一条路段“月牙路”的拥堵风险较高,因此可以在该路段中指示“月泉路有拥堵风险,可能造成10分钟延误”。在推荐路线c中存在一条路段“g6辅路”有事故风险,因此可以在该路段中指示“g6辅路有事故风险”。这样用户就能够清楚地了解到各推荐路线中可能会存在的风险,从而展示上述的提示风险路段和风险类型的信息,辅助用户对路线进行选择,或者对未来的出行计划进行针对性变化。

方式三、对因状态变化风险而未向用户推荐的路线,展示该路线未向用户推荐的原因信息。

当有一些路线因为风险较高而未被推荐时,可以向用户提示原因,例如“途径中山路的路线因事故风险较高,已成功为您避开”。

另外,如果向用户推荐的规划路线中包含拥堵状态变化风险的路段,则可以利用包含拥堵状态变化风险的路段的预测通行时长确定路线的第二预估到达时间;利用不考虑拥堵状态变化风险时确定的第一预估到达时间和第二预估到达时间,展示该路线的预估到达的时间区间。

以图5中所示,对于方案b对应的推荐路线而言,因为其包含拥堵状态变化风险的月泉路,因此利用拥堵状态预测模型对月泉路的通行时长预测,可以得到方案b所对应推荐路线的第二预估到达时间为52分钟。但若不考虑拥堵风险,按照常规的方式来计算该推荐路线的第一预估到达时间为42分钟。因此展示的预估到达时间区间为“42-52分钟”。

对于信息的具体展示形式,在此不做限制,图5中所示的展示形式仅仅是本申请所举的示例。

以上是对本申请所提供的方法进行的详细描述,下面结合实施例对本申请提供的装置进行详细描述。

图6为本申请实施例提供的装置结构图,该装置可以位于服务器端的应用,或者还可以为位于服务器端的应用中的插件或软件开发工具包(softwaredevelopmentkit,sdk)等功能单元。如图6中所示,该装置可以包括:数据获取单元10、风险预测单元20和路线规划单元30,还可以进一步包括拥堵模型训练单元40、事故模型训练单元50和展现单元60。各组成单元的主要功能如下:

数据获取单元10用于获取路网的实时交通流特征数据。

其中获取的交通流特征数据可以包括各路段的交通流量统计数据、速度数据以及急减速次数中的一种或任意组合。其中,交通流量统计数据主要针对的是车流量的统计。速度数据可以包括诸如平均速度、速度中位数、最快速度、最慢速度等中的至少一种。急减速次数可以是车辆在路段上行驶时发生的急减速次数,所谓急减速可以是单位时间内速度减小的幅度超过预设阈值。

风险预测单元20用于利用路网的实时交通流特征数据对路网中各路段的状态变化风险进行预测,获得各路段的状态变化风险信息。

具体地,风险预测单元20可以利用路网的实时交通流特征数据分别针对各路段进行拥堵状态变化预测、事故发生预测、可通行性预测、交通规则变化预测以及道路质量劣化预测中的至少一种,根据各种预测结果分别得到各种预测对应的风险系数;将针对各路段得到的各种预测对应的风险系数分别进行加权处理,得到各路段的状态变化风险系数。

风险预测单元20可以包括:拥堵状态预测子单元21、事故发生预测子单元22、可通行性预测子单元23、交规变化预测子单元24和道路质量预测子单元25中的至少一种。

拥堵状态预测子单元21,用于将当前时间分片对应的路网的实时交通流特征数据、道路属性特征数据以及未来时间分片对应的环境特征数据输入预先训练得到的拥堵状态预测模型,得到对路网中各路段在未来时间分片的预测通行时长;依据各路段在未来时间分片的预测通行时长,确定各路段在未来时间分片的拥堵状态变化。

这种情况下,拥堵模型训练单元40可以采用如下方式预先训练得到拥堵状态预测模型:

获取训练数据,训练数据包括路网中各路段的历史第一时间分片的交通流特征数据、道路属性特征数据以及历史第二时间分片的环境特征数据和平均通行时长,其中第二时间分片为相对于第一时间分片的未来时间分片;将路段的历史第一时间分片的交通流特征数据进行编码;将编码后得到的向量表示与路网链接关系矩阵输入到图卷积网络;将图卷积网络输出的向量表示与道路属性特征数据、历史第二时间分片的环境特征数据进行拼接后输入全连接层,得到对该路段在第二时间分片的预测通行时长;

训练图卷积网络和全连接层,直至达到训练目标,训练目标为最小化路段的预测通行时长和训练数据中平均通行时长的差值。

事故发生预测子单元22,用于将当前时间分片对应的路网的实时交通流特征数据、道路属性特征数据以及未来时间分片对应的环境特征数据输入预先训练得到的事故预测模型,得到对路网中各路段在未来时间分片是否发生事故的预测。

这种情况下,事故模型训练单元50,用于采用如下方式预先训练得到事故预测模型:

获取训练数据,训练数据包括路网中各路段的历史第一时间分片的交通流特征数据、道路属性特征数据以及历史第二时间分片的环境特征数据和是否发生事故,其中第二时间分片为相对于第一时间分片的未来时间分片;将路段的历史第一时间分片的交通流特征数据进行编码;将编码后得到的向量表示与路网链接关系矩阵输入到图卷积网络;将图卷积网络输出的向量表示与道路属性特征数据、历史第二时间分片的环境特征数据输入全连接层,得到对该路段在第二时间分片是否发生事故的预测;训练图卷积网络和全连接层,直至达到训练目标,训练目标为使各路段是否发生事故的预测结果与训练数据一致。

可通行性预测子单元23,用于获取各路段的当前流量特征,流量特征包括路段的交通流量、前序路段的交通流量以及后序路段的交通流量;获取各路段的历史流量特征;将路段的当前流量特征和历史流量特征进行差分后得到的特征与道路属性特征输入可通行性预测模型,得到对该路段是否可通行的预测,其中可通行性预测模型基于分类器预先训练得到。

交规变化预测子单元24,用于获取各路段上来自前序路段的当前交通流量比例,以及,获取与各路段上来自前序路段的历史流量比例;若路段的当前交通高流量比例相比较历史流量比例的下降程度超过预设比例阈值,则预测得到该路段存在交通规则变化。

道路质量预测子单元25,用于获取各路段的当前速度数据以及急减速次数,以及,获取各路段的历史速度数据以及急减速次数;若路段的当前速度数据相比较历史速度数据存在速度下降程度超过预设速度阈值,和/或,当前急减速次数与历史急减速次数的上升程度超过预设次数阈值,则预测得到该路段出现道路质量劣化。

路线规划单元30,用于利用各路段的状态变化风险信息,进行路线规划。

具体地,路线规划单元30可以利用各路段的状态变化风险信息更新各路段的权值,其中状态变化风险越高,对路段权值的降低程度越大;基于更新后各路段的权值,对用户输入的起始位置和终点位置进行路线查找,得到至少一条候选路线;从所述候选路线中确定向所述用户推荐的路线。

路线规划单元30也可以对用户输入的起始位置和终点位置进行路线查找,得到至少一条候选路线;融合所述候选路线中各路段的状态变化风险信息,对所述候选路线进行排序;依据排序结果,确定向所述用户推荐的路线。

展现单元60,用于采用以下方式中的至少一种展现路线规划的结果:

方式一、对向用户推荐的规划路线中所包含各路段的状态变化风险系数的总和最低的路线,展现指示该路线风险最低的信息。

方式二、对向用户推荐的路线中状态变化风险满足预设条件的路段,展示针对该路段预测的状态变化风险信息。

方式三、对因状态变化风险而未向用户推荐的路线,展示该路线未向用户推荐的原因信息。

另外,若向用户推荐的规划路线中包含拥堵状态变化风险的路段,则利用包含拥堵状态变化风险的路段的预测通行时长确定路线的第二预估到达时间;利用不考虑拥堵状态变化风险时确定的第一预估到达时间和所述第二预估到达时间,由展示单元60展示该路线的预估到达时间区间。

根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。

如图7所示,是根据本申请实施例的路线规划方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。

如图7所示,该电子设备包括:一个或多个处理器701、存储器702,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示gui的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图7中以一个处理器701为例。

存储器702即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的路线规划方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的路线规划方法。

存储器702作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的路线规划方法对应的程序指令/模块。处理器701通过运行存储在存储器702中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的路线规划方法。

存储器702可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据该电子设备的使用所创建的数据等。此外,存储器702可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器702可选包括相对于处理器701远程设置的存储器,这些远程存储器可以通过网络连接至该电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。

路线规划方法的电子设备还可以包括:输入装置703和输出装置704。处理器701、存储器702、输入装置703和输出装置704可以通过总线或者其他方式连接,图7中以通过总线连接为例。

输入装置703可接收输入的数字或字符信息,以及产生与该电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置704可以包括显示设备、辅助照明装置(例如,led)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(lcd)、发光二极管(led)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。

此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用asic(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。

这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(pld)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。

为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,crt(阴极射线管)或者lcd(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(lan)、广域网(wan)和互联网。

计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。

根据本申请实施例的技术方案,本申请提供的方法、装置、设备和计算机存储介质具备以下优点:

1)本申请在路线规划中融入对各路段的状态变化风险的考虑,使得规划的路线从全局上考虑了用户在通过各路段时可能面临的状态变化风险,从而提高规划的路线质量以及用户体验。

2)本申请中通过各路段的交通流量统计数据、速度数据以及急减速次数这些丰富的交通流特征数据,对路网中各路段的状态变化风险信息进行预测,具有较高的预测准确性。

3)本申请通过拥堵状态变化预测、事故发生预测、可通行性预测、交通规则变化预测以及道路质量劣化预测等多维度、多因素的预测方式,使得对路段的状态变化风险系数更加全面和准确。

4)本申请能够利用预先训练得到的拥堵状态预测模型,对各路段在未来时间分片的通行时长进行预测,从而确定路段在未来时间分片的拥堵状态变化。

5)本申请能够利用预先训练得到的事故预测模型,对各路段在未来时间分片是否发生事故进行预测。

6)本申请能够利用各路段的当前流量特征和历史流量特征,实现对路段是否可通行的预测。

7)本申请能够利用各路段上来自前序路段的当前交通流量比例和历史流量比例,实现对路段是否存在交通规则变化的预测。

8)本申请能够利用各路段的当前速度数据以及急减速次数,以及历史速度数据以及急减速数据,实现对路段是否出现道路质量劣化的预测。

9)本申请中,各路段的状态变化风险能够应用于路线规划中的路线查找,也可以应用于候选路线的排序,或者在两者中都进行应用。使得路线规划结果能够实现全局风险最小化。

10)本申请中对路线规划的结果提供了多种展现方式:对于全局风险最小化的路线,展示指示风险最低的信息,以方便用户选择。对向用户推荐的路线中状态变化风险满足预设条件的路段,展示针对该路段预测的状态变化风险信息,以便用户清楚地了解到各推荐路线中可能会存在的风险,辅助用户对路线进行选择,或者对未来的出行计划进行针对性变化。对因状态变化风险而未向用户推荐的路线,展示该路线未向用户推荐的原因信息,以便用户能够清楚地了解路线未展现的原因,提升用户体验。

11)如果向用户推荐的规划路线中包含拥堵状态变化风险的路段,可以展示该路线预估到达的时间区间,使得用户对选择该路线要承担的时间代价有所了解,从而做出正确的决策,提升用户体验。

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。

上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1