磁盘文件伺服写入的径向自传送模式的发生的制作方法

文档序号:6744447阅读:225来源:国知局
专利名称:磁盘文件伺服写入的径向自传送模式的发生的制作方法
本申请是1994年12月2日申请的申请号为08/349,028的后续申请。
本申请涉及在这里被指定作为参考文献的由T.Chainer等人于1993年3月8日申请的题目为"在存贮介质上写入伺服模式的方法和系统"的美国专利申请08/028,044,还涉及到在这里被指定作为参考文献的由T.Chainer等人于1994年12月1日申请的美国专利申请08/348,773。
本发明涉及到一种用于计算机的硬盘驱动存贮器存储装置,特别是,涉及到用于写其中的伺服磁道的磁盘驱动装置和方法。更特别地是它减少了对用于在所述记录介质的记录表面上建立伺服模式的复杂的机械和/或光学定位系统的需要。
如在国际专利申请WO94/11864中所描述的,在软盘和硬盘驱动器中存储容量的增加是可能由于音圈和其它类型伺服定位器以及能够使用例如磁阻(MR)头技术对窄磁道进行读和写形成的较高磁道密度的直接结果。先步,使用推动螺杆和步进电机机构可以使低磁道密度磁盘驱动器得到令人满意的磁头定位。但是,当与磁道一磁道之间的间歇相比较磁道密度大到使推动螺杆和步进电机相结合所产生的机械误差相当明显时,就需要一个嵌入伺服,从而能够根据读出的信号来确定所述磁头的位置。
通常,硬盘制造技术包括利用一个特殊的伺服写工具在头盘组合件(HDA)的介质上写伺服磁道。激光定位反馈也被用于这种工具中以读出用于写所述伺服磁道的记录头的有效实际位置。可惜,由于所述的HDA非常的小并取决于在适当操作位置中的覆盖和铸塑,这种伺服写装置进入HDA的内部环境进行伺服写变得越来越困难,某些HDA仅具有塑料名片的尺寸和厚度。在这种微型化等级上,传统的伺服写方法是不够的。
传统的伺服模式通常包括在任一侧偏离数据磁道的中心线处非常精确地定位的恒频信号的短脉冲串。这些脉冲串写入一个扇区标题,并被用于发现一个磁道的中心线。在读和写期间,处于中心是需要的。由于可以处于每个扇区的17到60或更多扇区之间,所以,伺服数据区的数量必须是围绕一个数据磁道而散开的。即使如在用一主轴摇摆、盘滑动和/或热膨胀引起的使所述磁道脱出圆周,这些伺服数据区也允许所述的磁头容许一个磁道中心线环绕一个磁盘。技术进步提供了较小的磁盘驱动器并增加了磁道的密度,伺服数据的安排也必须相应的进一步精确。
伺服数据通常利用一个专用的外部伺服写工具来写入,并通常包括使用一个大的硬部件来支撑所述的磁盘驱动器及振动偏置外的平板。一个辅助的时钟磁头被插入到所述记录盘的表面,用于写入一个基准定时模式。一个具有非常精确的引导螺旋的外部头/臂定位器和一个用于位置反馈的激光位移测量设备被用于精确地确定一个变换器的位置并作为磁道位置以及磁道与磁道之间间隔的基础,当所述的磁盘和磁头被暴露在所述环境中以允许所述外部磁头和执行机构的存取时,所述的伺服写需要一个清洁的室内环境。
Oliver等人在美国专利4,414,589中教导了一种伺服写的方法,其中,最佳的磁道间隔是通过在所述定位装置运动范围之内的第一限制停止处定位多个移动的读/写头中的一个来确定的。然后,利用所述的移动磁头写入第一基准磁道。然后选择根据经验会涉及到所需平均磁道密度的予定减少量或幅值减少的百分比X%。然后利用所述移动磁头读出第一基准磁道,再然后使所述移动磁头离开所述第一限定停止位置,直到所述第一基准磁道的幅值减小到其原来幅值的X%为止。再结合利用所述移动磁头写入第二基准磁道,且所述移动磁头再一次以同一方向移动,直到所述第二基准磁道的幅值减少到其原来幅值的X%为止。所述处理一直继续下去,写入相连的基准磁道并使所述移动磁头位移足以使其幅值减少到其原来幅值X%的量,直到所述盘被基准磁道所填满为止。对如此写入的基准磁道的数量进行计数,并且当碰到在所述定位装置移动范围内的第二限定停止位置时所述处理停止。由于已经知道了被写入磁道的数量和所述移动磁头移动的长度,所以,可以检查所述平均磁道密度,以确保它处于所需平均磁道密度的予定范围之内,若所述的平均磁道密度较高,那么就要对所述盘进行擦除,从而使所述的X%变低并重复所述处理。若所述的平均磁道密度很低,也需要擦除所述盘,增加所述的X%并重复所述的处理。若所述的平均磁道密度正好落入所需平均磁道密度的范围以内,那么,确定与一个给定平均磁道密度相关的所需减少比值X%,所述的伺服写可以进入到所述的伺服写步骤。
可惜Oliven等人没有披露如何像使用一个外部时钟磁头来实现上述目标那样使用所述内部记录数据来产生一个时钟磁道。Oliver还没有教导在传送期间如何去确定所述的磁道间隔。这就导致了需要写整个盘表面并对所写磁道的数量计数去确定磁道间隔。另外,Oliver也没有举例说明在为适当设置磁道间距的多个具有磁盘驱动器的磁头中的变化。最后,Oliver等人也没有教导如何在所述径向传送期间限制所产生的误差。
如在国际专利申请WO94/11864中所述,在由Janz于1990年3月27日授权的美国专利4,912,576中描述了一种用于利用盘驱动器本身的一对转换器夹写伺服模式的方法。三种伺服模式被用于产生三相信号,这些信号提供具有正比于速度的斜率的不同信号。在径向方向上基本上宽于正常磁道和磁道之间间隔的伺服模式是可能的。这有助于改善读回幅值以及后来的伺服性能。Janz相信,来自一个转换器的信号电平是对记录在所述盘上特定模式的校直的测量。假如所述的磁通间隙占一个模式的40%,当所述转换器与所述模式中心固定地校直时,所读出的电压将是可得到最大电压值的40%。Janz使用这种现象来看待三种偏置中的两个并沿着随数据磁道扩展的中心线通路交换排列所述模式。
在一个最佳处理中,Janz保留了盘的一面用于伺服,而另一面用于数据。所述的盘驱动器包括在相对表面上共享一个共用执行机构的两个转换器。为了格式化一个被擦除的盘以用于数据初始化,第一相伺服被写入所述伺服面的一个外缘处。随后所述转换器被径向地移入一个磁道的一半内,如由所述第一相伺服磁道幅值的指示的。并且,一个第一数据磁道被记录在所述数据面上。如由所述第一数据磁道幅值所指出的,所述的转换器在此时又被径向地移入到一个磁道的一半内,且在所述的伺服面上记录下一个第二相伺服磁道。如由第二相伺服磁道幅值的指出的,所述的转换器被再次径向地移入一个磁道的一半内,并在所述的数据面内记录下一个第二数据磁道。如由所述第二数据磁道幅值所指出的,所述转换器又再一次径向地移入一个磁道的另一半内,在所述伺服面上记录下第三相伺服磁道。如第三相伺服磁道幅值所指出的,所述转换器被径向移入一个磁道的一半之内,在所述数据面上记录第三数据磁道。这个来回的进程被重复,直到整个的两个表面被写入为止。假如太少或太多的磁道被如此写入,那么就要利用到用于向内适当地多于或少于一个磁道宽度Y2的步骤的消除调节来重新使所述盘规格化。一旦所述盘驱动器被规格化成具有整个完全的适当间隔的伺服磁道,所述的数据磁道就可以被用于它们的目的,并在使送过程中被擦除以接收用户数据。
可惜,Janz所描述的方法耗费了用于伺服磁道的一个整个盘表面,并需要两个磁头一前一后的工作,磁道到磁道间位同步也没有加以控制,用于发现磁道同数据的寻找时间严重不利的相互冲撞,在所述盘单一转内所发生的变换器浮动高度的变化以及主轴的偏斜和介质的不相容都是由于对脱离磁道读出信号幅值的简单读出所造成的不可靠径向位置确定所引起的。现有技术的方法对于非常高性能的盘驱动器是不合适的。
IBM技术公报Bulletin.Vol33,No5(10月1990)题目为"用于伺服磁道写入器的再生时钟技术"一文中建议了一种在进行了适当的封装之后,利用所述产品头且不使用外部定位编码盘向一个磁头/盘组件进行伺服写入的方法。一个单一的时钟磁道被写入在外径处并被分成交流的A和B相。将每个相位一轮流地用作一个时钟信息源,从而在某个时间使所述的磁头向内停止在所述磁道的一半处,从所述的信息源开始,在所述伺服扇区中的伺服信息领先于每个数据域并且处于所述另一个相位中的时钟信号能够被写入。所述的一半磁道停止保证在前写入的时钟信息可以被读出。所述技术无需使用专用伺服写入时钟磁头和相关的机构。
国际专利申请WO94/11864教导了一种硬盘,包括具有一个旋转表面的旋转盘,一个与所述表面相互通信的转换器,一个用于在所述表面上径向扫描所述转换器的伺服执行机构装置,一个连接到所述转换器的可变增益读出放大器,一个附着到所述可变增益放大器上的模/数转换器(ADC)、一个耦合到所述转换器并用于DC擦除所述盘表面的一个频率振荡器,一个用于存贮出现在所述ADC处的存贮数字输出的存贮器,一个用于将信号施加到所述伺服执行机构从而使其向导致所述转换器读出存贮在所述数字存贮器中作为在前读出幅值百分比的幅值的径向位置的控制器。在磁道之间的位同步是通过将一个最初的具有闭合的时钟磁道,接着将一个包括有多个时钟段的正规序列的下一个时钟磁道写入1/2磁道间隔偏移处,从而使得能够在两个写的时钟之间读入所述的最初时钟磁道,并且读出的信号被用于频率的闭锁作为写下一个磁道的时钟段的基准的一个振荡器来保持的。然后建立起时钟段的检查板模式。通过从被写的包括多个时钟段的最后一个磁道逐渐离开一个磁道的一半,并通过写下一个新的与在前的磁道时钟段相互交叉的多个时钟段的序列逐渐地建立起所有其余的磁道。
仅使用内部记录转换器和乘积执行机构(此后称之为自伺服写)所进行的盘文件伺服写的处理包括三种明显不同的子处理的结合写入和读出磁变换以提供精确的定时,通过把在读回信号幅值内的变化用作一个敏感位置转换器而将所述的记录转换器定位在径向位置的顺序处,在由另外两个处理所规定的时间和径向位置处写入实际的乘积伺服模式。本发明解决了现有技术中,特别是Oliver等人的美国专利4,414,589、Cfibbs等人的国际专利申请94/11864以及Chainer等人的相关专利申请08/028,044中所述径向定位处理,以后称为自传送的明显的缺点。所述自传送的概念适用于盘文件伺服写入,同时,考虑到伺服写入成本的非常有价值的利益(例如在由Oliver等人在美国专利4,414,589(1983)中所指出的)尚未在商业上实现。
与惯常的伺服写入相比较,前述技术的不足之处在于精度较低。对于在磁盘文件中越来越紧凑的磁间隔的要求使得需要高精度的伺服模式写入。在没有找到和解决伺服模式不精确的问题的情况下,自传送在成本方面的优势不足以取代惯常的伺服写入。在使用所述自传送时,有两个因素会使伺服模式的精度降低,即复合误差和随机的机械运动。在惯常的伺服写入中,所述的径向定位器是一个外部设备,它根据它的相对高的质量和附着到具有最小振动的非常坚硬一个构件上的强度为所述的记录转换器提供一个稳定的位置,因此使得所述记录转换器的随机机械运动非常小,是由所述伺服模式规定的磁道形状总是一个很完美的圆。从一个磁道到另一个磁道,所发生的误差总是毫无关联的,所以,绝对不必考虑复合问题。通过使用激光移位测量装置可以精确地保持磁道与磁道之间的间隔。在自传送中,被用于伺服控制所述执行机构的径向位置信号得自于在一个在前步骤中被写入的模式回读幅值的测量。在一个处理步骤中产生的误差会影响在下一个步骤中所述记录转换器的位置,所以,主要要考虑在大量步骤中所产生的复合影响。
一个简单的解决办法就是只使用弱伺服控制,从而使得径向位置误差被平均掉而不是被动态跟踪。有关这点,Chainer等人已经描述过,而在Oliver等人的专利中也有暗示。其中,在每个步骤中都要实际重写所述的传送模式。这意味着在写入的时间处不能确定所述的该回幅值,因此,所述的伺服控制器必须是基本上自由运动的,并且不能对所述模式加以动态调节。但是通过使用一个非常严密的伺服控制可以使随机机械运动保持的非常小。由此以较高的随机机械运动为代价,消除了所述的误差复合,从而使得这个解决办法毫无引人之处。另外,使用低带宽伺服需要很长的时间去步进到和稳定所述适当的位置,从而增加了伺服写的时间和成本。
在Cribbs等人的描述中,他们建立所述的伺服控制不动态地跟踪所述被写模式的边缘。但没有讨论如何影响误差复合。实际上,他们描述了一种精加工,用以减少非常可能就是由于这样一个复合效果而产生的所述执行机构的"摆动"和"颤振"。在下面的另一个讨论中,将变得很明显,这个精加工只不过是使在伺服处理过程中产生的连续误差复合隐藏了起来,而不是实际上将其消除掉。
考虑到最后的磁盘文件性能,不同类型的伺服模式误差具有不同程度的重要性。由于即使在相距很远的磁道之间进行高速寻找期间也可以获得磁道计数的正常修改,所以,在所述盘上每个磁道的绝对径向位置需要仅一定程度的控制。类似地,绝对单位的所述平均磁道间隔也不必非常严格地加以限定。用一个最大的绝对间隔,使得所需数据磁道的量都被包含在所述执行机构所述内部和外部机械停止之间,其条件是所述盘文件的记录转换器窄得足以使所述间隔小于没有病态影响的这个最大值。由此,它不是一个临界的绝对间隔,而是一个跟所述记录转换器相比较的相对间隔。由Chainer等人所述的用于确定磁盘文件内最宽磁头以及使用来自那个磁头的测量以设置用于所有磁头的所述磁道间隔对于保证所述平均磁道间隔满足以需要求而言一般说是有效的。但是,在考虑到确定一个理想的幅值减少因数以在自传送期间用于伺服控制基准时,一个意想不到的问题伴随着记录转换器引入而出现那就是在这种记录转换器中,读和写元件相互不吻合。那么就需要一种方法去补偿诸如由于在一般制造中的变化以及当执行机构的旋转形式被用于定位所述的记录转换器时,在相对于盘磁道进行校准中的变化所引起的这两个元件的不对准。
当希望所述磁道形状相当的接近于环形时,所述的盘文件伺服执行机构将反复跟随中等程度的偏移,从而使所述的数据磁道如同它们被写入时一样地在同一个轨道上被回读。因此,与具有较小磁头宽度限制的读回错误对准的概念相反,只要相邻磁道被类似的失真弯曲,仅需通过要求把所述执行机构的可重复运动限制到大约一个磁头宽度,而把所述的绝对圆保持在相当不精确的范围之内。由于在盘文件中一个重要要求是相邻磁道在任何地方都必须隔开某个最小的间隔,所以,对于伺服模式精度而言,最重要的考虑是局部的磁道与磁道之间的间隔,该间隔此后称之为磁道挤压。这保证了相邻磁道信息不必根据(会引起数据读出误差的)回读进行检测,更重要的是,由于这将导致用户数据的永久丢失,所以这可以保证在写期间绝不会出现相邻磁道数据过份重叠的问题。所述的磁道挤压是通过由在环绕所述磁盘的每个磁道上和每个角位置处写入的所述乘积伺服模式规定的在两个相邻磁道位置之间的径向距离确定的。换言之,不仅仅是环绕整个磁盘而均匀是安置的磁道与磁道之间的距离需要考虑,还必须考虑相对于其相邻磁道的每个磁道的具体形状。这是由于在实际的文件操作期间,所述执行机构的伺服控制能够跟随相当圆环的失真,并产生畸形数据磁道。由可所述的伺服回路精确的跟随只能达到一个有限的频率,并相当近似地将它们取作为相同的内容,所以,所述的数据磁道不能与所述的伺服模式磁道形状相匹配。一般被跟随的变量不受这个具体级的影响,但是在确定与磁道挤压相关的精确产品规格时希望包括这个影响。
在设定所述最小可允许的间隔时,必须考虑由在实际文件操作期间由机械干扰所引起的有关(由所述伺服模式规定的)所需磁道位置的随机摆动的存在。最大的干扰源是来自旋转磁盘并针对所述执行机构的紊流。(对于磁道错误校准的)此后称之为TMR的摆动总量规定了同时判断所需伺服模式配置的相关范围。若伺服模式误差近似等于或大于所述的TMR,那么,就需要对所述磁道间隔裕度的主要部分进行补偿,以减少整个磁盘文件数据的容量。但是,一旦所述伺服模式配置误差小于大约所述TMR的一半,进一步的减少就不能对总数据容量提供更多的改善。观察检测的结果是当使用非常低的带宽伺服时所产生的随机机械运动大约比文件操作期间所能受到的TMR大近似5倍。很清楚,在自传送期间使用这样一种伺服回路将导致不能接受的极大误差。
自传送模式由多个置于围绕所述盘表面间隔处的转换脉冲串所组成。所述脉冲串的边缘由一组用于规定企图使所述伺服控制器允许下一步处理器的一个磁道形状的点组成。由此,当所述转换器随后向外运动以对所述脉冲串边缘以外的内容进行伺服控制时,在所述脉冲串写入期间存在于所述转换器内的误差就作为离开所述圆环磁道的失真而出现。由于下一个段写入步骤中,传送这些非圆环轨道,所述的伺服控制器移动所述的转换器并试图跟随它。这使得所述新的脉冲串被写入到反映通过所述伺服回路闭环响应在先前步骤中所产生的误差和在当前步骤中所再现附加误差的一个位置上。因此,在处理过程中的每一个附加步骤所执行所有在步骤道形状误差的"存贮"。这个"存贮"取决于所述伺服回路的具体的闭环响应。导致磁道形状误差的因素包括随机机械运动以及可能根据记录介质特性的变化或所述转换器浮动高度变化的被写入磁道宽度的调制。和所述总的数据磁道宽度相比较,这种调制的影响通常都很小,但是如果反复复合的话,都是可反复地从一个磁道传给另一个磁道并能变成一个非常主要的级别。这种误差不受控制的增长可能导致大量的绝对磁道非圆环。在某些情况下,误差的复合可能导致误差的指数增长。随后所有的误差裕量都将被超过,且所述的自传送处理都将同样地失败。
Cribbs等人将由于浮动高度变化所产生的被写入磁道宽度调制描绘成拥入所述自传送处理的磁道形状误差源,在其所描述的步骤中,利用所述磁盘的三个附加转动来平滑所述的伺服误差控制信号,从而在写入传送脉冲串之前减少所述伺服执行机构的"摆动"和"颤振"。下面这一点是不可能的,即所述磁道宽度调制大得足以去检测在任一段写入步骤中所出现的大"摆动",这特别是由于和在磁道上回读调制相比较,宽度调制仅具有次要的影响,并且在处理过程中的初期步骤排除了具有大量磁道上调制的所有磁盘文件。根据我们的经验和具体的分析,下面的这一点更加是可能的,即固有宽度调制通常只出现在所述磁道宽度百分之几的等级处,但通过误差复合可以增长到相当大的等级。很清楚,在一具高增益伺服回路的位置误差信号中可以辨认的一个信号是由一个远比所述误差信号本身大的潜在磁道形状误差表示的,这是下面一个事实得出的,即所述位置误差信号只不过是不能被所述伺服回路跟随的所述潜在磁道形状误差的一个剩余部分。在磁道跟随的同时调节所述的目标幅值以平滑位置误差信号是一种方法,在这种方法中,潜在的磁道形状误差被隐蔽起来,而不是被去除掉。下面我们将描述对理解所述误差复合是一个转折点的所述伺服回路的具体响应。Cribbs等人所描述的目标幅值的调节可以利用某种类型的伺服回路来限制误差的增长,但是由于没有给出具体的伺服响应,所以还有希望对其版本进行改进。即使在执行了平滑以后再工作,在所述处理的每个步骤中需要三个所述磁盘附加转数的方案也是没有吸引力的。这使所述伺服写的时间加倍,并增加了成本。
如上所述,自传送比惯带的具有笨重外部定位设备的伺服写入装置具有更高等级的随机机械运动。所述的随机机械运动可以通过使用高增益伺服回路加以减少,但是这将导致误差复合。用于把由于随机机械运动以产生的伺服写误差成少到操作文件TMR以下的方法是非常需要的。如上所述,大于此的伺服膜式误差增加了数据磁道之间的所需间距,由此这们将导致较低的磁盘文件容量。没有一个现有技术告诉我们磁盘文件容易减少的有关随机机械运动、或者是随机机械运动和误差复合二者之间的关系、或是误差本身的复合问题。
因此,本发明的一个最主要的目的就是要提供一种方法,利用这种方法,在所述的自伺服写处理期间,可以避免自传送伺服模式磁道形状误差增长。
本发明的另一个目的就是要提供一种方法,利用这种方法,在伺服写处理期间由所述记录转换器的机械运动所引起的不可避免的随机误差在根据所述最后乘积伺服模式的执行过程中被有效地删除,借此,导致在利用其它方法中任一个更高精度的磁道形状限定。
本发明的再一个目的是提供一种方法,去补偿双元件记录转换器读和写元件的不对齐,从而建立所需的磁道间隔,并通过自传送处理保持这个磁道间隔。
本发明的另一个目的就是要尽可能短的保持伺服写时间,以降低成本。
本发明的最佳实施例,包括一个磁盘驱动器,它具有与其相关的用于读/写磁变换的电路部分、用于将所述磁头定位于任一径向位置的激励器以及用于控制在所述磁盘上一个特定扇区内进行读/写的定时电路;还包括用于产生与传送脉冲串和乘积伺服模式相关的写数据的模式发生器;一个用于相对定时地精细调节写入数据的延时单元;一个用于测量被写入变换读回幅值的幅值检测电路;一个用于存贮诸如回读幅值测量的值和基准磁道值的各种量的存贮器;一个用于利用它们对应的原来全磁道幅值为瞬时读回幅值规格化的除法器;一个微机顺序控制器;以及一个伺服控制器,所述伺服控制器具有可变的控制参数,从而允许在所述写处理期间利用一个特殊形式的控制快速地步进和稳定,这在基本上排除了机械干扰的同时,限制了磁道形状误差的增长。所述的盘文件伺服模式解调电路包括这个实施例的一个部分。其中,它与应用到写伺服模式的随机误差删除技术相兼容。
与先前建议的技术相比较,本发明在步进、稳定和径向定位脉冲串的写期间使用了高增益伺服(其频率响应高于转动功率)。这提供了如下优点,即在写入期间,所述TMR被减少,稳定更快。
使用本发明避免使用的高带宽伺服回路的问题在于在写一组脉冲串期间的发生的磁道形状误差将被写下一组脉冲串期间所跟随,从而使得所述误差被逐步相加。一个特殊最坏的磁道形状误差是由在围绕所述盘的磁道宽度中系统调制以发生的。这可能是由于浮动高度或记录介质特性所产生的,也可能是由于大量重复多个磁道所产生的。一个理想伺服回路将紧紧地跟随所述脉冲串的边缘,且磁道形状误差将随着传送步骤的数量线性增长。因此,甚至是一个极小量的宽度调制也能增长到不可控制的等级。磁道到磁道的形状变化保持得很小,但整个磁道的非圆环性却相当的大。对于诸如跟随伺服回路的一般磁盘文件磁道的实的伺服回路来讲,对(由闭环响应给出的)位置信号变化的响应超过了整个频率范围的1(unity)(并包括相移)。与闭环响应值超过1的那个频率相对应的磁道形状的误差在后续磁道上将被放大,从而使得磁道形状误差成指数增长。对于(诸如写宽度调制的)系统和(以TMR形式出现的)随机误差都要产生这种指数增长。由此,所述伺服闭环回路对逐级的放大因数作出相应反应。由本发明提供的一个解决方法包括使用多个伺服回路参数,以使得在等于一个整数倍旋转频率的频率处的闭环回路响应值小于1。在这种方式下抑制所述伺服回路的传输功能,从而所述误差(系统的和随机的)增长控制到一个有限的等级上。利用这个抑制,可以调节所述的闭环回路响应,以提供减小了的TMR和相当块的步进和稳定性能。由于一旦一个误差被作为磁道形状而记录到所述磁盘上,它就会仅在所述重复频率的整数倍处作为具有非零付里叶分量的可重复波形出现在回读上,所以,旋转频率的倍数是一个非常重要的概念。
本发明的另一个方面就是根据这个逐级放大因数控制,通过使用在写入处理期间记录的位置误差信号去调节所述伺服回路的基准信号。在被写入时所述多个端配置中有关误差的这个动态位置信息允许减少有效逐级误差放大因数,以使即使是在闭环响应本身大于1的情况下,也能使所述放大因数小于1。在写期间,提供了使用非常高伺服参数以实现非常低的TMR。
本发明的再一个方面就是在它们被写入最后的乘积伺服模式时,使用在写操作期间已记录的位置误差信号去动态地校正位置误差,这需要所述的伺服写入模式具有以可控方式被调制的性能。所述技术包括把一个定时移位加到一个幅值段或相位编码的伺服模式上,以实现写入径向位置误差的删除。
类似的删除必须应用到所述幅值段传送模式中,以避免所述的传送伺服回路企图跟随在下一个步骤上的磁道形状误差(所述的下一个步骤将导致它的图象被传送给所述的乘积模式,即它将再现在稍后的一个步骤中)。在步进到反映写入期间所检测到的位置误差信号以前,通过修改由所述伺服回路使用的基准幅值(Cribbs等人称之为目标值),所述的校正可以被应用到所述幅值脉冲串传送模式中。通过预补偿在所述写期间引起已知位置误差的基准幅值,当所述的伺服回路跟随一个平滑轨迹时,它将登记一个伺服环。这与Cribbs等人所描述的伺服误差平滑精加工很相似,但在这种情况下,其形式和作用都不相同,这在后面的讨论中将提到。由这种误差删除所提供的优点在于这种方式的模式伺服将极大地减少磁道到磁道间的随机形状误差。
因此,根据本发明的用于在一个磁盘驱动器中伺服写一个旋转磁盘的方法,所述驱动器包括一个用于与所述磁盘相互作用的磁头、一个用于使所述磁头相对于所述磁盘进行定位的激励器、一个用于使所述磁头向所述磁盘写或从所述磁盘读信息的装置、和一个用于根据从所述磁盘中读出的伺服位置信息定位所述激励器的伺服回路,所述方法包括沿着一个磁道写一系列第一模式的步骤;把所述磁头从一个已知的磁道部分移到一个移位后的位置的步骤;从在多个第一模式中所选择的一个中读出用于根据所述已知部分确定代表所述磁头偏移的偏移信息的位置信息的步骤,以及使用所述偏移信息去传送在所述位移后位置处具有以第二模式编码的所述偏移信息的第二模式。
本发明还直接涉及了用于在一个具有旋转磁盘、用于与所述磁盘相互作用的磁头和用于相对所述磁盘径向定位所述磁头的装置的磁盘驱动器中传送一个模式的方法,该方法包括a在一个第一磁道上写第一模式的步骤;b读出和存贮从多个第一模式所选择一个的幅值,并由此而存贮所选择的值;c从一个磁道宽度的一部分移动所述磁头,并写入与所选第一模式相应的第二模式;d重复C步骤n次,用于连续地移动所述磁头,直到所述磁头到达一个所选择的径向位置,并写入附加模式;e在所述第一磁道和所选择的径向位置之间的中间位置处定位所述的磁头;f计算具有处于所述中间位置的所述磁头的所述第一模式的幅值与所选择存贮的幅值的第一比值;g.计算在所述磁头处于所述中间位置时所述附加模式幅值与具有在所选择位置处的所述磁头的幅值的第二比值;h反复地重新定位所述磁头,并在每个位置重复步骤f和g,直到所述的比值基本相等;i将所述比值和所需值进行比较,以确定和所需值的偏移;和j调节连续模式写的间隔,以使在步骤a-j的后续重复步骤中所述的偏移为最小。
当所述的磁头具有单独的读和写元件时,这个方法是特别有用的。


图1是一个方框图,它示出了本发明一个实施例的主要元件。
图2简要地示出了在传送磁道,磁盘扇区和传送段之间的关系。
图3是一个流程图,它示出了本发明一个实施例的基本处理步骤。
图3A是一个处理流程图,该处理用于计算传送参数。
图4A示出了相对于所述磁盘适当放置和错误置位的传送段二者之间的关系。
图4B示出了一个伺服回路,该伺服回路表示了来自图4A所示多个段的信号是如何相互组合而形成一个位置误差信号的。
图5的流程图示出了用于本发明另一实施例的基本处理,其中很多处理步骤同于图3所示。
图6A示出了所述闭环伺服响应的幅值图,用于一个PID伺服控制回路,该回路所具有的参数值导致了所述闭环回路响应小于多个磁盘旋转频率为90Hz中的一个。
图6B示出了所述闭环回路伺服响应的一个幅值图,用于一个具有其幅值导致所述闭环回路响应大于在两倍或三倍于所述90Hz磁盘旋转频率处中一个的PID伺服控制回路。
图7A示出了在使用图6A所示之伺服参数并结合示出了其中最外部磁道对应于传送步骤60的所述实际磁道形状的曲线进行自传送实验时所测得的所述磁道非圆环180Hz付里叶成分的曲线。
图7B示出了使用图6B所示之伺服参数并结合其中最外磁道对应于传送步骤60的所述实际磁道形状曲线进行自传送实验对所测得的所述磁道非圆环180Hz付里叶成分的曲线。
图8A示出了一个其读/写元件分别置于单独位置的记录转换的放大了的简图。
图8B示出了规格化以后的读回幅值与例如图8A所示的一个记录转换器将会得到的磁道断开位置之间的关系曲线。
图9简要示出了与用户数据段相关的各种传送脉冲串的位置,并示出了以对于A和D传送脉冲串产生相等读回幅值的方式置位的读元件。
图10A示出了一般平均基准值和使用一个为图8A所示其中通过在所述A=D伺服位置处周期性地备份和测量平均相对脉冲串幅值而进行了向正常平均基值调节并且有单独读和写元件的记录转换器进行自传送测试时所获得的自传送步骤数量之间的关系曲线。
图10B示出了在如图10所示同一个实验期间获得的平均值相对脉冲串幅值,它示出了所述磁道间隔保持为常数的精度。
图11A的曲线示出了与所述扇区1D一起的两个段幅值伺服模式中的A和B的相对位置并示出了置于所述数据磁道位置上的所述读元件。
图11B-11F地出了所述选通积分器型乘积伺服模式解调器相关的各种信号波形。
图12的方框图示出了与选通积分器型模式解调器相关的电路元件。
图13A示出了具有如图11A所示相同特性用于两脉冲串幅值伺服模式但在出现写入TMR误差对具有A脉冲串径向移动。
图13B-13F示出了如图11B-11F所示之相同信号波形,但与图13A所示的错误伺服模式脉冲串位置相关。
图1示出了本发明一个最佳实施例的主要成份。具有其记录转换器22,音圈激励器24,记录介质26、伺服模式解调器27和读/写控制电路28的磁盘驱动器20连接到一个与模式发生器30相串联的延时单元31上,所述延时单元31通过定时控制器32计时并允许在精确的受控时间处记录磁变换的段。为了径向自传送脉冲串写入和检测,所述的定时控制器可以是一个由Advanced Micro DevicesCorporation of Sunnyvale California生产的Am9513A系统定时控制器,它被每转一次地同步到标定(index)定时标记上,但应当理解,特别是当写一个伺服识别域或每当写入一个相位编码的伺服模式时,实际乘积伺服模式的写入须要更严密的定时控制。在相关的美国专利申请08/028,044中,已经描述了使用内部磁盘文件记录转换器,以与自传送相一致的方式实现这种精密定时控制的方法。
来自文件读/写电路28的读回信号被连接到幅值解调电路34,其输出通过一个模/数转换器(ADC)36在由一个与微机顺序控制器33共同作用的定时控制器32所确定的时间处被转换成数字形式。顺序控制器33还对存贮器38进行存取,以存贮和供除法器40所使用的数字化读回幅值。具有存贮器38的顺序控制器33还存贮和供减法器42使用的基准表值,以建立用于输出给一个数字伺服控制器44的位置误差信号(PES)。顺序控制器33还提供一个计算能力,用于确定对所存贮的基准表值进行修改,并用于对施加到所述定时单元31的适当延时设定,同时它还产生一个用于模式发生器30的控制信号。所述数字伺服控制器44的输出被一个数/模转换器(DAC)46转换成模拟形式,并利用一个VCM驱动器48进一步放大和转换成一个电流。所述的驱动电流被加到所述磁盘文件中的音圈激励器24上,从而使得记录转换器22相对于记录介质26作适当的径向运动。在一个实施例中,都是通过微机顺序控制器33的适当编码来实现所述除法器40,减法器42以及数字伺服控制器44的功能的。
图2示出了部份记录介质26,它示出的利用在由来自磁盘主轴电机或来自所述定时控制器的一个索引脉冲所确定的盘旋转索引之后直接进入的第一扇区101对一定数量的传送磁道111、112、113……的划分以及每个每个磁道划分成一定数量的扇区。每一个扇区还进一步被分成包含有用于传送的幅值脉冲串的区103和被保留以用于精确定的传送系统和用于写包括扇区ID域在内的实际乘积伺服模式以及幅值脉冲串或相位编码模式的区104。在本系统的一个实施例中,在伺服写之后还要利用用户数据重写所述的传送段区103。除了包含有所述乘积伺服模式的那部份以外,区104的全部都要利用用户数据进行重写。每个传送脉冲串区域还要被发成一定数量的时间段105-110,用于传送的幅值脉冲串模式(A,B,C,D,E和F)被写入到这些时间段之中。在这个图中,作为一个指定数据磁道宽度的1/4,示出了传送磁道节距。例如,若所述第一用户数据磁道被选择置于传送磁道112的中心,那么下一个数据磁道将位于传送磁道116的中心地从所述磁盘的这一头到另一头,等等。可以使用向数据磁道的间段时间传送的另一种比例,但是所示之4∶1的比例允许定时灰度代码位和相位编码乘积伺服模式的最好调节。通常,所述的数据磁道的节距被选择得稍大于所述变换器写宽度,从而使得相邻数据磁道的边缘相互不重叠。由于它们分别对应于上述所选择的位于传送磁道112和116中心的数据磁道,所以通过注意B和F段的相对径向位置就可以从图2中看出来。
所述传送脉冲串模式如所述由重复的6个脉冲串顺序组成由于在每个时间段中的段在径向方向上都不相互重叠,从而允许所述的记录转换器去备份和读在前写入的段,所以,这是非常有用的。这样一种处理能够在不必跨跃磁盘表面进行完全传送的情况下用于检查所述传送磁道相对于所述记录转换器的间隔。这一点后面还要详述。用于这种不要检查的传送所需的最小时间段的数量为2。
通常扇区的数量为120,磁盘的转速通常为5400rpm,所以每个扇区大约为92ms。通常时间段的时间为7ms。这长于通常在乘积伺服模式中所使用的幅值脉冲串的持续时间(1ms),但由于它们稍后将被重写,所以不会丢失具有扩充传送脉冲串的用户数据间隔。较长脉冲串的优点在于它们允许在解调节间使用更多的滤波时间,从而导致一个较高的信噪比,该信噪比特别是在考虑到与伺服相关的导数或速度时放大量当数字伺服回路成份。若对于在区104中的定时标记和乘积伺服模式写需要更多的时间,采用较短的脉冲串。
参看图3所示流程图,相互作用的自传送处理开始于步骤130,在这个步骤中,通过将所述激励器推向其实际停止位置从而将其锁定以防止机械干扰,将所述的记录转换器置位于所述磁盘文件的最外可存贮磁道(OD)或最内可存贮磁道(ID)上。在步骤132,利用每个传送脉冲串区域的第一时间段内A的A脉冲串写入第一传送磁道III(图2)。另外,与所述的精密定时标记一起,将所述乘积伺服模式的第一部份写到每个扇区的区域104中。这可以例如仅占据在从在与所述传送脉冲串模式相同表面上的区域104开始处的很小一部份,并在所述磁盘同一转数期间内写入。另外,可以利用转换所述的写文件以轮流选择每一个记录转换器,利用它们的乘积伺服模式按时间顺序地穿过区域104来写所述盘堆栈内的其它记录表面(对于每一个记录表面具有它自己的记录转换器,且所有这些记录转换都很根据一个激励器一起移动,这一点是很有用的)。这个处理中的第一循环被称作为一个写入循环。
在磁盘的下一循环(称之为规格化循环并示,于图3之步骤134)中,顺序控制器33向ADC36提供信号,并在每个扇区第一时间段期间采样和数字化解调的回读幅值,并在存贮器38内的一个A脉冲串规格化表中记录这些值。
在所有扇区在所述规格化循环中被读出之后,在下一循环的第一传送脉冲串区域103之前,在所述伺服控制电压计算中所使用的参数被设置成等于被称之为步参数的予定值,所述的步参数提供快速运动和稳定,就是说所述的增益和带宽都较高。这示于图3的步骤136。作为一个例子,类似于所述盘文件操作中使用的那些伺服参数可以很好地用作步参数。
在下一个被称之为步进循环并示于步骤138中的磁盘循环中,顺序控制器33通过所存贮的规格化表逐个扇区的步进传送每个值给除法器40。利用与每个扇区相关的与所需幅值减少因数对应的内部基准电平已经予先在所述存贮器中记录了一个基准磁道表。通常,这些内部基准值全都是相等的。类似的,所述的基准磁道表的值被传送给减法器42。ADC36继续数字化每个扇区的A段。当记录转换器22到达每个传送脉冲串区域103的终点时,减法器42有输出包括一个量,该量等于用于那个扇区的基准磁道表入口数减去由所存贮的规格化表的值所等分的所述在前A脉冲串的幅值。这是一个位置误差信号或PES。此时,顺序控制器33提供信号给数字伺服控制器44以读出所述的PES并计算一个新的控制电压设定。在每一个扇区去驱动激励器24之后,通过所述的伺服控制器在减少所述PES的方法,即朝着传送磁道112的方向上来调节这个控制电压。
一旦激励器24被稳定到用于传送磁道112所需的位置(通常大约在一个盘转的1/4内),伺服控制电压计算的参数就被改变到被称作传送参数的一组特殊予定值,这些予定值适合于提供排除机械干扰而且不会放大磁道形状误差。下面描述确定这些值的方式。即使是到下一个传送磁道的步骤数小于满循环,它也可以允许在写下一组脉冲串之前完成所述循环。在一个实施例中,这个伺服参数的改变是利用仅在所述步进循环终点处到达的传送参数逐渐进行的。在图3中,将所述的伺服设置成具有所述传送参数的处理示于跟随的步进循环138,并称之为步骤140。
在这一点处,仅有一个单一的传送磁道被写入,所以,在判断步骤142的判断结果必须是负的,且处理返回到写循环132。在所述的判断步骤142中,传送磁道的计数与一个予定期望数进行比较,而所述予定期望数对应于所述乘积伺服模式的全部。在这第二个写数132中,顺序控制器33向模式发生器30提供信号,以在每个扇区的第二时间段写入变换B的段。和以前一样,精密定时标记和乘积伺服模式也被写入到同一记录表面上的区104中,且恰恰是乘积伺服模式被写入到剩余的记录表面上。通过这个写转,ADC36继续数字化所述A段,且伺服控制器44在使所述转换器22靠近磁道112位置放置的位置处保持所述的激励器24。每一个单独PES读入都被用于以如下方式去调节定时延迟单元31,即当它被写入所述盘相邻区104时,对所述的乘积伺服模式进行调制。有关这个调制制的细节后面将要描述。另外,在写转期间内的所述的PES值被记录到存贮器38的一个表中,以用于后面计算新的基准磁道值。在一个实施例中,当它们逐个扇区的进入时,根据所述的PES值执行一个数字滤波计算,从而导致利用所述写转的终点完成滤波有效值的计算。
下一循环是一个规格化。在步骤134,ADC36数字化A脉冲串和B脉冲串幅值,并将B脉冲串幅值存贮到B脉冲串规格化表中,同时,所述的伺服回路利用根据A脉冲串幅值、A脉冲串规格化表值和所存贮的基准磁道值计算的PES值继续跟踪下面的。在这转期间,还要计算一个新的基准磁道表。每一个新的基准磁道表值被设置成等于予先确定的对在磁盘这个区域内的所需平均磁道间隔加上校正值是适当的一个一般平均基准值。在一个实施例中,所述校正值等于用于在在前写循环期间获得的相应扇区的所述在前记录的PES值的一个预定部分f,称之为基准校正因数。另外,使用应用到来自在前写循环的整组在前记录的PES值的数字滤波算法来计算所述的校正值。在所述的写循环期间内,可以完成某些这种滤波计算,所以,对于在扇区间可获得的间内的每一个基准表值,剩余的部份可以很容易地完成。这个算法在后面描述。通常都是在用于计算了一个控制电压之后去替换每一个基准磁道表的佱值。在这种方式下,在规格化步期间的伺服基准磁道表与其各种值一起加以利用但不再含有用于上行步转的在传送中的新值。
转换到用于PES计算的B脉冲串,重复所述处理,且转器22步进到由步骤132的写循环以跟随步骤138的下一传送磁道。在步骤132中,C段,定时标记以及乘积伺服模式在步骤134的规格化转之步骤写入。在步骤134中,C段被读出并存贮在一个规格化表中。(利用下段之后的A脉冲串)使这个过程继续下去,直到在判断步骤142的回答为"是"时所确定的达到所需数量的数据磁道为止,然后,在步骤144,处理停止。
在这个系统中,使所述激励器偏离理想传送磁道(TMR)的干扰导致错误的写段。在下一个传送磁道位置处这个段的值后读出导致了一个调制的位置信号。图4示出了这种处理,它示出了一个适当置位的段和一个相对于所需传送磁道错误置位的段。当在距离所述在前传送磁道X进入到所述希望的传送磁道上时,所述记录转换器读出用于适当置位的段的相对幅值R。由于这是一个所希望的位置,这个相对幅值等于所述基准磁道组,导致PES为零。所述错误置位的段的边缘从所希望的传送磁道位置相对于所述转换器宽度移动了一个量E,从而使相对读出信号等于R+E。由于所述E是由所述段边缘位置确定的,所以,写入段宽度的改变是产生类似于TMR影响的另一个误差源。
图4B是一个方框图,它示出了本发明的元件是如何组合以形成在伺服工程现有技术中已知的、如作为一个例子由K.Ogata在Prentiss-Hall Corporation of Englewood Ciiffs New Jerscy公开的书"现代控制工程"中所描述的一个伺服回路的标准成份的,书中定义了术语。所述的回路控制器①50是由数字伺服控制器44、DAC46和VCM驱动器48组成的,"装置"152被定义为包括激励器24和记录转换器22。所述装置输出X表示在相对磁头宽度的单元中所述记录转换器的绝对位置。在自传送中,只有可观察的信号才是相对于记录介质26的所述转换器22的位置,但是对于考虑用于分析伺服回路参数的绝对位置X,它却是有用的。明显地包括有一个回路求和点156,用于说明所述绝对位置信号的相对特性。由此,所述的绝对位置信号信号为相对特性。由此,所述的绝对位置信号等于绝对位置X和所述段位置误差E的和。利用所述基准磁道值R在标准的回路求知点154处使信号X+E被组合,以形成所述的位置误差信号或PES。在一般方案中,在求和点处靠近进入箭头所述的符号表示在求和之前加到每个信号上的符号因数,因此,PES=R-(X+E)。
写入脉冲串位置误差的静效应是产生一个伺服回路试图跟随的非圆轨道,因此,误差的作用相当于一个附加的基准信号。对这个轨道的响应是通过所述闭环回路的响应给出的。一般,希望所述闭环回路的闭环回路响应恰好等于1(在这种情况下,所述控制器增益达到无穷大)。这样一个系统产生一个恰好跟随所希望轨道的输出,并且可以无穷大地对抗所述干扰。实际上,只有最后的控制器增益可以使用,而且它必须频繁地依赖于避免由不可避免相移所产生的回路不稳定性。在一典型的伺服回路应用中,包括磁盘文件激励器伺服,其它要性能指示是在最终采样速度的限制内提供最佳的机械干扰排除,并且在相当大范围的频率上,所产生的闭环回路响应有效增加并大于1(1.5或更高)。在盘文件操作期间不会因此而产生剧烈的影响。但是,在目前状态下,在写下一个传送磁道时,会再次产生对在给定传送磁道中非圆轨道的响应,并且在所述下一个传送磁道上会再次产生所述的响应。所述闭环回路响应相当于逐级误差放大因数。所以,在一个传送磁道上的误差出现在稍后被乘以所述闭环回路响应的N个磁道上时就会上升到第N的乘方。因此,如果所述闭环回路响应大于1,那么任一个误差都会无穷大的增长。若所述的闭环回路响应小于1,误差将被复合起来,但在任意一步的误差最终都会被衰减。这样,复合的影响被限制到最后数量的步骤n。大致地讲,通过利用1被某个量除而给定所述n,通过所述的量使闭环回路响应不为1。例如,当一个闭环回路响应为0.99时,n=100。因此,诸如写入磁道宽度调制的系统误差增长大约n的倍数。磁道到磁道间的误差仍然相当小,并且在绝对磁道圆上的很少严格限定被涉及。由于写入磁道宽度调制仅具有百分之几的影响,所以,随后的增长是允许的,且不会超过大约是一个磁道间隔的绝对圆限制。
从时间波形来看,所述的写入段位置误差轨道完全是利用等于所述磁盘旋转频率的重复频率的重复作用。付里叶分分析的原理就在于任一这种重复波形具有包含仅在与所述重复频率、在这种情况下是所述磁盘旋转频率的整数倍相对应的所述不连续组频率处非零幅值的频谱。这样,后在有其处所述闭环回路响应必须保持低于1的相关频率都是所述盘旋转频率的整数倍。当一个频率信号于数量时,所述的闭环回路响应实际上是一具有幅值和相位二者的复杂数的向量,而所述向量的每个元素都对应于所述旋转频率的特定倍数。所述向量每个元素的幅值必须小于1。
选择所述的伺服回路参数的保证所述的闭环回路响应在写期间小于1是一个简单的方法,这种方法在保证限制所述误差增长的同时,提供了随机机械运动中误差的主要减少。在规格化转期间(步骤134)计算的基准磁道表校正值的加入改变的所述状态。在如上所述的一个实施例中,每个新的基准磁道表值被设置得等于一般的平均基准电平加工在前记录PES值的一个予定部分f,以用于在所述写转期间获得的相应扇区。在这种情况下,逐级误差放大因数(或步因数)不再恰恰等于所述的闭环回路响应,但包含有一个等于f(1-C)的附加项。由此,它是一个组合S=C+f(1-C)。这个值必须在所有旋转频率的整数倍处小于1。
在这种特定的实施例中,通过取在所述写转期间记录的所述PES值的部份f来计算所述组的基准表校正。由于它利用了被直接读成时间波形的PES,所以这是相当直接了当的。在上述等式中,S类似于C,是一个复杂计值元素的向量,同时,频率相关的并不含有相移的因数f是一个单一的、实时计值的项。如此,除了在诸如所有C元素都大于1或都小于1的特殊情况以外,不可能发现导致所述向量S的每个元素幅值的f小于1。因此,到达基准表校正的时间范围在某些情况下是有用的,并提供简单化的优点,但是它不能提供在保持高增益伺服性能的同时保证抑制误差增长的能力,其中在某些、但不是所有的频率处,C的幅值超过1。
如图3A所示,这是一个提供了这种能力的另一个实施例。其中,在所述写转期间记录的PES值的向量被作为一个重复时间波形处理,并被数字化滤波以产生所述的基准表校正值。这相当于归纳出所述因数f,使这个因素也变成具有复杂计值元素的一个向量。存在有很多种数字化滤波算法,但只示出了其中一个能够提供灵活地在所有所需频率(即旋转频率的倍数)处选择f的算法。第一个步骤160去计算所述PES值波形的离散付里叶变换的系数。接着如步骤162所示,每个系数被乘以一个复杂计值比例因数(包括1)。然后,如步骤164所示,使用所述的比例系数使变换反相,以产生滤波的时间波形。最后,如步骤166所示,通过将这个滤波后波形加到所述正常平均基准值上来计算所述新的基准磁道表值。有关离散付里叶变换得与其相关公式的描述在由CRC Press of Boca Raton.Florida发表的"电子工程手册"中可以看到。
诸如快速付里叶变换的快速和有效的计算可以用于所需的计算,但在实际上,只有有限量的频率系数,大约是旋转频率的6或8倍那么多的频率系数通常是需要的。为了保证限制误差增长,只需要包括在其处所述闭环回路响应的值超过1的频率。对于其它频率,所述因数f可以等于零,并且相当于简单地舍去付里叶级数变换。
付里叶级数系统的计算包括对PES值倍数符号和余弦表值进行求和。使用诸如是Jntel 486DX-66的一个标准微孔,用于6个频率成份的计算时间对于所述PES向量的每个元素大约只占12ms并且在所述写转本身期间内扇区这间可获得的时间内很容易实现,这正如先前所描述的。一个16ms的附加时间足以使用所述因数f去换算所述系数,并在所述写转的终点处完成这项工作。每个元素的反相变换计算大约需要12ms,并且如将在后面所描述的可以在所述规格化转内逐个扇区地加以完成。
上述的滤波技术允许去设置与S的元素相关的特定值。借助于所述的伺服参数可以对所述的伺服回路响应进行调节,以提供所需的排除机械干扰的等级,然后,可以使用公式f=(S-C)/(1-C)来计算f的适当值。通过保持向量S所有元素的增值小于1,可以避免未被抑制的误差增长,所以,这是一个主要的考虑。在考虑到诸如写宽度调制的系统误差增长时,在一个值处,磁道形状等级偏离误差等于所述基准写入宽度调制的倍数(1+C-S)/(1-S),其中,所述的基准写入宽度调制是发生在每个写入步处的磁道宽度调制量。假如S也接近1,那么纯磁道形状误差是非常大的。相反,若所述的步因数被选择得接近于零,特别是C接近1,那么,随机机械运动的累积影响将会增加。由于如果C接近于1,所述因数f本身会变得很大,所以就会发生上述情况。利用所述磁盘文件可以给出良好结果的一个特定这样是S=0.9。这反映了这样一个事实,即保持随机误差足够小,以使能保持所述磁道的绝对圆是很重要的。包括复杂计值的步因数S的另一种选择被证明是最佳的,即根据盘文件标题、记录介质以及机械特性的详细内容加以选择。
为到目前所描述的,用于计算新基准磁道表值的校项权包括在所述写转期间记录的所述PES波形。诸如是在步PES波形,甚至是来自所述规格化转的PES波形的在步进之步可以获得的其它信息器包括在内。考虑到纯磁道形状误差和随机磁道之间的误差的改善性能也可以通过包括这些附加项的更为复杂的算法来实现。本发明的主要特性在于对所述基准磁道表值的校正是以步进到所述新磁道位置之前可获得的数据为基础的。
当在等于或大于所述磁盘的旋转频率的所有频率处CL<<1时,会发生一个特殊的情况。如图4中伺服回路的PES=R-(X+E)所示。由于所述回路引起的装置运动X由(R-E)(CL/1+CL)给出,其中CL<<1近似为零,且PES变成(R-E)或所述磁道形状误差。实际上,由于在所述PES上因为所述伺服回路极低排除而存在的机械干扰而引起的随机噪声,所述PES将必须被平均到所述磁盘的一系列循环上。但是,一旦测量到E,所述的基准就必须被修改,且消除所述的磁道误差。
利用需要数4个步骤去伺服写的典型磁盘文件,对误差的增长进行控制是很危险的。本发明的一个重要特性是识别由于伺服回路的这些特性被提供一个重复的自传送处理而引起现象的识别以及对在调节伺服回路参数以产生与在写转期间记录的所述PES数字滤波相互耦合的所需闭环回路响应,在计算校正值以使诸如所述步因数的基准磁道表值在任一相关频率处均不超过1的所述补救措施识别。这种说明的效位置是如下述事实发生的,即机械干扰的最主要的排除是在这种限制内被实现的,同是不需要诸如在多个磁盘附加转上平均信号的附加处理时间。更重要的是,这个说明清楚地描述了所述的操作方式,在这种方式下,保证了稳定的自传送,从而保证了健全的伺服写处理。
图5的流程图示出了另一个实施例,在该旋转例中,根据本发明的原理,在所述规格化期间而不是在如图3所示并如上所述的写旋转期间,所述的乘积伺服模式和时间标记的写入可以有选择地加以改变。图5所示之很多处理步骤同于图3所示之相同步骤并使用相同的标记。向修改后的规格化旋转134A写入的所述定时标记和乘积伺服模式的移动使得这个操作与在修改后的写旋转132A期间的传送段的写入相互隔离。只有在写入传送脉冲串期间,误差复合问题才需要与所述伺服回路相关的特殊传送参数。这种隔离使得可以在写入所述乘积伺服模式和定时标记期间使用较高的增益。特别是,所述的参数可能导致在包括所述磁盘旋转频率倍数的整个频率范围以内使所述的闭环回路响应大于1。这是在一个新的处理步骤133中执行的,在该步骤中,所述的伺服参数被设置得等于被改编以能提供低TMR的特殊予定值。这些参数将以类似于在设定用于实际磁盘文件操作时的伺服过滤中所使用的方式加以确定,即所述增益和带宽将尽可能的高,以避免由于如上所述的依赖于相移和最后采样速率的频率所引起的回路不稳定。可以被电子设计及伺服控制系统技术的一般技术人员识别的因素的数量可以允许在处理步骤134A期间实现比在实际文件操作中可能的更低的TMR。这些因素例如包括通过使用相对长期间的伺服段而获得的得到改善的信噪化,以及在对于所述乘积磁盘文件而言是外设的一个伺服写入器实施例中使用诸如ADC36,DAC46和VCM驱动器48的较昂贵的电子器件。在这些操作中减少了的TMR导致了较低的磁道间误差,并在来自定时标记的读出信号的幅值方面减少了随机摇摆量。后者的效果将减少在所述自传送系统中的精密定时产生系统中产生的误差。
图5示出了一个可选择的附加转步骤135。它对写入乘积伺服模式提供一个附加的时间。它的一个缺点是增中了伺服写的时间,但如果在所述盘文件中存在有大量的盘表面,并且专用于定时标记和乘积伺服模式的区104太短从而允许乘积伺服模式被写入所有表面,那么,它可能是很必要的。如上所述,它是利用在这个附加转期间较高的伺服增益的缺点来换取较低TMR的优点。还可以通过把这个附加的专用转加到这个处理上而不是它与所述规格化过程相结合来实现所述乘积伺服模式和定时标记写的相互隔离。在一个实施例中,组合的数字滤波PES校正项被加到所述伺服基准上,从而可以实现在所有倍数处的减小的TMR性能。这删除了某些用以使所述的乘积模式写入与所述径向传送段写入相隔离的性能。但如所述的另外一个实施例保存了这些功能。
伺服环的测量在一个特定的实施例中,使用个人计算机以及可商业获得的包括有一个定时控制电路,一个ADC和一个DAC在内的数据获得插入板构成了一个PID(比例、积分、导出)型伺服回路。同一个幅值解调器、一个VCM电流驱动器和一个选通振荡器一起,所述系统构成了IBM Spitfire磁盘驱动器,并使用各种伺服回路参数,执行如上所述的6段传送顺序(包括精确定时标记发生处理,以及由一个附加计算机控制的相位编码的伺服模式发生器)。这样一个系统对于用作待被通过一个电连接器附着到所述磁盘文件上的外部伺服写系统是很合适的,但是可以想象得到,所述电路将被减少到包括在每个磁盘文件中的少数几个集成电路,用以单独完成自伺服写。
在这个伺服回路中,所述控制电压等于下述之和1)PES倍数的比例增益因数;2)所有在前PES读之和倍数的积分增益因数;3)当前PES和来自在前扇区的PES之差倍数的导出增益因数。这三个因数是允许调节伺服闭环回路响应1在给定频率处,位置信号响应与基准电平调制之比)的伺服参数。通过在测量那个频率处的位置信号响应的同时,利用在同一频道处已知的基准电平调制,可以确定在任一频率处的闭环回路响应。由于用作数字伺服控制器的计算机对实时位置信号进行存取并具有取代正弦调制基准表值的能力,所以,这是可以实现的。通过对在应用一个予定基准表调制时获得的一个系列位置信号读入进行付里叶变换,可以确定所述响应的幅值和相位。这个处理可以利用一个有代表性的磁盘文件,使用伺服参数的各种组合去发现那些能够提供在所有旋转频率倍数处其闭环回路响应都小于1的具有所需特性的那些内容来执行。对于所述PID控制来讲,和中等积分增益和低比例增益一起使用高的导出增益,就可以满足这个特性。注意,所述旋转频率的所有倍数实际上都需要被检查,只有那些靠近所述响应曲线峰值附近的例外。通常只有5倍于所述旋转频率的频率是相关的。另外,伺服参数值的相对大的变化只产生所述闭环回路响应中等程度的变化,因此存在有大范围的适当参数,这些参数即能提供低的TMR,又能使用环回路响应小于1。这就使得发现一个好的参数非常容易,并允许一个通风的屋子(breatning room)用于这个文件地改变能够有效改变伺服增益的磁头宽度的参数。
另外,一个标准的伺服回路分析方法可以被用于根据伴随有激励器动态特性的模式的控制器增益来计算所述闭环回路响应。对于一个试验系统,计算结果基本上和以上述方式测量的结果相符合。与用于不同测试系统的两个不同组传送参数相关的计算传输函数示于图6A和图6B。所包括的点被用于突出所述磁盘旋转的第一个少数倍。在图6A中,比例的和积分的增益项非常小,向导出项(作用类似于粘性阻尼)被置得较大,但不会大得使所述闭环回路传输函数超过1。这个伺服回路使用仅在实际伺服回路高约20%的TMR进行工作。利用这个系统,可以实现超过16000步的径向传送而不会使磁道形状误差有效增长(峰-峰间少于50微英寸),并且使磁道到磁道的形状差的有效值仅为约5微英寸。利用图6B所示的参数,所述的TMR比利用所述乘积伺服回路下降约20%,但是在所述旋转频率的2倍和2倍处,所述的闭环回路响应超过了1,从而由于磁道形状误差的增长,在超过70步以后,连续的传送将会不稳定。
图7B示出了所述的误差增长,在图7B中,示出了所测量的用于使用图6B所示的传送参数的第一60个传送步骤的磁道形状。通过在传送之后备份和在平均磁道位置(在螺旋回路中仅使用一个弱完整增益现)上保持用于每个传送磁道的一个激励器来测量所述的磁道形状。然后,在120个扇区每一个处的规格化读出幅值被平均以用于所述磁盘的100转,从而消除TMR影响。所产生的波形被绘成曲线以作为圆形磁道的径向偏移。所述比例被放大10倍以更清楚地表示磁道形状误差,即所述的径向偏移被划得比相应的磁道到磁道的间隔大10倍。另外,圆周也比实际磁盘上出现的径向延伸扩展的更多。其中,60步仅表示磁盘半径的约0.4%。图7A的类似曲线示出了使用图6A所示参数的第一个60传送磁道。这里,所述的磁道误差基本上是随机的并且是没有增长的。
图7A和图7B所示的曲线示出了通过对由围绕每个磁道的120个读出信号扇区所组成的波形进行付里叶变换所获得的180Hz频率成份(2X所述磁盘旋转频率)的幅值。其中在图7B中,所述闭环回路响应于180Hz处时是1.029,这个成分迅速增长,在仅60个步内就由大约3微英寸增长到大约16微英寸。对于图7A所示之参数,不希望同时也没有看到这种增长。
对一个使用在每个写转期间记录的所述PES的数字滤波来计算基准磁道校正的实施例进行了测试。将所述的伺服比例增益设置到400(分别具有图6B所示的整体和导出增益,39和4000)导致了在第一个5倍于所述旋转频率处所述闭环回路响应大于1,其峰值为1.31。由于使用滤波计算直到具有所计算因数f的所述旋转频率的第8倍,所以导致在所有8倍的频率处所述步因数S=0.9,这样就可以执行16000步的传送而基本上没有误差增长(大约最是峰-峰间50微英寸)。没有所述的滤波后PES基准磁道校正,由于误差的指数增长,这些伺服增益就必须避免那几个步以外的传送。较高的增益使所述的TMR被减少了通常文件TMR的约50%,并基本改善了在所述伺服模式中的随机磁道-磁道间的误差。
实际分离的读和写元件在截止目前的讨论中,一直是假设如同通常以使用的典型的电感读/写元件一样,所述的记录读转换器和写转换器是一个并且是同一个的。最近,一种诸如是所谓MR(磁阻)转换器的利用分开的读和写元件的转换器已经投入使用,并且考虑到借助于标准的平均基础值设定来确定和控制传送通道,这种转换器需要给予特殊的注意。图8A示出了这样一种转换器,它示出了读和写元件的不同宽度,以及在读和写元件中心之间的偏移。图8B的曲线示出了所述规格化后的读出幅值是为可随着所述转换器的位置而变化的。这里,零对应于所述转换器直写入期间的位置。到达一个特定的幅值减少级所需的转换器的运动取决于所述的读宽度,写宽度和偏移(以及所需要的运动方向)。希望传送磁道间隔只由读和写宽度确定而不受所述元件偏移的影响。由于当转动的激励器从磁盘中的最外侧向最内侧扫描时,所再现的偏移是变化的,所以这一点是特别重要的(读出和写入元件沿所述激励器臂方向的空间间距在所述臂转动时导致向所述磁盘磁道的这些元件的不同突出位置)。本发明的一个重要方面就是加进了一种方法,用于在不需要有关磁头精确的几何方面现有知识的情况下,仅通过测量读出幅值,就能消除对读和写元件相对位移的这种依赖。
图9示出了6个段的传送模式,它表示了在多个传送段区域之内的一个之中的所述写入脉冲串的相对位置。对于盘文件数据磁道间隔来说,下面一点是重要的,即根据平均值,就当在相邻频道边缘之间具有一个特定量的间隔,以避免由支撑在所述相邻磁道上的磁头在一个磁道上进行数据重写。例如,可以希望所述的数据磁道是4个相互隔开的传送磁道并且在所述数据磁道节距的2.5%的被写磁道边缘之间具有一个平均间隔。这是一种在图9中示出的状态,其中,用户数据磁道如所示被指定给与传送脉冲串A和E相对应的位置。在这种情况下,诸如A和D由3个相互分开的步骤构成的传送脉冲串其边缘被对齐。若所述的读元件被定位,那么,来自段A的相对幅值等于来自段D的相对幅值(A=D位置),这样,若所述边缘对齐,则相对信号为0.50;若所述边缘重叠,则大于0.5。由此,在A=D位置处的相对幅值就成为一个指示符,用以指示所述的传送磁道节距是太小还是太大,并且该指示符能用于调节在传送期间使用的额定平均基准等级以校正所述的节距。
假如所述的读出幅值随着位置作线性变化(相当近似),那么就可以根据在A=D位置处测量的相对符值来计算用于一个需要获得所述校正间隔的传送的额定平均基准值的调节。由于三步中的每一步都提供了等于r的间隔变化,且这种变化由A和D共享,所以这可以通过注意基准值变化一个量r而导致所述相对幅值在3r/2的A=D位置处的变化来看到。因此,通过一个等于在A=D位置处相对幅值偏移的2/3的量并根据它以需要的等级可以调节额定平均基准等级。
本发明的方法包括以下步骤。首先,选择一个初始额定平均基准值和传送若干步(在这种情况下3或更多)。接着,对一个位置作备份,以使得A脉冲串的相对幅值和D脉冲串的相对幅值相等。这是通过暂时把所述PES重新规定为A和D脉冲串相对幅值之间的差而实现的。使用A的(或D的,因为它们现在是相同的)相对幅值,如上所述地计算对于传送额定基准值电平的校正,并继续传送。
最好,这个处理在最开始处(没有指定给用户数据的一个区域)重复几次,以最初地设定所述的基准等级,从而产生特定的读和写元件之间的偏移。通过按正规间隔反复执行所述处理可以产生由于激励器的旋转而产生偏移的改变。在一个利用上述系统所执行的实验中,通过每40个传送步骤重复这个处理,获得了相当好的结果。所述处理是通过所述相对幅值平均到A=D、B=E和C=F位置上而实际加以执行的。另外,每次反应用对于所述基准等级所计算的校正的因数(1/4)以减少噪声的影响。由于所述基准等级的变化非常缓慢,所以就有一个优点,即就是使校正段的增长也很缓慢。这种测量和校正处理需要所述盘的12转并每40个传送执行一次(由于每步各需要一个写循环、一个规格化循环和一个步循环,它们共需要120转),因此,它使所述伺服写的时间大约增加了9%。图10A示出了以与全部运行16000步相关的传送步骤数量为依据所绘出的额定平均基准值,图10B示出了在相同的运行中所测量的在A=D位置(利用B=E和C=F平均的)位置处相对幅值的曲线图。这里,所述的磁道节距被选择得小于图9所示(在图中所示的数据磁道间的25%间隔高于实际所需),所以,在所述A=D位置处所需相对幅值被设定为0.625而不是0.5。可以看到,通过系统地调节所述传额定平均基准值,这种方法可以相当好的保持(由在A=D位置处的相对幅值所确定的)所述磁道间隔距离。
这个方法可以有一定数量的变化。如已经注意到的,在A=D位置处的所希望的相对幅值可以被设置得高于0.5,以实现较高的磁道间隔。另外一种变化就是使用A=E位置成A=C位置而不是A=D位置的某些其它组合。这些选择取决于所述数据磁道节距的比值和所希望的磁道间的间隔以及所述读和写元件的相对宽度。参看图9,还可以看到,选择有多少个段段被用于所述的传送模式取决于这些相同的扇区。关键要求是所述读元件能够读一个特定的段而不受来自(在所述同一个时间中一个的)一系列传送磁道上下一个段的影响。
写误差的校正使用特定的伺服回路参数(这些参数使得直的有盘旋转频率的倍数处的逐级误差放大回因数小于1)与以在写期间的PES为依据的基准磁道校正值一起可以导致在限制所述传送磁道形状误差增长方面具有极大的益处。另外,通过操作一个其参数可以提供对机械干扰有良好排除作用从而导致低TMR的伺服机构可以保持磁道-磁道的形状差别。但是,由于来自这种干扰的TMR,每个磁道仍然含有某些误差。利用这种现象,所述乘积伺服模式被设计成为磁头对磁盘的相对位置进行编码。由此,由于在伺服写处理期间的TMR而导致的写入误差最终被变换成在通过后续文件操作期间的所述乘积伺服模式解调器获得的径向位置测量中的相应误差。本发明的另外一个特性就是用于减少在所述乘积伺服模式所出现的波形上这个残余TMR影响的技术。基本上,所述想法是当所述的乘积伺服模式被以导致在这种操作期间顺序读出所述伺服模式时可以消除所述写入位置误差的方式被写入时,使用所述传送伺服回路的所述PES去修改所述的乘积伺服模式。这种技术包括在文件操作期间的伺服写入传送处理伺服模式读出处理。在操作期间很容易被磁盘文件译码并可在所述伺服写入器中很容易执行的所述伺服模式的最佳修改就是相对于所述伺服ID域的所述伺服模式的时移。
作为本发明所考虑的一个实施例的第一个例子是一个幅值脉冲串乘积伺服模式。在这样一种伺服模式中,通常具有2个或更多个在所述伺服ID域之后的特定时间段内专用的被写入变换的脉冲串。图11A示出了一个简单的两脉冲串伺服模式,其中,所希望的磁道位置被规定成这样一个位置,即在这个位置处,来自A和B脉冲串的读出信号相等。在通常的伺服模式解调器中,在每个所选定的脉冲串时间段的终点附近,都要对所述读出幅值采样,并将之数字化,以表示一个所述脉冲串幅值的滤波后的平均值。图11B-11F示出了与本发明解调技术相关的波形,图12示出了所包含电路的方框图。读出信号的检测是通过与惯常解调器中相同的整流电路执行的,但其输出都是在利用所述ADC进行数字化之前通过一个选通积分电路传送的。所述扇区ID检测器提供所述定时基准,使用延迟的双脉冲发生器可以从所述的定时基准中获得固定的积分选通信号和ADC触发信号。恰好是在所述选通脉冲的下降沿之前所述ADCP被触发,以使所述选通积分输出数字化。这个选通脉冲沿还被用于使所述积分器复位到零。由此,所述数字化后的段幅值等于整流后的读出信号乘以所述积分器选通脉冲和所检测出的段信号之间的时间重叠的量。所述整流后的读出幅值随着所述写入脉冲串的径向位置变化,从而使其在所述写期间跟随所述的TMR。通过有意地替换所述写入脉冲串相对于扇区ID的写入时间,可以调节所述积分器选通脉冲和所检测脉冲串信号之间的时间重叠量,因而可以刚好消除滤波后读出信号上所述TMR的影响,从而导致在伺服写入期间不受TMR影响的数字化脉冲串幅值。可以通过串联插入到来自所述模式发生器的写数据中的定时延迟单元来调节所述段写入的时间。诸如由Data Delay Devices Corporation of 3 Mt.Prospect AVC.,Clifton NJ制造的数字可编程延迟单元在这种应用所需的控制之下提供所述快速和精确的定时延迟调节。
用于计算所述适当延迟的方法示于图13A到13F。它们示了了一种状态,在这种状态下,由于在所述伺服写期间的随机TMR,所以A脉冲串是被错误置位的。根据本发明,A脉冲串被写入的时间相对于所述伺县AD区域的终点被移位。为简单起见,假设所述的读出信号是相当线性地随着磁道位置偏移而变化的。假定所述的径向位置误差是所述读元件宽度的部份f,并且如图13A所示是朝着向上的方向的。这个径向位置误差一个好的予测是通过对刚刚进入被写有脉冲串A所述的乘积伺服模式区域的所述传送脉冲串区进行测量所获得的所述自传送伺服回路的PEC所提供的。对于顶部向下进入的模式传送,所述的模式传送脉冲串(该图中未示出)具有与所希望磁道位置相一致的较低缘,并且向上方向的位置误差在所述传送段读出幅值中将会增加。由于所述的PES是所述的部份基准值减去规格化后的读出幅值,所以这就产生了一个等于-f的PES读出。所述乘积伺服模式A脉冲串规格化以后的读出幅值也被移位了-f,即,由于所述脉冲串的边缘位于所述记录转换器中心之上,所以它低于它应该有的幅值。这低于所述积分信号的斜率。在所述ADC触发脉冲时间处的积分器输出信号(相当于数字化后的脉冲串幅值)通过把稍后的A脉冲串移位一个由 所给出的量t而重新存贮到它的校正值上。其中T是在没有移位发生时,通常的重叠时间V是对于没有经向位置误差的脉冲串A所希望的整流后读出幅值(规格成磁道上数据由于两脉冲串伺服模式将规定在所述位置处的数据磁道,所以V通常等于0.5。其中,脉冲串A和脉冲串B的幅值相等,且写入脉冲串的边缘如图11A所示的校直。
以类似的方式可以消除B脉冲串径向位置的误差,但时移必须与用于A脉冲串的相反。这就引起了这样一个事实,即使用的是B脉冲串的上缘而不是下缘。由此,在伺服写期间向上方向的误差将增加由所述乘积解调器所检测的B脉冲串的幅值,并需要将所述脉冲串移到一个较早的时间,以便进行补偿。通过利用一个微机顺序控制器去保持其段类型一直被写入的磁道和借此以调节时移的符号,这一点是很容易作到的。
如果所述的乘积伺服模式使用一个给定段的两个边缘去规定不同的磁道位置或确定磁道间的位置误差,那么就会出现一个较为复杂的状态。例如,所述A段的较低缘可以被用于规定一个数据磁道位置(和所述B脉冲串的上缘一起),而脉冲串A的上缘可以被用于规定相邻的数据磁道位置(和一个不同的B脉冲串的下缘一起)。稍后的A脉冲串写入消除了与所述A脉冲串的下缘相关的径向位置误差的影响,但如在A脉冲串的上缘所看到的使所述误差加倍。一个解决办法就是移动与这些交错边缘位置相关的选通信号,从而使得在所述脉冲串之前选通信号开始,而在所述脉冲串期间选通信号结束,而不是在所述脉冲串期间选通信号开始,在所述段之后选通信号结束。由此,向后时间的所述A脉冲串的移动将会减少在所述选通信号和检测后脉冲串幅值信号之间的重叠时间。在这种方式下,在伺服写期间加到一个脉冲串上的唯一时移被用于消除与两个缘之一相关的径向位置误差。根据事先安排给数据磁道的脉冲串边缘,利用所述磁盘文件伺服模式解调器,可以轮流地选择两个选通脉冲延时。
在相位编码的伺服模式情况下,两个脉冲串之间所述读出信号的相对相位是所述的位置相依量,它最终将要被检测。在其径向位置中的误差相当直接地对应在所检测模式中的相位误差,并且通过把一个适当的时移在伺服写入期间加到多个段中的一个上而简单地予以消除,在这种情况下,不需要对所述乘积伺服模式解调器进行特殊修改。
不考虑所述乘积伺服模式类型,所述的误差删除技术要求在每一步中都要将所述校正应用到所述的乘积伺服模式和幅值段传送模式上。假如没有这样作,那么所述传送伺服回路将在写下,一步时试图跟随写入传送模式误差,从而使它的图象被传送给在所述下一步写入的所有模式(传送段和乘积伺服模式)。这相当于所述误差再一次出现在稍后的一个步上。如前所述,写入误差的运作类似于在所述伺服回路中的调制,并且通过所述伺服回路的伺服回路响应对这些误差作出响应。这样,通过闭环回路响应乘以作为施加给伺服回路的时间波形而加以跟踪的写入误差信号,就会给出带给下一步的所述图象。避免对这种写入误差作出这种响应的办法是调节所述的基准表值以反映在写期间已知的位置误差,从而使得每个基准表值都与和当利用直接置位于所需传送磁道上的读元件传送时所述对应段相关的期望幅值相匹配。正哪对所述乘积伺服模式进行校正的情况,直写期间已知位置误差类似于在所述写转期间所述模式传送伺服回路的PES读。参看图4B,引起读出幅值改变一个量E的错误置位的传送段使所述伺服PES变化了一个量-E。若所述的基准磁道值R从基额定平均值增加了同样一个量E,那么在所述伺服PES内的所有处的所有结果都不会变化,因此,在所有各处写入误差都不会引起激励器的响应。参看图4A并记住是向下游方向的传送处理。可以看到,在错误置位段的写入期间,所述的记录转换向下移动的太远,从而使得读出信号小于期望值。由于所述的PES等于基准值减去位置信号,所以在写期间的PES将高一个量E。这样,可以通过把在写转期间获得的PES加到额定平均基准值上以建立在下一步正使用的基准表值从而在传送伺服模式中消除所述的写入误差。
在关于误差复合的讨论中,已经描述了这种修改基准表值的方法。在所述最简单的实施例中,利用因数f乘以在写转期间记录的PES来校正所述基准表。根据上面的讨论,很清楚,使用因数f等于1可以实现最有效的误差删除。但是,基准表校正的引入导致了一个修改的稳定性判断,在这个判断中,步与步的误差放大因数S=C+f(1-C)必须小于1。根据这个表达式,可以看出,若f确定为1,那么S也将等于1,并且误差将不会衰减。所述选择是通过在保持绝对磁道非圆的可接受程度和若f被减小,随机的磁道到磁道的误差也会有效减少这二者之间进行折衷选择而确定的。分析表明,在伺服模式中纯的磁道到磁道误差正比于TMR乘以(1-f),因此,当f=1时为最佳,通过合理地使所述f接近于1,可以实现非常有意义的随机误差删除。相同的分析也可应用于使用数字滤波的PES校正的更为复杂的实施例中,其中,f是一个复杂值元素的向量。在这种情况下,应当选择所述步因数S元素的特定值,以导致f的所有元素都尽可能的接近1(S本身的值应保持小于1)。在较高的频率处,其中,作为付里叶级数滤波计算合位的结果,f=0,随机误差删除将变得不起作用。但是,通常TMR本身具有不高的频率内容,所以,在这个范围内,影响的丧失意味着总的rms误差是非常小的。
在图5所示包括去耦合所述乘积伺服模式写入的另一个实施例中,用于调制所述乘积伺服模式的PES和用于计算基准表校正值的PES不同。
本专业技术领域以内的普通技术人员可以设想出上述以外的例如包括调制与包括在所述乘积伺服模式解调器中的相应检测电路相耦合的幅值段模式的频率或状态的用于调制所述乘积伺服模式,从而允许删除随机TMR的多种方法。本发明的新颖方面包括当它们被输入时,使用在伺服写入期间的PES以校正伺服模式位置误差。在所述PES基础上对自传送基准表值的修改对于实现所期望的磁道到磁道随机形状误差的减少也是重要的。这个校正被及时地传送给在后续步中以跟随的磁道。因此,它不同于先前所描述的用于根据在磁道跟随时把所述的PES平均到一系列转上以平滑所述基准表值的技术。由于它被设计成去减少随机的磁道到磁道误差,并且必须被耦合到乘积伺服模式中的误差删除上以便更加有效,所以校正的器的也不同于现有技术中描述的任一种。
应当理解,本发明可以被推广到在一个重复运动的介质上的所述写模式。这种运动可以构成如上所述的所述介质的连续旋转,也可以构成包括直线和往复运动在内的任一重复运动。这样,利用这里所描述的自传送原理,在一个区域上可以布置任一介质。
权利要求
1.一种对在一个包括有用于与磁盘相互作用的一个磁头,用于相对所述磁盘径向定位所述磁头的一个激励器以及用于使所述磁头向所述磁盘写入或从所述磁盘读出信息的一个装置在内的磁盘驱动器中的旋转磁盘进行伺服写的方法,包括下述步骤使用一个伺服回路在所述磁盘的连续径向磁道上写伺服模式,以用于定位所述的激励器,其中,伺服位置信息是从所述磁盘中读出的;和设置所述伺服回路的频率相关增益,以使得所述伺服回路的闭环回路响应在所述磁盘旋转频率的每一个整数倍处其幅值都小于1,但又大到足以基本上排除机械干扰。
2.根据权利要求1的方法,其特征在于所述闭环回路响应的幅值在所有频率处都小于1。
3.一种用于对在一个包括有用于与磁盘相互作用的一个磁头,用于使所述磁头向所述磁盘写入和从所述磁盘读出信息的装置,用于相对其中位置误差信号等于基准波形和来自与所述磁盘相互作用的所述磁头的读出信号的所测量的相对位置波形之间的差值的所述磁盘径向定位所述磁头的一个伺服控制激励器在内的磁盘驱动器中的旋转磁盘进行伺服写的方法,包括如下步骤利用所述伺服控制激励器在所述磁盘相连径向磁道上写伺服模式;和获得作为所述激励器的闭环回路传输功能的函数的所述基准波形和至少一个所测量的位置波形。
4.根据权利要求3的方法,其特征在于所述的闭环回路传输函数是频率相关的,并且所述的基准波形是通过所测量的位置波形的频率相关滤波而得到的。
5.根据权利要求3的方法,其特征在于所测量的位置波形表示所述磁盘的至少一次旋转。
6.根据权利要求3的方法,其特征在于所述的位置误差信号是根据对至少一个磁道的测量而获得的。
7.根据权利要求6的方法,其特征在于所述的至少一个磁道包括所述相连磁道的一个在先磁道。
8.根据权利要求3的方法,其特征在于所述闭环回路传输函数的值远小于1。
9.一种对在一个包括有用于与磁盘相互作用的一个磁头、用于使所述磁头向所述磁盘写入和从所述磁盘读出信息的装置、用于相对于其中位置误差信号等于一个基准波形和来自与所述磁盘相互作用的所述磁头读出的所测量的位置波形之间差的所述磁盘径向定位所述磁头的伺服控制激励器的磁盘驱动器中的旋转磁盘进行伺服写的方法,包括步骤使用所述的伺服控制激励器在所述磁盘相连径向磁道上写伺服模式;和根据来自至少一个在前径向磁道的所述位置误差信号,得到用于相连径向磁道的所述基准波形。
10.根据权利要求9的方法,其特征在于所述基准波形的派生包括如下步骤计算在所述径向磁道上写伺服模式期间测量的所述位置误差信号的离散付里叶变换的至少一个复杂系数;把至少一个复杂系数乘以至少一个复杂滤波因数f,借此建立至少一个滤波后的系数;根据所述至少一个滤波后系数,计算反相的离散付里叶变换;和把所述的反相离散付里叶变换加到一个额定平均基准值上,以形成所述的基准波形。
11.根据权利要求10的方法,其特征在于所述的f是根据所述伺服激励器的闭环回路响应C的予定函数进行计算的。
12.根据权利要求11的方法,其特征在于所述的f是通过等式f=(S-C)/(1-C)给定的,其中,S的值小于1,由此可以抑制伺服模式布局误差的增长。
13.一种用于对在一个包括有用于与磁盘相互作用的一个磁头,用于相对所述磁盘径向定位所述磁头的一个激励器和用于使所述磁头向所述磁盘写入和从所述磁盘读出信息的一个激励器在内的磁盘驱动器中的一个旋转磁盘进行伺服写的装置,包括用于使所述磁头在所述磁盘的相连径向磁道上写伺服模式的装置,包括一个用于定位所述激励器的伺服回路,且其中的伺服位置信息是从所述磁盘读出的;和用于设定所述伺服回路的频率相关增益,从而使得在磁盘旋转频率的每个整数倍处所述伺服回路的闭环回路响应值都小于1,并高得足以提供对所述机械干扰的基本排除的装置。
14.根据权利要求13的装置,其特征在于所述闭环回路响应在所有频率处皆小于1。
15.一种对在一个包括有用于与所述磁盘相互作用的磁头、用于使所述磁头向所述磁盘写入和从所述磁盘读出信息的装置,用于相对其中一个位置误差信号等于一个基准波形和得自与所述磁盘相互作用的磁头读出信号的所测量的相对位置波形之差的所述磁盘径向定位所述磁头的一个伺服控制激励器在内的磁盘驱动器中的旋转磁盘进行伺服写的装置,包括用于使用所述伺服控制激励器在所述磁盘相连径向磁道上写伺服模式的装置;和用于获得作为为所述激励器闭环回路传输功能的函数和至少一个测量位置波形的所述基准波形的装置。
16.根据权利要求15的装置,其特征在于所述的闭环回路传输功能是频率相关的,并且还包括有一个用于通过所测量位置波形的频率相关滤波获得所述基准波形的装置。
17.根据权利要求15的装置,其特征在于所测量的位置波形表示所述磁盘的至少一次旋转。
18.根据权利要求15的装置,其特征在于所述的位置误差信号是根据对至少一个磁道的测量而得到的。
19.根据权利要求18的装置,其特征在于所述的至少一个磁道包括所述相连磁道的一个在前磁道。
20.根据权利要求15的装置,其特征在于所述闭环回路响应的值远小于1。
21.一种对在一个包括有用于与所述磁盘相互作用的一个磁头、用于使所述磁头向所述磁盘写入和从所述磁盘读出信息的一个装置、用于相对其中的一个位置误差信号等于在一个基准波形和得自与所述磁盘相互作用的所述磁头读出信号的所测量位置波形之差的所述磁盘径向定位所述磁头的一个伺服控制激励器在内的磁盘驱动器中的旋转磁盘进行伺服写的装置,包括用于使用所述伺服控制激盛器在所述磁盘的相连径向磁道上写伺服模式的装置;和用于根据来自至少一个在前径向磁道的所述位置误差信号获得与相连径向磁道相关的所述基准波形的装置。
22.根据权利要求21的装置,其特征在于所述获得基准波形的装置包括用于计算在一个径向磁道上写伺服模式期间测量的所述位置误差信号的离散付里叶变换的至少一个复杂系数的装置;用于将所述至少一个复杂系统乘以至少一个复杂滤波系数f,借此以建立至少一个滤波后系数的装置;用于根据所述至少一个滤波后系数,计算反相离散付里叶变换的装置;和用于将所述反相离散付里叶变换加到一个额定平均基准值,以形成所述基准波形的装置。
23.根据权利要求22的装置,其特征在于在所述用于乘法的装置中,f是根据所述伺服激励器的闭环回路响应C的予定函数来计算的。
24.根据权利要求23的装置,其特征在于f是由等式f=(S-C)/(1-C)给出的,其中,S的幅值小于1,借此以抑制伺服模式配置误差的增长。
25.一种对在一个包括有用于和所述磁盘相互作用的磁头,用于使所述磁头相对所述磁盘径向定位的一个激励器、用于使所述磁头向所述磁盘写入或从所述磁盘读出信息的装置以及用于根据从所述磁盘读出的伺服位置信息定位所述激励器的伺服回路在内的磁盘驱动器中的旋转磁盘进行伺服写的方法,包括如下步骤沿着一个磁道写一系列的第一模式;把所述磁头从一个磁道的已知部份移到一个移动后位置;从所述第一模式的所选择的一个当中读位置信息,用于确定表示所述磁头相对于所述已知部份偏移的偏移信息,并使用所述的偏移信息去传送在所述具有以第二模式进行编码的所述偏移信息的移动后位置处的第二模式。
26.在具有一个旋转磁盘,一个用于与所述盘相互作用的磁头以及一个用于使所述磁头相对于所述磁盘径向定位的装置的磁盘驱动器内传送模式的方法,包括如下步骤a.在一个第一磁道上写多个第一模式;b.读出和存贮所述多个第一模式中所选定一个的幅值,借此以存贮所选择的幅值;c.移动所述磁头一个磁道宽度部份,并写入与所选第一模式相对应的第二模式;d.重复步骤Cn次,用以连续地移动所述磁头,直到所述磁头到达一个选定径向位置并写入了附加模式为止;e.在所述第一磁道和所选径向位置之间的中间位置处定位所述磁头;f.计算带有处于所述中间位置的所述磁头的第一模式的幅值和所选择存贮幅值之间的第一比值;g.计算当所述磁头处于所述中间位置时所述附加模式的幅值与所述磁头处于所选位置的幅值的第二比值;h.在每个位置处重复地重新定位所述磁头并重复步骤f和g,直到所述的比值基本相等为止;i.把所述比值和所需值进行比较以确定和所需值之间的偏差;和j.调节连续模式写的间隔,从而使得所述偏移在随后重复步骤a-i过程中最小化。
27.根据权利要求26的方法,其特征在于所述的磁头具有分开的读和写元件。
28.一种用于通过调节与在磁盘文件伺服写中径向定位相关的在自传送处理期间使用的所述伺服回路额定平均基准电平,以建立和保持所需磁道间隔的方法,其中,所述额定平均基准电平的变化是根据在相互隔开的一个或多个径向位置上的多组段之间的相对段幅值的测量进行计算的,这种测量是通过中断所述的正常顺序处理并备份一个或多个径向位置执行的。
29.根据权利要求28的方法,其特征在于包括如下步骤建立一个由足够数量的相关时间段组成的幅值脉冲串传送模式,从而使得在传送步骤的数量等于时间段的数量以后重复在一个给定时间段的脉冲串的基础上,存在有一个间距,以允许所述记录转换器的读元件对每个脉冲串的边缘没有任何反应而且不影响在那个时间段中的其它脉冲串;使用与所述额定平均基准电平相关的初始估计,传送第一数量的步骤,所述第一数量的步骤足以允许所述的读元件与所述传送方向相反地移到一个校准读出位置,在这个位置内,所述读元件的一部份与在所述多个时间段内一个时间段中的第一组脉冲串的较下部份相重叠,同时,所述读元件相等的一部份与在所述多个时间段内另一个时间段中的第二组脉冲串的较上部份相重叠,其中,所述的第一和第二组脉冲串被相互隔开写有一个予定数量的传送步骤P,且所述多个段具有一个涉及到所需磁道间隔的予定间隔,这样,所述的重叠部份等于与所述磁道间隔相对应的予定期望重叠部份;把所述读元件移到所述校准读出位置,并通过确定所测量的重叠部份等于与由作为自传送处理的一部份而予先测量和存贮的相应在磁道上幅值所等分的每个脉冲串相关的读出幅值,执行一个再校准,计算一个校正项,以使得所术额定平均基准电平减少因数等于2/P倍的所需重叠部份和所测量的重叠部份之间的差,把所述的校正项或所述校正项的一部份加到所述额定平均基准电平上;继续与第二予定数量步骤相关的自传送,此后,再一次执行所述的再校准过程;在每一个所述第二数据步中重复所述的自传送和再校准步骤,直到伺服写完成。
30.一种用于在所述磁盘文件写入期间,使用与径向定位相关的自传送消除在所述磁盘文件的解调后位置依赖中由随机配置误差引起的偏移的方法,所述方法包括如下步骤把一个调制加到所述乘积伺服模式的每一部份,所述的调制是根据恰好是在所述乘积伺服模式的所述部份被写入的那个时间之前测量的所述自传送伺服回路的所述位置误差信号计算的,其中,在所述磁盘文件的正常操作中,所述的调制产生解调后位置信号的变化,所述的变化是相反的,并且由于所述随机配置误差,其变化近似等于所述解调后位置信号的偏移;使用自传送基准表值,该基准表值是为使用所述额定平均基准电平和使用根据直接近所述传送段被写入时测量的所述自传送伺服回路的位置误差信号计算的校正值的每一个传送段以单独计算的,由于所述段中的随机配置误差存在于下一个步传送上所述自传送伺服回路位置误差信号的后续计算时,所以,所述的基准表值可以极大地削除所述读出幅值的变化。
31.一种对在包括与所述磁盘相互作用的一个磁头,用于相对于所述磁头径向定位所述磁头的激励器和用于控制所述激励器位置的一个伺服回路在内的一个磁盘驱动器进行伺服写的方法,包括如下步骤当写传送脉冲串时,设定所述伺服回路的频率相关增益等于小于1的一个值,和;当写乘积伺服模式时,设定所述伺服回路的频率相关增益等于一个不同的组。
32.一种对在一个包括有用于相对于所述磁盘的任一径向位置处定位所述磁头的一个装置的磁盘驱动器内的一个旋转磁盘进行自伺服写的装置,所述装置包括定时电路,用于控制在所述磁盘上特定扇区内的读和写;模式发生器,用于产生与传送脉冲串相关的写数据,并产生伺服模式;延时单元,用于调节所述写数据的相对定时;幅值检测电路,用于测量磁盘上写变换的读出幅值;存贮器,用于存贮包括读出幅值的测量值和磁盘基准磁道值;除法器,用于通过它们的相应原始全磁道幅值来规格化瞬间读出幅值;微机顺序控制器;和伺服控制器,它具有可变的控制参数,以允许快速的步进和稳定,并限制在所述磁盘被伺服时所产生的磁道形状误差的增长。
33.一种磁盘文件伺服写装置,包括一个装置,用于控制所述磁盘文件的内部记录转换器,从而使得其中的每一个都由多个变换组成的多个段可以围绕置于不同径向位置处的多个磁道中的每一个被写入;一个装置,用于确定和存贮来自所述段任一个的所述幅值信号的读出幅值,从而使所述读片幅值随所述磁盘的每一段而修改;一个装置,用于控制所述内部激励器把所述记录转换器定位到所述径向位置处,所述装置由一个伺服定位控制回路组成,该回路具有一个闭环回路传输功能,它能够提供对机械干扰的基本完全排除,并且兴支放大等于所述磁盘旋转频率态倍数的任一频率处的误差;一个装置,用于在一个第一径向位置处写所述多个段;一个装置,用于通过在短于段间间隔的时间内从第一组存贮的基准幅值中减去与在所述第一径向位置处的多个被写入段中的每一个相关的所述读出幅值,建立所述伺服定位控制回路的位置误差信号,所述的位置误差信号导致所述内部激励器移动到第二个所述径向位置,从而使所述位置误差信号变得接近于0;一个装置,用于在予定延时之后把所述多个段写入到所述第二径向位置,以允许完成所述内部激励器向所述第二径向位置的移动,在所述多个段中的每一个被写入所述第一径向位置之后经过第二予定延时,所述多个段中的每一个被写入所述第二径向位置,根据来自在所述第一向径位置被写入的所述多个段的所述读出幅值,继续确定所述的位置误差信号;一个装置,用于通过把建立所述伺服定位控制回路的所述位置误差信号转换成在一个短于脉冲串间间隔的时间内从一组所存贮的基准幅值的每一个之中减去在当步径向位置处被写入的所述多个脉冲串处的读出幅值中的每一个处理反复定序,所述的位置误差信号导致所述内部激励器向下一个径向位置移动,在所述下一个径向位置处,所述的位置误差信号接近于0,然后,在所述第一予定延时之后,在所述的下一个径向位置处写所述的多个脉冲串,以允许完成所述内部激励器向所述下一个径向位置的移动,在所述多个脉冲串的每一个被写入所述当前径向位置之后经过下一个径向位置,根据来自所述当前径向位置被写入的所述多个脉冲串的读出幅值继续确定所述的位置误差信号。
34.根据权利要求33的装置,其特征在于通过从所存贮的基准幅值的每一个中减去与所述多个脉冲串的每一个相关的规格化后的读出幅值建立所述的位置误差信号,其中,所述规格化后读出幅值是通过把所述读出幅值的每一个在写入所述多个脉冲串之前但是在移动所述激励器之后除以在一个磁盘附加转中测量的被存贮起来的一组幅值中的它的对应元素而计算的。
35.根据权利要求33的装置,其特征在于用于所述位置误差信号建立过程中的所述存贮的基准幅值在整个定予处理过程中按间隔的改变,从而导致磁盘到磁盘间的间隔紧密地跟随跨跃所述磁盘的所希望的函数形式。
36.根据权利要求35的装置,其特征在于在存贮的基准幅值中的变化是根据相互分开地置于一个或多个径向位置上的多个脉冲串间的相对脉冲串幅值的测量而计算的,这种测量是通过中断所述正常定予处理并备份一个或多个径向位置而执行的。
37.根据权利要求35的装置,其特征在于存贮的基准幅值的变化在每个扇区处是不同的,并且是利用在相应脉冲串被写入时的期间所测量的所述位置误差的存贮值进行计算的。
38.一种磁盘驱动器,包括其中的一个旋转磁盘;一个具有分开的读和写元件的磁头和一个用于使所述磁头相对于所述磁盘径向定位的激励器;写入所述磁盘的一个自伺服写入模式;所述的模式被写入,从而删除系统误差,借此,所述磁道间隔跨跃所述磁盘表面跟随所希望的函数。
39.一种磁盘驱动器,包括一个在其中的旋转磁盘;一个磁头和一个激励器,用于使所述磁头相对于所述磁盘径向定位;和一个装置,用于在所述磁盘上写自伺服写模式,所述的模式被写入,从而可以删除系统误差,借此,所述磁道间隔跨跃所述磁盘表面跟随所希望的函数。
40.一种用于在包括有用于和所述介质相互作用的磁头,用于使所述磁头相对于所述介质定位的激励器和用于使所述磁头向所述介质写入或从所述介质读出信息的一个装置在内的一个往复式介质上写模式的方法,包括如下步骤使用一个伺服工具在所述介质的相连磁道上写模式,以定位所述的激励器,其中,伺服位置信息是从所述介质中读出的;设定所述伺服回路的频率相关增益,从而使得所述伺服回路的闭环回路响应幅值在每一个往复频率的整数倍处都小于1,并高得足以提供对机械干扰的基本排除。
41.一种用于在包括有用于与所述介质相互作用的磁头,用于相对所述介质定位所述磁头的激励器和用于使所述磁头向所述介质写入或从所述介质读出信息的装置在内的一个往复式介质上写模式的方法,包括如下步骤沿着一个磁道写一系列第一模式;把所述磁头从一个磁道的已知部份移到一个移动后位置;从所述多个第一模式中所选择的一个内读的位置信息,用以确定表示所述磁头和所述已知部份之间偏移的信息,并使用所述的偏移信息去传送在具有以所述第二模式进行编码的所述偏移信息的所述移动后位置处的第二模式。
全文摘要
在一介质上写模式,特别是在磁盘驱动器中自伺服写旋转磁盘的方法,包括使用激励器在相连径向磁道上写伺服模式,获得基准波形和至少一个所测位置波形。可设置伺服回路的频率相关增益使回路的闭环回路响应值在磁盘旋转频率的每一整数倍处都小于1,但高到足以减少机械干扰。写第一模式,将磁头从已知部分移到移动后位置,从所选模式中读位置信息,以确定偏移信息,从而传递移动后位置处的第二模式,磁道间隔可调节而不必写整个磁盘。
文档编号G11B21/10GK1136206SQ9512151
公开日1996年11月20日 申请日期1995年11月16日 优先权日1994年12月2日
发明者E·J·亚姆卓克, M·D·舒尔茨, B·C·韦布, T·J·钱纳 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1