铁磁性材料的制作方法

文档序号:6843365阅读:274来源:国知局
专利名称:铁磁性材料的制作方法
技术领域
本发明涉及其功能利用铁磁性的电子元件中使用的材料。
背景技术
人们设计基于具有铁磁性的材料的元件以影响或调整波色子和费米子例如电子的自旋方向。近年来要求在低磁性(dilute magnetic)半导体中寻找在室温以上具有铁磁性的材料,特别是利用电子自旋态开发潜在丰富的新型未来器件,即自旋电子学。用于这些器件的元件类型包括磁性存储器例如硬盘,半导体磁性存储器例如MRAM,自旋阀晶体管,自旋发光二极管,非易失性存储器,逻辑器件,量子计算机,光频隔离器,传感器,超快光开关等。低磁性半导体也可以用于基于电和磁的产品。
相关技术描述电子元件技术越来越关注于使用铁磁性材料用于新型元件设计和功能。常规的铁磁性材料是例如铁,镍,钴和它们的合金。技术刊物和科学刊物中经常报道实现它们的新科学活动和新提议。在PhysicsWorld(1999年4月)和IEEE Spectrum(2001年12月)的近期的综述文章中可以找到具有基本器件设计的材料期望的一些实例。所有这些文献都描述了设计可以在工业,汽车和军事温度范围(通常为-55℃至125℃)内工作的铁磁性材料的问题和要求。下面的参考文献列表中列出了该技术领域内现有技术的其它例子。
大多数目前已知的所关注的材料都需要低温。然而Klaus H.Ploog在Physical Review Letters(2001年7月)中描述了使用在砷化镓(GaAs)上生长的铁薄膜使注入半导体GaAs的电子的自旋极化。该实验在室温下进行。
自旋电子(spintronic)器件(例如自旋阀晶体管,自旋发光二极管,非易失性存储器,逻辑器件,光频隔离器和超快光开关)是在两份参考文献6和7中所描述的室温下在半导体中引入铁磁性的若干高度关注的领域。
如参考文献1-5这五篇文献中所述,近年来对于在掺杂低磁性半导体(DMS)中可表现出铁磁有序的材料进行了深入的搜寻,并关注于具有许多潜在器件应用可能的自旋输运性质。在目前已报导的材料中,发现Mn掺杂GaAs具有铁磁性,并且具有最高的报导的居里温度Tc~110K,参见参考文献1。此后,Dietl等人基于理论基础预测在使用Mn进行掺杂时ZnO和GaN可能在室温下表现出铁磁性,参见参考文献2。该预测引发了对多种掺杂低磁性半导体的深入实验工作。最近,分别在Co掺杂TiO2,ZnO,和GaN中报导了高于室温的Tc,参见参考文献3,8,9。然而,在Ti1-xCoxO试样中发现了Co的非均匀团簇,参见参考文献10。Kim等人显示虽然Zn1-xCoxO的均匀薄膜可表现自旋玻璃(spin-glass)行为,在非均匀薄膜中发现了归因于观察到Co团簇存在的室温铁磁性,参见参考文献11。
参考文献1.Ohno,H.Making Nonmagnetic semiconductors ferromagnetic.
Science 281,951-956(1998);see also a recentreviewS.J.Pearton et al JAP 93,1(2003).
2.Dietl,T.et al.Zener model description of ferromagnetismin zinc-blende magnetic semiconductors.Science 287,1019-1022(2000)3.Matsumoto,Y.et al.Room-temperature ferromagnetism intransparent transition metal-doped titanium dioxide.Science 291,854-856(2001)4.Ando,K.et al.Magneto-optical properties of ZnO-baseddilute magnetic semiconductors.J.Appl.Phys.89(11),7284-7286(2001)
5.Takamura,K.et al.Magnetic properties of (Al,Ga,Mn)As.Appl.Phys.Letts 81(14),2590-2592(2002)6.Chambers,S.A.A potential role in spintronics.Materials Today,34-39(april 2002)7.Ohno,H.Matsukura,F.& Ohno,Y.Semiconductor spinelectronics.JSAP international 5,4-13(2002)8.Ueda,K.Tabata,H.& Kawai,T.Magnetic and electricproperties of transition-metal-doped ZnO films.Appl.Phys.Letts 79(7),988-990(2001)9.Thaler,G.T.et al.Magnetic properties of n-GaMnN thinfilms.Appl.Phys.Letts.80(21),3964-3966(2002)10.Stampe,P.A.et al.Investigation of the cobalt distribution in TiO2Co thin films.J.Appl.Phys.92(12),7114-7121(2002)11.Kim,J.H.et al.Magnetic properties of epitaxiallygrown semiconducting Zn1-xCoxO thin film by pulsed laserdeposition.J.Appl.Phys.92(10),6066-6071(2002)12.Fukumura,T.et al.An oxide-diluted magneticsemiconductor.Mn-doped ZnO.Appl.Phys.Letts.75(21),3366-3368(1999)13.Fukumura,T.et al.Magnetic properties of Mn doped ZnO.Appl.Phys.Letts.7g(7),958-960(2001)14.Jung,S.W.et al.Ferromagnetic properties of Zn1-xMnxOepitaxial thin films.Appl.Phys.Letts.80(24),4561-4563(2002)15.Tiwari,A.et al.Structural,optical and magneric properties of diluted magnetic semjconducting Zn1-xMnxOfilms.Solid State Commun.121,371-374(2002)发明内容因此,铁磁性材料领域中仍需要进行发展。因此本发明的一般目标是提供具有铁磁性的材料,和生产这种材料的方法,该方法可以克服现有技术相关的某些缺点。特别地,可以清楚的是许多器件应用需要均匀的材料薄膜,因此,该一般目标的一个方面是提供生产这种均匀材料薄膜的方法。
本发明是基于这样的概念使用锰(Mn)对氧化锌(ZnO)进行掺杂在掺杂低磁性半导体中产生铁磁性。实现了在高于室温的温度下在决状Mn掺杂(<4at%)ZnO中铁磁性的调整。据发现在这个状态中Mn可以带有0.16μB的磁矩。这些试样的铁磁共振(FMR)数据证实了在高达425K的温度下存在铁磁有序的意外结果。在顺磁状态下,顺磁共振数据显示Mn处于g值为2.0029的2+态(Mn2+)。从头(abinitio)计算证实了上述的发现。在大于700℃的温度下对块体进行烧结时,完全抑制了室温左右的铁磁性从而引起通常所报导的40K以下的显著“类铁磁性”有序状态。该材料在2-3μm厚的透明薄膜中也表现出室温铁磁有序,该薄膜使用相同的块体材料作为靶材,通过脉冲激光沉积在低于600℃的温度下沉积在熔融石英基底上。还可以得到透明纳米颗粒形式的铁磁性低Mn掺杂ZnO。
已证实的新性能使得自旋电子器件的复杂元件和其它元件的实现成为可能。还可以使用溅射系统制造在特定温度范围内具有铁磁性的锰掺杂氧化锌,该系统内可以同时使用两个金属(锌和锰)靶或者使用一个烧结的ZnO:Mn陶瓷靶。
所附的权利要求对本发明进行了限定。
附图简述下面将参照附图对本发明的优选实施方案进行描述,其中

图1显示了室温磁滞回线,该磁滞回线显示了根据本发明的实施方案在不同温度下烧结的标称2%Mn掺杂ZnO球粒中的铁磁有序性;图2显示了在SQUID测试“原始获得的”数据中减去熔融石英基底引起的抗磁性作用(显示为插图)之后,熔融石英上沉积的Zn0.978Mn0.022O PLD薄膜在300K下的M(H)磁滞回线数据;图3显示了a)500℃下烧结的标称2at%Mn掺杂ZnO球粒的铁磁共振谱,和b)900℃下烧结的相同样品的顺磁共振谱;和图4显示了Zn0.958Mn0.042O的计算态密度(DOS),将费米能级设为零,其中的插图显示了费米能级附近的DOS,且Mn 3d态产生正好位于费米能级下方的能态。Mn-3d态下方,4至6eV之间的能态源自O-2p态而6至8eV之间的能态原子Zn-3d态。
优选实施方案详述本发明是基于这样的概念在块状或薄膜材料中使用锰(Mn)对氧化锌(ZnO)进行掺杂,在掺杂低磁性半导体中产生铁磁性。我们的实验显示了在高于室温的温度下对块状Mn掺杂ZnO中的铁磁性的成功调整。对于块状材料,这时Mn的掺杂水平应小于4-5at%(原子百分比)。理论上我们发现铁磁性的上限是大约5at%Mn。实验上我们发现由于材料的问题,当Mn大于4at%时,Mn原子具有形成团簇的明显趋势,这时该团簇为反铁磁性并且这抑制了铁磁有序性。对于大于2at%的试样,SEM观察显示了局部的聚集并且试样变得不均匀,这影响了材料从而室温附近的铁磁作用在4-5at%下消失。在ZnO中,3d过渡金属例如Mn的热溶解度大于10mol%并且电子“有效质量”大小为0.3me,其中me是自由电子的质量,参见参考文献12。因此薄膜中注入的自旋子(spin)和载流子的数量可能较大,从而使得Mn掺杂ZnO可理想地用于制造自旋电子器件。此外ZnO是众所周知的压电和光电材料,因此在ZnO中结合磁性能可以引起许多新的多功能现象。
理论预测声称在室温以上只有p型Mn掺杂ZnO具有铁磁性。然而,我们的实验显示n型ZnO在室温以上也可以具有铁磁性,但是该铁磁性趋于随材料中n型载流子的增加而减小。在室温下发现,我们试样中Mn的铁磁状态带有0.16μB的磁矩。铁磁共振(FMR)数据证实在高达425K的温度下在球粒和薄膜中都存在铁磁有序。在顺磁状态下,EPR谱显示Mn处于2+态(Mn2+)。此外,在煅烧(低于500℃)的粉末中也观察到了高于室温的铁磁性。我们的从头计算证实了上述发现。如果在更高温度下进行Mn掺杂ZnO材料的烧结,该掺杂材料在室温下将显示另外的大顺磁成分而且铁磁成分将变得微不足道。在高于700℃的温度下烧结块体时,完全抑制了室温附近的铁磁性而在引起经常报导的低于40K的显著的“类铁磁性”有序状态。使用700℃,800℃和900℃烧结温度的实验证实了这一点。
在使用相同的块状材料作为靶材,通过脉冲激光沉积在低于600℃的温度下沉积在熔融石英基底上的2-3μm厚的薄膜中也得到了室温铁磁有序。这些薄膜材料中的掺杂浓度应小于3-4at%以便获得受控的均匀性。实验显示可以对低于2at%的试样进行调整使其组成均匀,具有微小的变动但是不包含团簇。在激光烧蚀中,基底的温度会影响薄膜中Mn的浓度。发现与低温下沉积的薄膜相比,较高温度下沉积的薄膜具有高浓度的Mn。这表明可以使用温度来控制Mn的浓度。
最开始使用量子设计,MPMS2-SQUID磁力计对在本研究中用于制造Mn掺杂ZnO的前体ZnO和MnO2粉末(纯度99.99%)进行表征以测定它们的磁性能。SQUID测试显示了ZnO粉末的抗磁行为,同时发现MnO2在低于100K的温度下具有预期的反铁磁性。将适量的ZnO和MnO2粉末混合,在400℃下煅烧8小时,然后在500至900℃的不同温度下在空气中烧结12小时以便得到Zn1-xMnxO(标称x分别为0.01at%,0.02at%,和0.1at%)陶瓷球粒。
特别研究了烧结温度对标称2%Mn掺杂ZnO的磁性能的影响,发现了高于室温的铁磁有序(Tc>420K)。图1显示了作为烧结温度函数的室温铁磁相,如M(H)所示。500℃下烧结球粒的元素分布显示了Mn在试样中的均匀分布。然而发现局部的Mn浓度大大低于标称组成(~0.3at%)。考虑到这个因素,我们估计了该铁磁相的饱和磁化强度并测定每个Mn原子的磁矩为0.16μB。有时当在600℃-700℃的温度下烧结球粒时,除铁磁成分之外,我们在磁滞回线中的高磁场下观察到线性的顺磁组分。然而,在大于700℃的温度下烧结球粒会完全抑制室温附近的铁磁性。还可以通过颗粒尺寸选择将掺杂稀半导体加工成透明且具有铁磁性的纳米颗粒。
可以使用溅射系统制造锰掺杂氧化锌,如上文所述,该系统内可以同时使用两个金属(锌和锰)靶或者使用一个烧结ZnO:Mn陶瓷靶。当使用两个金属靶时,可以以这样的方式调整Zn靶和Mn靶上的溅射能量使所得锰含量在1-5%的范围内。必须根据所用的溅射仪器设定正确的制法而且该制法取决于能量,几何形状和气体。然而,该技术为技术人员所熟知。沉积基底上的基底温度与使用激光沉积时的温度在同一范围内。
对我们得到的块状以及薄膜Mn掺杂ZnO材料进行X射线衍射以及SEM高分辨元素分布分析,发现均匀并且没有团簇形成或分布于其中的迹象。
顺便提及,在块状和透明薄膜中我们都得到了它们的铁磁共振谱,该谱提供了铁磁性存在的有力证据。已证实的新性能使得用于自旋电子器件的复杂元件的实现成为可能。这些类型的薄膜材料是透明的并且可以用于磁光元件。ZnO具有大的机电耦合系数因此还适用于压电应用和光,磁及机械传感器或元件解决方案的组合。
使用基于梯度近似泛函((GGA)的VASP程序包所使用的ProjectorAugmented-Wave(PAW)方法进行总能量的计算。使用了Perdew等人提出的交换和关联势的参数化方法。在本计算中我们使用了PAW势,其中Mn价态为3p,3d和4s,而Zn为3d和4s且O为2s和2p。使用周期性超晶格近似并且能量截止值为600eV。使用原子上的Hellmann-Feynman力和每一体积超晶格上的应力,对几何结构进行了优化(离子坐标和c/a比值)。为了对布里渊区的不可约楔形区(wedge)进行抽样,对于几何结构的优化我们使用4×4×2的k点栅格而对处于平衡体积上的最终计算我们使用8×8×4的k点栅格。
以上对本发明的不同实施方案,包括以发明材料和以不同形式进行制造的方法进行了讨论。然而,这些应当仅视为实施例而非限制。通过附属权利要求对本发明的范围进行了限定。
权利要求
1.制造掺杂低铁磁性半导体材料的方法,该方法包括如下步骤-向块状形式的氧化锌中掺杂锰且其浓度的最大水平为5at%。
2.权利要求1所述的方法,该方法包括如下步骤-在最高650℃的温度下烧结该材料。
3.权利要求1所述的方法,该方法包括如下步骤-在基底上通过激光沉积制造所述的材料。
4.权利要求1所述的方法,该方法包括如下步骤-同时使用分别为锌和锰的两个金属靶,通过向沉积基底上的溅射制造所述的材料;-控制沉积基底的温度使其最高为650℃;和-调节锌靶和锰靶上的溅射能量以便使所得的锰含量在1-5at%的范围内。
5.权利要求1所述的方法,该方法包括如下步骤-使用烧结ZnO:Mn陶瓷靶,通过向沉积基底上的溅射制造所述的材料;-控制沉积基底的温度使其最高为650℃;和-调节靶上的溅射能量以便使所得的锰含量在1-5at%的范围内。
6.权利要求所述的方法,该方法包括如下步骤-在对材料进行烧结之前,通过煅烧处理的方法制造粉末形式的所述材料。
7.权利要求6所述的方法,该方法包括如下步骤-在低于500℃的温度下进行所述的煅烧处理。
8.权利要求1-7任何一个中所述的方法,该方法包括如下步骤-通过颗粒尺寸选择的方法,对所述材料进行处理以便进一步形成透明和铁磁性的纳米颗粒。
9.包含Mn掺杂ZnO且Mn浓度不超过5at%的半导体材料,其特征在于所述的Mn掺杂ZnO在约218开尔文至约425开尔文的温度范围的至少一部分内是铁磁性的。
10.权利要求9所述的材料,其特征进一步在于它是透明的。
11.权利要求9或10所述的材料,其特征进一步在于它是压电材料。
12.权利要求9-11任何一个所述的材料,其特征进一步在于所述材料是通过使用权利要求1-8任何一个所述的方法制造的。
13.至少一部分表面上沉积有至少一个薄层的基底,其特征在于所述层包含根据权利要求9-12任何一个的材料。
14.用于电子应用的元件,其特征在于所述元件包含根据权利要求9-12任何一个的材料。
15.用于自旋电子应用的元件,其特征在于所述元件包含根据权利要求9-12任何一个的材料。
16.用于光学应用的元件,其特征在于所述元件包含根据权利要求9-12任何一个的材料。
全文摘要
制造掺杂低铁磁性半导体材料的方法,该方法通过向块状形式的氧化锌中掺杂锰且其浓度的最大水平为5原子%。优选在最高650℃的温度下对该材料进行烧结。该方法的结果是包含Mn掺杂ZnO的半导体材料,且Mn的浓度不超过5at%,其中所述的Mn掺杂ZnO在约218K至425K温度范围的至少一部分是铁磁性的。
文档编号H01F10/10GK1816503SQ200480004979
公开日2006年8月9日 申请日期2004年2月6日 优先权日2003年2月6日
发明者P·夏尔马, K·V·拉奥, B·约翰松, R·阿胡贾 申请人:Nm自旋电子学股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1