激光功率控制装置的制作方法

文档序号:6763399阅读:100来源:国知局
专利名称:激光功率控制装置的制作方法
技术领域
本发明涉及一种用于在多功能驱动器中控制激光功率的激光功率控制装置,该多功能驱动器通过在光盘上应用不同的激光,在/从不同类型的光盘上记录信息或读取已记录的信息。本发明尤其涉及一种利用通用光电探测器采集不同激光而控制激光功率的激光功率控制装置。
背景技术
近年来,能够读取使用多种类型的光盘记录的信息或对其写入信息的多功能驱动器得到了广泛的应用。多功能驱动器总体上表示在CD上记录或复制信息以及在DVD上复制信息的驱动器,例如在日本专利公开出版物No.2001-236726中所介绍的。在这种多功能驱动器中,不同功率的两束激光,一束CD激光和一束DVD激光,需要单独控制。
参考

图17,描述了传统多功能驱动器中的激光功率控制装置。一套激光功率控制装置LP包括一个用于控制CD激光功率的CD激光功率控制系统LPcd;一个用于控制DVD激光功率的DVD激光功率控制系统LPdvd;和一个控制整套激光功率控制装置LP工作的控制器100。
CD激光功率控制系统LPcd包括一个补偿调节器1(图中称作“补偿”),一个加法器20,一个再现放大单元Up,一个记录放大单元Ur,一个激光器驱动电路7(图中称作“LDD”),一个激光二极管LD1,和一个前端监视器(front monitor)8(图中称作“PD”)。根据再现放大单元Up提供的再现激光器驱动控制信号LDI1或记录放大单元Ur提供的记录激光器驱动控制信号LDI3,激光器驱动电路7允许激光二极管LD1发射具有预定光能量的CD激光Lc。
前端监视器8由光电探测器构成。前端监视器8采集CD激光Lc并产生具有某电压值的激光强度信号PD01,该电压值根据所采集光能量而定。补偿调节器1通过加法器20将对应于预定补偿值的电压加到激光强度信号PD01上,由此产生补偿修正激光强度信号S1。
再现放大单元Up具有一个可变增益电路2p(图中称作“VGA”),一个采样/保持电路3p(图中称作“S/H”),和一个运算放大器4p。可变增益电路2p运行使激光强度信号S1在复制时具有足够的幅值,由此产生激光强度信号S2p。采样/保持电路3p在预定时间对激光强度信号S2p进行采样和保持,由此产生激光强度信号S3p。运算放大器4p比较可变电压源5p提供的参考电压Vp和激光强度信号S3p,并根据比较获得的差值产生再现激光器驱动控制信号LDI1。
记录放大单元Ur和再现放大单元Up一样,具有一个可变增益电路2r,一个采样/保持电路3r,一个运算放大器4r和一个可变电压源5r。可变增益电路2r运行使激光强度信号S1在记录时具有足够的幅值,由此产生激光强度信号S2r。采样/保持电路3r在预定时间对激光强度信号S2r进行采样和保持,由此产生激光强度信号S3r。运算放大器4r比较可变电压源5r提供的参考电压Vr和激光强度信号S3r,并根据比较获得的差值产生记录激光器驱动控制信号LDI3。
特别指出,除了分别由再现放大单元Up产生的再现激光器驱动控制信号LDI1和记录放大单元Ur产生的记录激光器驱动控制信号LDI3具有不同的电平外,再现放大单元Up和记录放大单元Ur具有基本相同的结构和功能。因此,只要没有特殊问题,在下文中再现放大单元Up和记录放大单元Ur共同称为“放大单元U”。另外,可变增益电路2p和2r在下文中共同称为“可变增益电路2”,采样/保持电路3p和3r称为“采样/保持电路3”,运算放大器4p和4r称为“运算放大器4”,可变电压源5p和5r称为“可变电压源5”。再现激光器驱动控制信号LDI1和记录激光器驱动控制信号LDI3在下文中共同称为“CD激光器驱动控制信号LDIc”。
DVD激光功率控制系统LPdvd具有一个运算放大器6,一个晶体管PNP,一个激光二极管LD2,和一个后端监视器(backmonitor)19(图中称作“PD”)。根据运算放大器6提供的再现激光器驱动控制信号LDI2,晶体管PNP允许激光二极管LD2发射具有预定光能量的DVD激光Ld。后端监视器19和前端监视器8一样,由光电探测器构成。后端监视器19采集DVD激光Ld并产生具有某电压值的激光强度信号PD02,该电压值根据所采集光能量而定。运算放大器6比较激光强度信号PD02和参考信号PD2ref,并根据比较获得的差值产生再现激光器驱动控制信号LDI2。
表明激光功率控制装置LP各元件工作条件的反馈信号Sf从激光功率控制装置LP输入到控制器100。此外,表明用户指令的工作模式信号Sm从多功能驱动器输入到控制器100。根据工作模式信号Sm和反馈信号Sf,控制器100产生控制激光功率控制装置LP每个元件工作的控制信号Sc。
如上描述,在传统多功能驱动器中,CD激光功率控制系统LPcd和DVD激光功率控制系统LPdvd是独立构成的,因而每对前端和后端监视器上多余地配有一个占据空间的光电探测器,这就限制了生产小型的多功能驱动器。

发明内容
因此,本发明的目标之一是通过提供多余配置的前端和后端监视器的共性,而得到一种小型的激光功率控制装置。本发明具有以下特征以达到上述目标。
本发明的第一方案为控制激光输出的激光功率控制装置,该装置专用于多功能驱动器中的第一和第二光盘,以从其上记录或读取信息,该装置包括第一激光发生器,用于产生应用于第一光盘的第一激光;第一驱动电流发生器,用于产生第一激光发生器的驱动电流;第二激光发生器,用于产生应用于第二光盘的第二激光;第二驱动电流发生器,用于产生第二激光发生器的驱动电流;激光强度探测器,专用于采集第一激光和第二激光,并产生表明采集到的激光强度的第一激光强度信号;第一激光发生电流控制器,用于根据第一激光强度信号控制第一激光发生器;和第二激光发生电流控制器,用于根据第一激光强度信号控制第二激光发生器。
如上所述,在本发明中,能够对多种光盘复制或记录信息的多功能驱动器中,只配有一个光电探测器采集激光以控制激光功率,因此使得生产结构紧凑的激光功率控制装置成为可能。
结合附图对本发明进行下列详细描述,本发明的这些以及其它目的、特征、方案和优点将会变得更加明显。
附图简述图1为示出根据本发明第一实施例的激光功率控制装置的结构的框图;图2为示出根据本发明第二实施例的激光功率控制装置的结构的框图;图3为示出根据本发明第三实施例的激光功率控制装置的结构的框图;图4为示出根据本发明第四实施例的激光功率控制装置的结构的框图;图5为示出根据本发明第五实施例的激光功率控制装置的结构的框图;图6为示出根据本发明第六实施例的激光功率控制装置的结构的框图;图7为示出根据本发明第七实施例的激光功率控制装置的结构的框图;图8为示出根据本发明第八实施例的激光功率控制装置的结构的框图;图9为示出根据本发明第九实施例的激光功率控制装置的结构的框图;图10为示出根据本发明第十实施例的激光功率控制装置的结构的框图;图11为示出根据本发明第十一实施例的激光功率控制装置的结构的框图;
图12为示出根据本发明第十二实施例的激光功率控制装置的结构的框图;图13为示出根据本发明第十三实施例的激光功率控制装置的结构的框图;图14为示出根据本发明第十四实施例的激光功率控制装置的结构的框图;图15为示出根据本发明第十五实施例的激光功率控制装置的结构的框图;图16为示出根据本发明第十六实施例的激光功率控制装置的结构的框图;以及图17为示出传统多功能驱动器中使用的激光功率控制装置的结构框图。
发明详述(第一实施例)参考图1,描述根据本发明第一实施例的激光功率控制装置。简言之,激光功率控制装置LPC1具有的结构使图17所示的传统激光功率控制装置LP中的DVD激光功率控制系统LPdvd的后端监视器19被去除,而CD激光功率控制系统LPcd和DVD激光功率控制系统LPdvd在节点11相互连接。另外,控制器100由控制器100a所取代。
确切地说,在激光功率控制装置LPC1中,从DVD激光功率控制系统LPdvd中去除后端监视器19构成DVD激光功率控制单元LPdvd_1,并从CD激光功率控制系统LPcd中去除前端监视器8构成CD激光功率控制单元LPcd_1,二者共用一个前端监视器8。前端监视器8采集CD激光Lc或DVD激光Ld并产生激光强度信号PD0。然后激光强度信号PD0通过节点11提供给CD激光功率控制单元LPcd_1和DVD激光功率控制单元LPdvd_1。
特别指出,尽管在前端监视器8产生激光强度信号PD0,但激光强度信号PD0本质上与前述激光强度信号PD01和PD02相同。还要特别指出,在图1中,由于空间限制,再现放大单元Up和记录放大单元Ur共同称为“放大单元U”,并且以下描述也将它们共同称为“放大单元U”,和前述的情况相同。
现在,描述控制器100a的工作。根据从多功能驱动器(未显示)输入的工作模式信号Sm,控制器100a探测是否使用CD驱动器或DVD驱动器,并根据使用的驱动器,产生用于控制激光功率控制装置LPC1的每个元件的控制信号Sca。确切地说,若使用CD驱动器,即激光二极管LD1发光,而DVD激光功率控制单元LPdvd_1的运算放大器6关闭以使激光二极管LD2不发光。更确切地说,将运算放大器6的输出上拉到电源电压。因此,只有CD激光功率控制系统LPcd(CD激光功率控制单元LPcd_1)运行,从而适当控制激光二极管LD1的激光功率。
另一方面,若使用DVD驱动器,即激光二极管LD2发光,而CD激光功率控制单元LPcd_1的补偿调节器1、可变增益电路2、采样/保持电路3和运算放大器4关闭。因此,只有DVD激光功率控制系统LPdvd(DVD激光功率控制单元LPdvd_1)运行,从而适当控制激光二极管LD2的激光功率。
如上所述,在本实施例中,当前端监视器8输出的激光强度信号PD0通过节点11提供给CD激光功率控制系统LPcd和DVD激光功率控制系统LPdvd时,根据多功能驱动器的工作模式(即工作模式信号Sm),适当控制唯一使用的驱动器的激光功率。
(第二实施例)参考图2,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC2为图1所示的激光功率控制装置LPC1的改进样式,其中激光功率控制单元LPdvd_1由DVD激光功率控制单元LPdvd_2所取代,而控制器100a由控制器100b所取代。DVD激光功率控制单元LPdvd_2与DVD激光功率控制单元LPdvd_1的不同之处在于,一个可变增益电路9(图中称作“VGA”)放置在运算放大器6和节点11之间。
激光强度信号PD02(PD0)由可变增益电路9进行增益调节并输入运算放大器6。即,为让本来用于探测CD激光Lc的前端监视器8探测具有不同强度特性的DVD激光Ld等,必须将可变增益电路9对CD激光Lc的灵敏度(电压增益)改变为对DVD激光Ld的灵敏度。据此,在本实施例中,通过可变增益电路9对激光强度信号PD0进行增益调节,消除了改变前端监视器8自身电源增益的必要性。换句话说,用于CD激光Lc的前端监视器8也能用于具有更高能量的DVD激光Ld,并且具有适当的灵敏度,而无需调节前端监视器8自身。
现在,描述控制器100b的工作。和控制器100a的情况一样,控制器100b也根据工作模式信号Sm产生控制信号Scb并控制激光功率控制装置LPC2。若使用CD驱动器,即激光二极管LD1发光,而DVD激光功率控制单元LPdvd_2的运算放大器6和可变增益电路9关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1工作,从而适当控制激光二极管LD1的激光功率。
另一方面,若使用DVD驱动器,即激光二极管LD2发光,控制器100b关闭CD激光功率控制单元LPcd_1的补偿调节器1、可变增益电路2、采样/保持电路3和运算放大器4。因此,只有DVD激光功率控制单元LPdvd_2运行,从而适当控制激光二极管LD2的激光功率。
(第三实施例)参考图3,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC3为图2所示的激光功率控制装置LPC2的改进样式,其中激光功率控制单元LPdvd_2由DVD激光功率控制单元LPdvd_3所取代,而控制器100b由控制器100c所取代。DVD激光功率控制单元LPdvd_3与DVD激光功率控制单元LPdvd_2的不同之处在于,通过加法器22又将一个补偿调节器18置于可变增益电路9和节点11之间。
通过使用补偿调节器18,与激光功率控制装置LPC2相比,可以更精确地调节激光二极管LD2发出的DVD激光Ld的灵敏度,而无需改变前端监视器8的电压增益。
接下来,描述控制器100c的工作。控制器100c根据工作模式信号Sm产生控制信号Scc并控制激光功率控制装置LPC3。若使用CD驱动器,即激光二极管LD1发光,DVD激光功率控制单元LPdvd_3的运算放大器6、可变增益电路9和补偿调节器18关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1工作,从而适当控制激光二极管LD1的激光功率。
另一方面,若使用DVD驱动器,即激光二极管LD2发光,控制器100c关闭CD激光功率控制单元LPcd_1的补偿调节器1、可变增益电路2、采样/保持电路3和运算放大器4。因此,只有DVD激光功率控制单元LPdvd_3运行,从而适当控制激光二极管LD2的激光功率。
(第四实施例)参考图4,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC4为图2所示的激光功率控制装置LPC2的改进样式,其中激光功率控制单元LPdvd_2由DVD激光功率控制单元LPdvd_4所取代,而控制器100b由控制器100d所取代。在DVD激光功率控制单元LPdvd_4中,可变电压源25连接到运算放大器6以代替参考电压PD2ref。通过使用可变电压源25,在预定范围内给定的电压可以设定为参考电压,因此与激光功率控制装置LPC2相比,可以更精确地调节DVD激光Ld的灵敏度。
接下来,描述控制器100d的工作。控制器100d根据工作模式信号Sm产生控制信号Scd并控制激光功率控制装置LPC4。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_4的运算放大器6和可变增益电路9关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100d关闭CD激光功率控制单元LPcd_1的补偿调节器1、可变增益电路2、采样/保持电路3和运算放大器4。因此,只有DVD激光功率控制单元LPdvd_4运行,从而适当控制激光二极管LD2的激光功率。
(第五实施例)参考图5,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC5为图1所示的激光功率控制装置LPC1的改进样式,其中激光功率控制单元LPdvd_1由DVD激光功率控制单元LPdvd_5所取代,而控制器100a由控制器100e所取代。在DVD激光功率控制单元LPdvd_5中,运算放大器6通过节点12而不是节点11连接在加法器20和CD激光功率控制单元LPcd_1的放大单元U之间。
前端监视器8输出的激光强度信号PD0(PD01)由补偿调节器1进行补偿调节并输入运算放大器6。即,激光功率控制装置LPC5具有适应两种不同激光发光量差值的效果,和前述的激光功率控制装置LPC1的采样/保持电路3一样。在本实施例中,通过与CD激光功率控制单元LPcd_1和DVD激光功率控制单元LPdvd_5共用补偿调节器1,与激光功率控制装置LPC3相比,激光功率控制装置LPC5可以减少电路尺寸。
接下来,描述控制器100e的工作。控制器100e根据工作模式信号Sm产生控制信号Sce并控制激光功率控制装置LPC5。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_5的运算放大器6关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100e关闭CD激光功率控制单元LPcd_1的可变增益电路2、采样/保持电路3和运算放大器4。特别指出,将补偿调节器1的补偿值改变为适于激光二极管LD2的数值。即,在本实施例中,控制器100e在至少两种类型即CD和DVD应用之间改变补偿调节器1的补偿值。
(第六实施例)
参考图6,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC6为图5所示的激光功率控制装置LPC5的改进样式,其中激光功率控制单元LPdvd_5由DVD激光功率控制单元LPdvd_6所取代,而控制器100e由控制器100f所取代。在DVD激光功率控制单元LPdvd_6中,又将可变增益电路9置于运算放大器6和节点12之间。
前端监视器8输出的激光强度信号PD0(PD01)由加法器20和补偿调节器1进行补偿调节,然后由可变增益电路9进行进一步增益调节并输入运算放大器6。该结构具有与如图3所示的激光功率控制装置LPC3相同的有益效果。另外,通过与CD激光功率控制单元LPcd_1和DVD激光功率控制单元LPdvd_6共用补偿调节器1和加法器20,与激光功率控制装置LPC3相比,激光功率控制装置LPC6可以减少电路尺寸。
接下来,描述控制器100f的工作。控制器100f根据工作模式信号Sm产生控制信号Scf并控制激光功率控制装置LPC6。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_6的运算放大器6和可变增益电路9关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100f关闭CD激光功率控制单元LPcd_1的可变增益电路2、采样/保持电路3和运算放大器4。特别指出,将补偿调节器1的补偿值改变为适于激光二极管LD2的数值。可变增益电路2和9具有固定的增益值。
(第七实施例)参考图7,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC7为图6所示的激光功率控制装置LPC6的改进样式,其中激光功率控制单元LPdvd_6由DVD激光功率控制单元LPdvd_7所取代,而控制器100f由控制器100g所取代。在DVD激光功率控制单元LPdvd_7中,运算放大器6的参考电压PD2ref由可变电压源25所取代。这样,可以将参考电压设定为预定范围内的给定电压,因此与激光功率控制装置LPC6相比,可以更精密地调节运算放大器6的放大特性。
接下来,描述控制器100g的工作。控制器100g根据工作模式信号Sm产生控制信号Scg并控制激光功率控制装置LPC7。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_7的运算放大器6和可变增益电路9关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100g关闭CD激光功率控制单元LPcd_1的可变增益电路2、采样/保持电路3和运算放大器4。特别指出,将补偿调节器1的补偿值改变为适于激光二极管LD2的数值。可变增益电路2和9具有固定的增益值。可变电压源5和25的电压值固定在预定值。
(第八实施例)参考图8,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC8为如图1所示的激光功率控制装置LPC1的改进样式,其中激光功率控制单元LPdvd_1由DVD激光功率控制单元LPdvd_8所取代,而控制器100a由控制器100h所取代。在DVD激光功率控制单元LPdvd_8中,CD激光功率控制单元LPcd_1的可变增益电路2的输出的激光强度信号S2,通过节点13输入DVD激光功率控制单元LPdvd_8的运算放大器6。即,这种结构是在图3所示的激光功率控制装置LPC3中去除DVD激光功率控制单元LPdvd_3的可变增益电路9、补偿调节器18和加法器22,而被去除元件的功能由CD激光功率控制单元LPcd_1的补偿调节器1、可变增益电路2和加法器20实现。利用该结构,与激光功率控制装置LPC3相比,激光功率控制装置LPC8可以减少电路尺寸。
接下来,描述控制器100h的工作。控制器100h根据工作模式信号Sm产生控制信号Sch并控制激光功率控制装置LPC8。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_8的运算放大器6关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100h关闭CD激光功率控制单元LPcd_1的可变增益电路2、采样/保持电路3和运算放大器4。特别指出,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适合于激光二极管LD2的数值。
(第九实施例)参考图9,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC9为如图8所示的激光功率控制装置LPC8的改进样式,其中激光功率控制单元LPdvd_8由DVD激光功率控制单元LPdvd_9所取代,而控制器100h由控制器100i所取代。在DVD激光功率控制单元LPdvd_9中,运算放大器6的参考电压PD2ref由可变电压源25所取代。这样,可以将参考电压设定为预定范围内的给定电压,因此与激光功率控制装置LPC8相比,可以更精密地调节运算放大器6的放大。
接下来,描述控制器100i的工作。控制器100i根据工作模式信号Sm产生控制信号Sci并控制激光功率控制装置LPC9。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_9的运算放大器6关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100i关闭CD激光功率控制单元LPcd_1的采样/保持电路3和运算放大器4。然后,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适合于激光二极管LD1和LD2的数值。可变电压源5和25的电压值固定在预定值。
(第十实施例)参考图10,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC10为图8所示的激光功率控制装置LPC8的改进样式,其中激光功率控制单元LPdvd_8由DVD激光功率控制单元LPdvd_10所取代,而控制器100h由控制器100j所取代。在DVD激光功率控制单元LPdvd_10中,激光强度信号S3作为CD激光功率控制单元LPcd_1的采样/保持电路3的输出信号,通过节点14输入DVD激光功率控制单元LPdvd_10的运算放大器6。这样,可以将激光强度信号S3输入运算放大器6,而采样/保持电路3的滤波器消除此激光强度信号3的高频噪声。
接下来,描述控制器100j的工作。控制器100j根据工作模式信号Sm产生控制信号Scj并控制激光功率控制装置LPC10。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_10的运算放大器6关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100j关闭CD激光功率控制单元LPcd_1的运算放大器4,但是让采样/保持电路3总是工作。特别指出,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适于激光二极管LD1和LD2的数值。
(第十一实施例)参考图11,描述依照由本实施例构成的激光功率控制装置。激光功率控制装置LPC11为图10所示的激光功率控制装置LPC10的改进样式,其中激光功率控制单元LPdvd_10由DVD激光功率控制单元LPdvd_11所取代,而控制器100j由控制器100k所取代。在DVD激光功率控制单元LPdvd_11中,运算放大器6的参考电压PD2ref由可变电压源25所取代。这样,可以将参考电压设定为预定范围内的给定电压,因此与激光功率控制装置LPC11相比,可以更精密地调节运算放大器6的放大特性。
接下来,描述控制器100k的工作。控制器100k根据工作模式信号Sm产生控制信号Sck并控制激光功率控制装置LPC11。确切地说,在使用CD驱动器的情况下,DVD激光功率控制单元LPdvd_11的运算放大器6关闭以使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100k关闭CD激光功率控制单元LPcd_1的运算放大器4,但是让采样/保持电路3总是工作。特别指出,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适于激光二极管LD1和LD2的数值。可变电压源5和25的电压值固定在预定值。
(第十二实施例)参考图12,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC12为图11所示的激光功率控制装置LPC11的改进样式,其中激光功率控制单元LPdvd_11由DVD激光功率控制单元LPdvd_12所取代,而控制器100k由控制器1001所取代。在DVD激光功率控制单元LPdvd_12中,去除了DVD激光功率控制单元LPdvd_11中的运算放大器6和可变电压源25。另外,将CD激光功率控制单元LPcd_1的放大单元U输出的CD激光驱动控制信号LDIc输入到晶体管PNP中。
即,激光二极管LD2驱动电流的所有放大功能由CD激光功率控制单元LPcd_1的放大单元U执行,由此缩小了激光功率控制装置LPC12的可变增益电路2的电路尺寸。特别指出,仅仅包括晶体管PNP的DVD激光功率控制单元LPdvd_12,能够根据CD激光驱动控制信号LDIc控制激光二极管LD2的DVD激光Ld的功率。
接下来,描述控制器1001的工作。控制器1001根据工作模式信号Sm产生控制信号Sc1并控制激光功率控制装置LPC12。确切地说,在使用CD驱动器的情况下,晶体管PNP关闭并截止使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_1运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器1001关闭CD激光功率控制单元LPcd_1的激光器驱动电路7,但是让采样/保持电路3总是工作。特别指出,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适于激光二极管LD1和LD2的数值。可变电压源5和可变增益电路2的值固定为预定值。
(第十三实施例)参考图13,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC13为图12所示的激光功率控制装置LPC12的改进样式,其中CD激光功率控制单元LPcd_1由CD激光功率控制单元LPcd_13所取代,而控制器1001由控制器100m所取代。在CD激光功率控制单元LPcd_13中,又将极性反转器16(图中称作“POL sel”)放置在加法器20和前端监视器8之间。换句话说,可以说将极性反转器16放置在CD激光功率控制单元LPcd_13和前端监视器8之间。
极性反转器16具有响应控制器100m的指令反转输入信号的极性并输出该信号的功能。确切地说,如果需要,前端监视器8输出的激光强度信号PD0(PD01)经过极性反转,并输入CD激光功率控制单元LPcd_13。更确切地说,在CD激光功率控制单元LPcd_13和DVD激光功率控制单元LPdvd_12具有不同控制极性的情况下,根据被驱动的二极管(即激光二极管LD1或者激光二极管LD2之一)将激光强度信号PD0的极性反转。
接下来,描述控制器100m的工作。控制器100m根据工作模式信号Sm产生控制信号Scm并控制激光功率控制装置LPC13。确切地说,在使用CD驱动器的情况下,晶体管PNP关闭并截止使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd_13运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100m关闭CD激光功率控制单元LPcd_13的激光器驱动电路7,但是让采样/保持电路3总是工作。特别指出,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适于激光二极管LD1和LD2的数值。可变电压源5和可变增益电路2的值固定为预定值。在CD激光功率控制单元LPcd_13和DVD激光功率控制单元LPdvd_12具有不同的控制极性的情况下,极性反转器16根据被驱动的二极管(即激光二极管LD1或者激光二极管LD2之一)反转激光强度信号PD0(PD01)的极性。
(第十四实施例)参考图14,描述根据本实施例的激光功率控制装置。激光功率控制装置LPC14为图12所示的激光功率控制装置LPC12的改进样式,其中CD激光功率控制单元LPcd_1由CD激光功率控制单元LPcd_14所取代,而控制器1001由控制器100n所取代。在CD激光功率控制单元LPcd_14中,运算放大器4由极性可逆运算放大器4′所取代。利用这种结构,在CD激光功率控制单元LPcd_14和DVD激光功率控制单元LPdvd_12具有不同控制极性的情况下,和激光功率控制装置LPC13一样,根据被驱动的二极管(即激光二极管LD1或者激光二极管LD2之一)反转极性可逆运算放大器4′的极性。
接下来,描述控制器100n的工作。控制器100n根据工作模式信号Sm产生控制信号Scn并控制激光功率控制装置LPC14。确切地说,在使用CD驱动器的情况下,晶体管PNP关闭并截止使激光二极管LD2不发光。因此,只有CD激光功率控制单元LPcd1_4运行,从而适当控制激光二极管LD1的激光功率。
另一方面,在使用DVD驱动器的情况下,控制器100n关闭CD激光功率控制单元LPcd_14的激光器驱动电路7,但是让采样/保持电路3总是工作。特别指出,将补偿调节器1的补偿值和可变增益电路2的增益值改变为适于激光二极管LD1和LD2的数值。可变电压源5和可变增益电路2的值固定在预定值。在CD激光功率控制单元LPcd_14和DVD激光功率控制单元LPdvd_12具有不同的控制极性的情况下,根据被驱动的二极管(即激光二极管LD1或者激光二极管LD2之一)而反转极性可逆的运算放大器4′的极性。
(第十五实施例)参考图15,描述依照由本实施例的激光功率控制装置。除了控制器100n被控制器100o取代以外,激光功率控制装置LPC15的结构和图14所示的激光功率控制装置LPC14相同。
在本实施例中,极性可逆运算放大器4′内包括开关SW1和开关SW2。通过控制器100o控制着两种类型的开关SW1和SW2的工作时间,将输出信号极性反转。
(第十六实施例)参考图16,描述依照由本实施例的激光功率控制装置。如图16所示,激光功率控制装置LPC16包括激光二极管LD1、激光器驱动电路7、前端监视器8、后端监视器19、运算放大器41、可变电压源51、采样/保持电路31、采样/保持电路32、可变增益电路2、补偿调节器1、加法器20、运算放大器42、可变电压源52、开关60、DVD激光功率控制单元LPdvd_10、以及控制器100q。运算放大器41和42均由负比较器(negative comparator)构成,而运算放大器6由一个正比较器(positive comparator)构成。
开关60包括开关60a和开关60b。开关60a根据后端监视器19输出的信号强度选择前端监视器8、采样/保持电路32和采样/保持电路31其中之一。开关60b根据后端监视器19输出的信号强度选择开关60a或后端监视器19。确切地说,开关60根据后端监视器19的输出信号选择采样/保持电路31、采样/保持电路32和前端监视器8其中之一,并将所选择的输出信号输出到DVD激光功率控制单元LPdvd_10。特别指出,补偿调节器、可变增益电路和采样/保持电路的连接顺序并不局限于上述描述;其连接顺序可以适当改变。
接下来,描述控制器100q的工作。控制器100q根据工作模式信号Sm产生控制信号Scq并控制激光功率控制装置LPC16。确切地说,在使用CD驱动器的情况下,运算放大器6关闭使激光二极管LD2不发光。
另一方面,在使用DVD驱动器的情况下,控制器100q以下述方式控制各元件。
在开关60a选择采样/保持电路31以及开关60b选择开关60a的情况下,控制器100q关闭可变增益电路2、采样/保持电路32、运算放大器41和运算放大器42。于是,当激光二极管LD1或LD2发光时,控制器100q改变补偿调节器1的补偿值。让采样/保持电路31总是工作。
在开关60a选择采样/保持电路32以及开关60b选择开关60a的情况下,控制器100q关闭采样/保持电路31、运算放大器41和运算放大器42。于是,当激光二极管LD1或LD2发光时,控制器100q改变补偿调节器1的补偿值和可变增益电路2的增益值。让采样/保持电路32总是工作。
在开关60a选择后端监视器19以及开关60b选择开关60a的情况下,控制器100q关闭补偿调节器1、可变增益电路2、采样/保持电路31、采样/保持电路32、运算放大器41和运算放大器42。
在开关60b选择后端监视器19的情况下,控制器100q关闭补偿调节器1、可变增益电路2、采样/保持电路31、采样/保持电路32、运算放大器41和运算放大器42。
该结构允许控制器根据情况在多种特性间选择,因此提高了灵活性。此外,由于可以使用后端监视器,在传统系统中也可以控制激光功率。因此,该结构可应用于试图缩小尺寸的多功能驱动器中。
尽管对本发明进行了详细描述,但先前所有方案的描述都是说明性而非限制性的。可以理解,在不背离本发明范围的情况下,可以设计出许多其他修改和变化。
权利要求
1.一种用于控制激光输出的激光功率控制装置,该激光专门用在多功能驱动器中的第一光盘和第二光盘上,在其上记录或从中读取信息,该装置包含第一激光发生装置,用于产生应用于该第一光盘的第一激光;第一驱动电流发生装置,用于产生该第一激光发生装置的驱动电流;第二激光发生装置,用于产生应用于该第二光盘的第二激光;第二驱动电流发生装置,用于产生该第二激光发生装置的驱动电流;激光强度探测装置,专用于采集该第一激光和该第二激光,并产生表明该采集激光的强度的第一激光强度信号;第一激光发生电流控制装置,用于根据该第一激光强度信号控制该第一激光发生装置;第二激光发生电流控制装置,用于根据该第一激光强度信号控制该第二激光发生装置;
2.如权利要求1所述的激光功率控制装置,其中所述第一激光电流发生控制装置包括第一可变增益装置,用于按第一预定增益值放大所述第一激光强度信号,以补偿所述第一激光和所述第二激光的强度差值。
3.如权利要求2所述的激光功率控制装置,其中所述第一激光发生电流控制装置还包括用于以第一预定补偿值补偿调节所述第一激光强度信号的第一补偿调节装置,以进一步补偿所述第一激光和所述第二激光的强度差值。
4.如权利要求1所述的激光功率控制装置,其中所述第二激光发生电流控制装置包括用于以第二预定增益值放大所述第一激光强度信号的第二可变增益装置,以补偿所述第一激光和所述第二激光的强度差值。
5.如权利要求4所述的激光功率控制装置,其中所述第二激光发生电流控制装置进还包括用于以第二预定补偿值补偿调节所述第一激光强度信号的第二补偿调节装置,以进一步补偿所述第一激光和所述第二激光的强度差值。
6.如权利要求4所述的激光功率控制装置,其中所述第二激光发生电流控制装置包括一个运算放大器,用于根据所述已放大的第一激光强度信号和第一预定参考电压的差值,放大已按所述第二预定增益值放大的所述第一激光强度信号。
7.如权利要求6所述的激光功率控制装置,其中所述第一预定参考电压可变。
8.如权利要求1所述的激光功率控制装置,其中所述第二激光发生电流控制装置根据已补偿调节的所述激光强度信号,控制所述第二激光发生装置。
9.如权利要求8所述的激光功率控制装置,其中所述第二激光发生电流控制装置包括第二可变增益装置,用于以第二预定增益值放大已补偿调节的所述激光强度信号。
10.如权利要求9所述的激光功率控制装置,其中所述第二激光发生电流控制装置包括一个运算放大器,用于根据所述已放大的激光强度信号和第二预定参考电压的差值,放大已按所述第二预定增益值放大的所述激光强度信号。
11.如权利要求10所述的激光功率控制装置,其中所述第二预定参考电压可变。
12.如权利要求2所述的激光功率控制装置,其中所述第二激光发生电流控制装置包括一个运算放大器,用于根据所述已放大的第一激光强度信号和第二预定参考电压的差值,放大已按所述第一预定增益值放大的激光强度信号。
13.如权利要求12所述的激光功率控制装置,其中所述第二预定参考电压可变。
14.如权利要求2所述的激光功率控制装置,其中所述第一激光电流发生控制装置还包括一个采样/保持电路,用于采样和保持已按所述第一预定增益值放大的所述第一激光强度信号,以及一个运算放大器,用于根据所述已采样和保持的第一激光强度信号和第二预定参考电压的差值,放大所述已采样和保持的第一激光强度信号。
15.如权利要求14所述的激光功率控制装置,其中所述第二预定参考电压可变。
16.如权利要求1所述的激光功率控制装置,其中所述第二驱动电流发生装置由所述第一激光发生电流控制装置控制。
17.如权利要求16所述的激光功率控制装置,其中所述第一激光发生电流控制装置还包括一个极性反转器用于反转所述第一激光强度信号的极性。
18.如权利要求12所述的激光功率控制装置,其中所述运算放大器的极性可变。
19.如权利要求12所述的激光功率控制装置,其中所述运算放大器的极性在预定的时间可变。
20.如权利要求1所述的激光功率控制装置,还包括第二激光强度探测装置,用于采集所述第二激光并产生第二激光强度信号;一个第一采样/保持电路,用于采样和保持所述第一激光强度信号;一个可变增益电路,用于以预定增益放大该第一激光强度信号;一个第二采样/保持电路,用于以预定增益采样和保持已放大的该第一激光强度信号;第一开关,根据该第二激光强度信号从该第一采样/保持电路的输出、该第二采样/保持电路的输出和该第一激光强度信号组成的组中选择一个并输出该信号;以及第二开关,根据该第二激光强度信号从该第一开关的输出和该第一激光强度信号中选择一个并输出该信号,其中该第二激光发生电流控制装置根据该第二开关的该输出控制该第二激光发生装置。
全文摘要
在用于控制多功能驱动器激光功率的激光功率控制装置中,应用于第一光盘的第一激光Lc和应用于第二光盘的第二激光Ld由一个光电探测器8采集。
文档编号G11B7/0045GK1591594SQ20041005609
公开日2005年3月9日 申请日期2004年8月16日 优先权日2003年9月4日
发明者片田真三康, 谷口元教 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1