真空开关设备的单相模块及真空开关设备的制作方法

文档序号:6853346阅读:143来源:国知局
专利名称:真空开关设备的单相模块及真空开关设备的制作方法
技术领域
本发明涉及全真空绝缘型的真空开关设备,具体的涉及节省空间及改善组装性能的技术。
背景技术
真空开关设备是用于电力系统,将用于切断负载电流或事故电流的真空断路器收容于箱体内的封闭式配电盘。在这种封闭式配电盘中,为了确保操作人员在进行负载保养检查时的安全,根据需要收容有切断开关及接地开关、系统电压及电流的检测器、保护继电器等。真空开关设备的绝缘方式虽有多种,但就全真空绝缘型的真空开关设备而言,通过将断路器、切断开关、负载开关、或接地开关等多个开合触点收容于被接地的真空容器内部,从而可使真空开关部显著地小型化。
以上现有技术参见专利文献1-日本特开2000-268686号公报。
但是,即使将多个开合触点收容于一个真空容器内并使其小型化,但对于各个开合触点由于必须有用于驱动开合触点的驱动机构,因而若将真空开关设备作为整体来看,为实现小型化或节省空间仍有应予改善的余地。
此外,随着小型化,可以设想降低了组装时的操作性,或降低了试验检查的操作性,所以要求其结构能提高其组装及试验检查操作性且无故障的真空开关设备。

发明内容
本发明的目的在于不损害组装或试验检查的操作性,使真空开关设备小型化并缩小设置面积。
为了解决上述问题,本发明的基本点是,通过在具有容纳于真空容器内的开合触点及驱动该开合触点的操作杆的真空开关部的上部,安装具有利用电磁力及弹簧力在上下方向驱动上述操作杆的驱动杆的电磁驱动部,从而使真空开关设备实现单相模块化。
即,通过将真空开关部与电磁驱动部叠成两层,以实现设置面积的缩小及小型化。并且,由于通过单相模块化,可以对每个单相模块进行组装及试验检修,所以即使是构成三相真空开关设备的场合,也无损于组装及试验等的操作性。
本发明也适用于将多个开合触点例如,真空阻断器、负载开关、接地开关等容纳在一个真空容器内的场合。例如,在一个真空容器内容纳了共同连接有真空断路器及负载开关的活动触点侧,并分别将真空断路器及负载开关的固定触点接地的多个接地开关。此时,做成将多个开合触点并排配置于真空容器内的同时,在各开合触点的上方并排配置多个对应的电磁驱动部的结构。
特别是将真空容器做成长方形,在该真空容器内的长度方向上并排配置一列或多列多个开合触点。并且,并列配置与多个开合触点的排列一致的、驱动各开合触点的驱动机构。各驱动机构可具有分别与各驱动杆的上端连接的多个活动铁心,在上下方向驱动各活动铁心的电磁铁及弹簧部件。此时,通过将驱动机构的活动铁心或电磁铁等驱动部件的外形做成矩形,可以有效地利用设置面积的同时,能够以小的设置面积充分获得必要的磁力。
另一方面,例如,可对各个驱动机构实现电气连锁,从而使真空断路器的固定触点接地的接地开关的开合与真空断路器的开合相反。除了该电气连锁以外,从安全上考虑,还要求设有机械连锁机构。此时,在电磁驱动部之上,可以装载具有相反控制真空断路器与接地开关的开合的连锁机构的连接机构部。
该连接机构部的连锁机构可以设置在分别驱动真空断路器和接地开关的驱动杆之间的上方水平地延伸的轴,被旋转自如地支撑于该轴上的两个杠杆,将各杠杆的一端分别连接在与真空断路器和接地开关的各驱动杆联动的部件上的两个销子,在各杠杆的另一端部的真空断路器和接地开关的投入位置控制另一杠杆向投入方向旋转的控制部件。
通过将本发明的真空开关设备的单相模块三相并列配置,并收放于封闭型的箱体内,可简单地构成三相真空开关设备。此时,必须使各相的真空断路器、负载开关、切断开关等开关的开合动作同步。当然,要使电磁驱动部的驱动机构电气同步地进行操作,但最好是相应地使各相开关的开合也机械地同步。
因此,最好具有用于确保真空开关设备的三相同步动作的连接机构。在该场合下,也能维持单相模块化的基本思路。因此,本发明的连接机构部的结构具有与单相模块的三相排列方向垂直且水平地延伸的轴,被旋转自如地支承在该轴上、且一端通过销子连接在与驱动杆联动的驱动部件上的杠杆;三相排列的相邻的各连接机构部的结构是,可通过能伸缩调整的接头将通过销子连接在上述杠杆另一端部的各个连接杆相互连接。
这样,只要连接驱动各相开关的三个驱动杠杆,就能使各开关的开合同步。但是,由于存在不可避免的各相开关的组装误差、驱动机构的组装误差、其它制造误差,所以在组装三相的单相模块时,必须针对这些误差调整各开关的动作。因此,本发明利用连接杆通过可伸缩调整的接头将对应于相邻的单相模块的驱动杠杆相互连接。即,使接头伸缩并对连接杆的长度进行实质地调整,以吸收因制作误差引起的同步偏差,从而使三相的开合同步。特别是,与用一根连接杆将对应于三相的三个驱动杆连接成直线状的情况相比,根据本发明,由于是用连接杆将相邻的单相模块的两个驱动杠杆彼此连接,所以能缓和驱动杠杆的位置精度。
根据本发明,可以无损于组装及试验检测的操作性、或改善它们的操作性,并可以使真空开关设备小型化且缩小设置面积。


图1是以局部剖表示本发明的一个实施例的真空开关设备的内部结构的侧视图。
图2是表示构成图1实施例的真空开关设备的多个开合触点的单线接线图。
图3是表示图1实施例的真空开关设备的内部结构的主视图。
图4是表示真空开关设备的内部结构的侧剖视图。
图5是用于说明电磁操作机构的俯视图。
图6是表示电磁铁的结构的详细剖视图。
图7是用于说明电磁铁动作的示意图。
图8是用于说明电磁铁动作的示意图。
图9是用于说明电磁铁动作的示意图。
图10是三相部分的局部开合触点的连接机构的俯视图。
图11是图10的侧剖视图。
具体实施例方式
以下,根据实施例说明本发明。图1表示将三个本发明的叠成三层的单相模块并列排列并将其收容于封闭型箱体内而形成的三相真空开关设备1的结构。图1是以局部剖表示真空开关设备1的内部结构的侧剖视图,图2是表示真空开关设备1的单线接线图。
如图2所示,本实施例的真空开关设备1的各相的结构具有一个断路器CB、两个负载开关LBS、三个接地开关ES。此外,本发明不局限于图2的例子,也可适用于具有多个断路器CB的场合,或者具有切断开关的场合。图2中,在断路器CB和负载开关LBS的图上的固定触点,分别与电缆4连接并引出到外部。在断路器CB和负载开关LBS的图上的活动触点,被母线71连接在一起。在各电缆4上设有电压检测部VD,在断路器CB的电缆4上设有计量用变流器CT。
图1是从侧面所见的本发明的真空开关设备1的局部剖视图,表示将三相部分的真空开关设备并列配置的状态。如图所示,真空开关设备1的结构具有设在封闭型箱体的门部上的保护继电器2、作为电磁操作机构电源所使用的电容器3、用于连接电源侧及负载侧的电缆4、电流测定用的计量用变流器5及电压检测部VD12。此外,内部具有多个开合触点的真空开关部6的结构具有各相分离的三个真空容器60。此外,在真空容器60的上部装载有作为驱动多个开合触点的电磁驱动部的电磁操作机构8,并且在电磁操作机构8的上部安装有作为用于确保三相开合触点的动作同步的连接机构部的连接机构9,做成所谓叠成三层的结构。此外,真空开关设备1可通过操作把手10打开前面的门11,以便能实施内部维修检查操作。在真空容器60内,容纳了图2所示的多个开合触点。此外,之所以将真空容器60做成相分离结构是因为,即使万一一个真空容器60发生真空泄漏等故障时,仅限于一相接地短路事故,而避免产生过大的事故电流。
下面,对对构成上述叠成三层的结构的真空开关部、电磁驱动部及连接机构部进行说明。
真空开关部以下,参照图3及图4,说明真空开关部6的结构。图3是从正面观察真空开关设备1时的结构图,图4表示与图1相同的侧剖视图。真空容器60的底面用螺栓及螺母21固定安装在安装于图1的固定架22上的底板20上。底板20按各个真空容器60分离设置,并分别安装在固定架22上。此外,三个真空容器60的结构都相同,并都通过固定架22固定而具有接地电位。因此,在运行中即使与真空容器60接触也能确保安全。
从真空容器60突出了三根陶瓷制的电缆连接部23,并分别插入并连接了电缆4。在电缆连接部23中贯穿了馈电线24,且馈电线24固定在通电板25上。电缆连接部23通过部件50与真空容器60固定,进而并通过部件51与通电板25连接并维持真空密封。在通电板25上,固定了与断路器的固定触点27连接的固定导体26,与接地开关的固定触点40连接的固定导体39及通过部件36与陶瓷制的的绝缘支撑37固定。此外,绝缘支撑37通过部件36固定在真空容器60上。各部分的固定方法都是在真空炉中的钎焊连接。此外,在与电缆连接部23或绝缘支撑37进行钎焊的部件51、36、38上,虽将凹凸61设在其钎焊面上,但这是为了缓解在高温中进行钎焊后所残留的应力。
面对断路器CB的固定触点27设有活动触点28,通过两触点的开合实现电流的通、断。在活动触点28上焊有活动导体29,并以提高机械强度为目的在其内部接合了不锈钢制的操作杆30。操作杆30与由缓解残留应力用部件31、33夹持的绝缘支撑32连接,并且通过部件33与电磁操作机构8的连接部件35连接。部件33与将另一端固定于真空容器60上的波纹管34连接,以便能一边保持真空密封一边能上下驱动活动触点28。
与活动导体29连接的柔性导体70与母线71连接。柔性导体70由薄铜板层叠构成。利用具有活动性的柔性导体70,即使在活动触点28动作时,也能稳定地通电。此外,如图3所示,在真空容器60内母线71与其它负载开关LBS的活动导体连接,并实现图2的单线接线图所表示的电路结构。
在固定触点27及活动触点28的周围设有被固定在陶瓷筒72上的灭弧罩73。陶瓷筒72,其一端通过缓解残留应力用部件75固定在通电板25上,其另一端通过缓解残留应力用部件76及罩74固定在母线71上。即,由通电板25、缓解残留应力用部件75、76、陶瓷筒72及罩74构成了断路器用空间S,并能避免在切断电流时,从触点27、28释放的金属粒子向外部飞散并降低耐压性能。此外,灭弧罩73用于防止陶瓷筒72因金属粒子污染其内表面。
另一方面,接地开关ES,面对固定触点40设有活动触点41,通过使活动触点41与固定触点40接触,进行电路的接地操作。活动触点41与活动导体42连接,在活动导体42内部设有增强用的不锈钢制操作杆44。操作杆44通过绝缘支撑46及缓解残留应力用部件45、47固定在与电磁操作机构的连接部件48上。设在固定触点40及活动触点41周围的灭弧罩77,在通常的使用条件下虽不需要,但其设置是为了防止万一在通电中使触点闭合时,先期电弧向外部飞散并使耐压性能降低。此外,在活动触点42上连接了柔性导体43,该柔性导体43固定在接地母线78上。如图3所示,其它接地开关ES的活动导体42也同样地通过柔性导体43与接地母线78连接,该接地母线78通过馈电线在真空容器60外部被接地。
此外,如图4所示,在柔性导体43的周围设有以罩79构成的空间S2。由于柔性导体43由薄铜板层叠构成,所以在开合动作时铜板彼此之间相互摩擦而产生微小的金属异物。将该金属异物飞散的区域限制于空间S2内,从而不降低机器的绝缘可靠性。断路器用的空间也具有同样的效果。
如上所述,通过将多个开合触点汇集在真空容器60内部,能缩小机器的体积,进而由于缩短了用于通电的导体长度,因而能降低通电损失。此外,如本实施例所示,通过按各相分离真空容器60,在万一发生真空泄漏时,具有能将事故局限于一路短路事故,能抑制事故电流的优点。
电磁驱动部以下,参照图5及图6,说明构成电磁驱动部的电磁操作机构8。图5表示电磁操作机构8的俯视图,图6表示电磁铁94的侧剖视图。电磁操作机构8的结构具有用于驱动真空容器60内的各活动触点的电磁铁94,与突出于真空容器60的连接部件35连接的连接部95,用于将触点开启的断路弹簧96,用于对触点施加接触力的压接弹簧97。此外,电磁操作机构8的电磁铁94等驱动机构相对于真空容器60内的触点及与触点连接的活动导体配置在直线上。这样,通过使触点与电磁铁49直线地连接,可以不需要轴、杠杆等零件,并且可降低操作能耗,从而可缩小电磁铁49及作为电源使用的电容器3的尺寸。此外,在本实施例中,由于按顺序连接了真空容器60、电磁操作机构8、用于确保三相同步的连接机构9,所以电磁操作机构8的驱动力能有效地传递给真空容器60内的开合触点。
连接部95由用销子103与电磁铁94的轴102配合的中间配件98,用销子101与该中间配件98配合,并固定在突出于真空容器的连接部件35上的连接部件100构成。断路弹簧96被与中间配件98连接的片簧压件99和底板90夹持,并在投入动作即电磁铁94的活铁心110向下方动作的同时被压缩。另一方面,压接弹簧97,被片簧压件99和连接部件100夹持。由于中间配件98的销子插入部是椭圆孔,所以连接部件100与活铁心110成为一体地动作直到固定触点与活动触点撞击在一起,但在触点撞击在一起以后,只有中间配件98之上的零件动作,压接弹簧97进行蓄能以便对触点施加接触力。
以下,说明电磁铁94的结构及动作原理。图5是从上面所见到的电磁操作机构8的状态,可以看到电磁铁94的外形呈矩形。电磁铁94的内部结构用图6说明。图6是电磁铁94的侧剖视图。电磁铁94的固定铁心120由下部钢板121、中央支承122、矩形钢管123、永磁铁座124构成。中央支承122与钢板125一起用螺栓126固定在下部钢板121上。活动铁心130由活动平板131和活铁心110构成,且不锈钢等的非磁性体的轴102贯穿它们的中心。此外,面对活动平板131设有永磁铁132。永磁铁132用粘接剂等固定在永磁铁座124上。由于在活动平板131与永磁铁132之间设有适当的空隙g,所以永磁铁132不会向活动平板131侧移动。在电磁铁94内部设有线圈133,由电源电容器3(见图1)对电磁操作机构8供给励磁能量。
矩形钢管123使用的是JIS-G3466的「一般结构用矩形钢管」等规定的标准尺寸的钢管以谋求降低成本。随着该钢管形状,活铁心110、线圈133、永磁铁132、活动平板131等都做成矩形形状。之所以这样,如图5的俯视图所表明的,与使用传统圆形钢管的电磁铁相比可以提高集成率,并且具有能对应于真空容器60的宽度尺寸W和深度尺寸D有效地配置电磁铁94的优点。
电磁铁94可以用以下的方法组装。首先,将用螺栓126固定的下部钢板121、钢板125及中央支承122,载置于柱状螺栓134的六角部134a之上。然后按顺序装上矩形钢管123、固定有线圈133及永磁铁132的永磁铁座124,并设置用轴102及螺母111固定了的活动铁心130。最后,装上与矩形钢管123相同用磁性体的矩形钢管制作的永磁铁罩135、上部罩136,拧紧螺母137,将各部件夹持在螺母137与柱状螺栓的六角部134a之间,并完成电磁铁94。这样,通过将外圆周部做成都用磁性体覆盖的结构,可降低向电磁铁94外部泄漏的磁通,并可以忽略对相邻电磁铁的影响。
此外,如图3所示,用销子103将中间配件98连接于完成了的电磁铁94上,并用片簧压件99及底板90和补强板91夹持断路弹簧96,同时将柱状螺栓134固定在底板90上。若对与存在于真空容器60内的触点一一对应的6个电磁铁94实施该作业,则能完成电磁操作机构模块140的制作(图5)。
在此,参照图7~图9,说明电磁铁94的动作原理。图7~图9分别是表示投入动作、投入状态的保持、断开动作的原理的示意图。在断开状态下,若对线圈133励磁,则由于线圈电流引起的磁通φc在活铁心110与中央支承122之间产生吸引力,活动铁心130开始向图中的下方移动。随着该活动铁心130的动作,被连接的真空容器60内的活动触点向投入方向移动。在投入动作完成之前的状态下,由于永磁铁132的磁通φpm开始作用,所以在活动平板131与永磁铁132之间也产生吸引力。如上所述,真空容器60内的开合触点从撞击了的瞬间起压接弹簧97的力作用,并具有与急剧增大的负载弹簧特性一致的吸引力特性。
当投入动作结束时,如图8所示解除线圈133的励磁,只用永磁铁132的吸引力保持投入状态。在该阶段,断路弹簧96、压接弹簧97都处于储能的状态,准备断开动作。在断开动作中,如图9所示,与投入动作时相反方向的电流流经线圈133。此时,由于线圈电流引起的磁通φc起到了抵消永磁铁132的磁通φpm的作用,所以降低了电磁铁94的吸引力。因此,当压接弹簧97及断路弹簧96的力超过吸引力时,活动铁心130向图中的上方移动,同时将开合触点断开。
以下,说明真空容器60与电磁操作机构模块140的连接方法。如图3及图4所示,真空容器60的底板20、电磁操作机构模块140的底板90都被与其它相分离,并能构成由真空容器60和电磁操作机构模块140构成的单相的单相模块150。具体的是,只要用连接部件92固定底板20和底板90即可。即,只要将三个单相模块150并排,并在其上部安装后述的连接机构,即成为构成真空开关设备1的结构。
以下,参照图3说明电磁操作机构8与从真空容器60延伸的连接部件35的连接。首先,将电磁铁94置于投入位置。与螺母152一起将连接部件100安装在连接部件35上,在插入压接弹簧97的状态下将中间配件98插入连接部件100并用螺栓将底板90固定在连接部件92上。此时,将连接部件100尽可能地拧入连接部件35中,对压接弹簧97不预先施加负载。在结束了上述操作的阶段,调整连接部件100的拧入深度,以施加规定的压接弹簧负载。调整后,只要插入销子101,即完成了电磁操作机构模块140与真空容器60的连接,并完成了单相模块150。
在单相模块150阶段实施下述出厂前调整及试验。通常,真空断路器,在实施了适应性操作后再次调整弹簧负载然后出厂。此时,所谓适应性操作,是实施100次左右的无负载开合动作,利用触点撞击的冲击力,强制性地提高开合触点之间的平行度。此外,由于真空容器60是在高温真空炉中生成的,所以各部件的机械强度特性与常温特性有所不同,特别是通电部分所使用的铜的强度明显降低。例如,活动导体29及固定导体26因冲击力而在压缩方向变形。通过适应性操作,反复开合操作以使该变形达到饱和的水平,然后再次调整压接弹簧负载后出厂。在本实施例中,在单相模块150阶段实施适应性操作。在将单相模块150配置成三相以后,不能确保为调整压接弹簧负载的空间。换言之,如本发明所述,通过将每单相模块化,不需要确保用于调整的操作空间,并能将机器整体小型化。即,本发明的模块化的思路,不仅可提高作业效率,还能使机器小型化。
此外,也可以在该阶段实施真空容器60的耐压试验。这是由于真空开关设备1的真空容器60被以接地电位固定,因而其内部的电场分布不受其它相的影响。若能以单相模块150实施耐压试验,则也可以容易地进行电缆4的安装等操作,提高作业效率。
这样,由于将用于驱动真空容器60及内部开合触点的电磁操作机构8按每相实现模块化,所以能对每个模块实施出厂前的调整及各种试验。因此,既能提高作业效率,也不需要确保调整用的作业空间,从而能实现机器的小型化、低成本化。
连接机构部以下,参照图10及图11,说明构成用于确保开合触点动作三相同步的连接机构部的连接机构9。图10是三相的一部分开合触点的连接机构9的俯视图,图11是其侧剖视图。连接机构9,由断路器CB或负载开关LBS用的连接机构161和接地开关ES用的连接机构160构成一个组件,在真空开关设备1中合计设有3个组件的连接机构9。
如图10及图11所示,连接机构9的一个组件主要具有3根主轴162a、162b、162c,围绕这些轴旋转的杠杆163a、163b、163c、164a、164b、164c及连接各杠杆之间的连接部165ab、165bc、166ac、166bc。各符号的附加字母a、b、c表示A相、B相、C相。此外,杠杆163a、163b、163c被用于断路器CB或负载开关LBS,杠杆164a、164b、164c用于接地开关ES。
主轴162a、162b、162c用螺母168固定在两侧的托架167上。托架167用螺栓固定在电磁铁49的上部罩136上。以主轴162a为中心旋转的杠杆163a通过销子169、中间联杆170、销子172、连接部件171,与电磁铁49的轴102连接。此外,通过销子173、连接部165ab与B相的杠杆163b连接。B相、C相的杠杆163b、163c也与A相一样地与电磁铁49连接并相互连接。此外,接地开关ES的连接机构160也用同样的方法与杠杆和电磁铁49连接。
主轴162a、162b、162c位于断路器CB或负载开关LBS用电磁铁的轴102与接地开关ES用电磁铁轴102的中心位置。若定量地表示,可以等于图11的尺寸L。因此,由于杠杆163a、163b、163c、164a、164b、164c以及4个连接部165ab、165bc、166ac、166bc分别是相同的零件,所以能实现低成本化。
此外,在断路器CB或负载开关LBS用的杠杆163a上,通过销子180连接有状态显示板181,在状态显示板181上,通过弹簧183连接有动作次数计数器182,状态显示板181及动作次数计数器182能与连接机构9的动作同步。并且,在杠杆163c上连接了辅助开关184。这种结构在接地开关ES中也相同。当分别独立地驱动各相开合触点时,各操作机构虽必须设置状态显示板181、动作次数计数器182、辅助开关184,但如实施例所述,在设有连接机构9的情况下各设一个即可。此外,有利于辅助开关的配线的简化。
以下,参照图11说明断路器CB或负载开关LBS用的连接机构161的动作。在投入动作中,由于电磁铁49的活动铁心130向下方动作,所以杠杆163a、163b、163c绕反时针旋转。与其相随,连接部165ab、165bc向左方移动。由于停止位置由电磁铁49的活铁心110与中央支承122的冲突位置所决定,所以在连接机构161上不需要投入动作用的挡块。另一方面,在断开动作中,由于电磁铁49的活动铁心130向上方动作,所以杠杆163a、163b、163c绕顺时针旋转。与其相随,连接部165ab、165bc向右方移动。在断开动作中,使连接部165bc与止动螺栓190冲突而停止。即,由与该止动螺栓190的位置,定开合触点的断开距离。关于断开距离,可以将调整板插入止动螺栓190与其底座192之间进行调整,对于相间的扁差,可以用设在连接部165ab、165bc上的作为能伸缩调整的接头的拉紧螺丝193ab、193bc进行调整。
另一方面,接地开关ES用连接机构160的动作,由于将主轴162a、162b、162c配置于断路器CB或负载开关LBS用的电磁铁49的轴102与接地开关用的电磁铁49的轴102的中心位置,所以其动作方向与上述说明的连接机构161相反。即,在投入动作中,由于电磁铁49的活动铁心130向下方动作,所以杠杆164a、164b、164c绕顺时针旋转,且连接部166ab、166bc向右方移动。另一方面,在断开动作中,由于电磁铁49的活动铁心130向上方动作,所以杠杆164a、164b、164c绕反时针旋转,且连接部166ab、166bc向左方移动。并且,在断开动作中,使连接部166bc与止动螺栓190冲突而停止。
之所以将接地开关ES用的连接机构160与断路器CB或负载开关LBS用的连接机构161的动作方向设定为相反,是由于不仅要实现如上所述的以减少零件数量、使零件通用化为基础的低成本化,而且还要实现下述的机械连锁。即,联杆部件200用销子169c与杠杆163c连接,在投入断路器CB或负载开关LBS的状态下,另一端侧的连锁销201在导向件202的椭圆孔203内向下方移动。在这种状态下,即使要投入接地开关ES,杠杆163c与连锁销201干涉而不能动作。另一方面,在投入接地开关ES的状态下,由于联锁销204向下方移动,所以即使要投入断路器CB或负载开关LBS,杠杆162b与联锁销204干涉,也不能动作。这样,由于断路器CB或负载开关LBS用连接机构161与接地开关ES用连接机构160的动作方向相反,由于当一方处于投入状态时两者的杠杆163、164的位置一致,所以能容易实现对投入方向的旋转进行相互限制的机械连锁。
即,用于确保本实施例的开合触点三相同步的连接机构9,由于共用了断路器CB或负载开关LBS用的连接机构161和接地开关ES用的连接机构160的主轴162,从而能实现以减少零件数量、使零件共用化为基础的低成本化,并且能容易地实现用于使两者动作方向相反的机械连锁,并提高了安全性、可靠性。
如上所述,在本实施例的真空开关设备1中,由于将真空开关部6、独立驱动真空开关部6内的各开合触点的电磁操作机构8及用于确保开合触点动作三相同步的连接机构9沿上下方向叠成三层,所以能缩小配电盘的设置面积,并能通过小型化而实现低成本的配电盘。同时,也可以考虑真空开关部6、电磁操作机构8、连接机构9各部的小型化。
在真空开关部6中,通过收容具有断路器、切断开关、负载开关或接地开关等功能的多个开合触点以实现小型化。在电磁操作机构8中,在固定铁心上使用矩形钢管,以提高电磁铁49的集成效率。此外,由于将电磁操作机构8和开合触点及固定在开合触点上的活动导体直线配置,所以可以不需要用于转换驱动运动方向的轴、杠杆等零件。此外,还具有能降低操作能量损失并能缩小电磁铁49及作为电源使用的电容器3的尺寸的优点。此外,由于真空开关部6和电磁操作机构8按每相进行模块化地制造,在单相模块阶段可以实施出厂前的调整、试验,所以提高了作业效率。并且,没有必要确保操作用的空间,并能缩小机器全体。在连接机构9中,通过将断路器用、切断开关用或负载开关用的连接机构161及与其相随的接地开关用的连接机构160组件化,可以减少零件数量、实现零件共用化。并且,如本实施例所述,由于配置了主轴162及杠杆163、164,能容易地实现机械的连锁,并能提高安全性、可靠性。
权利要求
1.一种真空开关设备的单相模块,具有将多个开关及分别在上下方向驱动该各开关开合的多个操作杆容纳于真空容器内,且上述操作杆的端部从上述真空容器的上部容器壁保持气密地突出的真空开关部;设有分别驱动各个与上述各操作杆连接的多个驱动杆的多个驱动机构的电磁驱动部,其特征在于该电磁驱动部安装在上述真空开关部之上。
2.根据权利要求1所述的真空开关设备的单相模块,其特征在于上述电磁驱动部的上述各驱动机构具有分别与上述各驱动杆上端连接的多个活动铁心和在上下方向驱动该各个活动铁心的电磁铁及弹簧部件。
3.根据权利要求2所述的真空开关设备的单相模块,其特征在于上述真空容器做成长方形,上述多个开关并列配置于长方形的上述真空容器内,上述多个驱动机构与上述开关的位置相对应地并列配置于上述电磁驱动部上,上述电磁驱动部中的上述电磁铁做成矩形。
4.根据权利要求1或3所述的真空开关设备的单相模块,其特征在于上述多个开关是活动触点侧被共同连接的真空断路器及负载开关,以及将上述真空断路器及上述负载开关的固定触点接地的多个接地开关。
5.根据权利要求1~4中任何一项所述的真空开关设备的单相模块,其特征在于上述多个开关将具有连锁机构的连接机构部安装在上述电磁驱动部之上,上述连锁机构包括真空断路器及将该真空断路器的固定触点接地的接地开关,并对上述真空断路器和上述接地开关的开合进行相反控制。
6.根据权利要求5所述的真空开关设备的单相模块,其特征在于上述连接机构部设置有在分别驱动上述真空断路器及上述接地开关的上述驱动杆之间的上方水平地延伸的轴,被旋转自如地支承在该轴上的两个杠杆,将各杠杆的一端分别连接在与上述真空断路器及上述接地开关的各驱动杆联动的部件上的两个销子,在上述各杠杆的另一端部的上述真空断路器及上述接地开关的投入位置控制另一杠杆向投入方向旋转的控制部件。
7.一种真空开关设备,具有将真空断路器及在上下方向驱动该真空断路器的活动触点的操作杆容纳于真空容器内,并从上述真空容器的上部壁部保持气密地使上述操作杆的端部突出的真空开关部,设有在上下方向驱动与上述操作杆连接的驱动杆的驱动机构的电磁驱动部,使该电磁驱动部的上述驱动杆相互连接并驱动的连接机构部,其特征在于将在上述真空开关部之上安装了上述电磁驱动部、在该电磁驱动部之上安装了上述连接机构部构成的单相模块三相并列地配置;上述连接机构部具有与上述单相模块的排列方向垂直且水平延伸的轴,被旋转自如地支承在该轴上且一端通过销子连接在与上述驱动杆联动的驱动部件上的杠杆;三相排列的相邻的上述连接机构部,通过能伸缩调整的接头将通过销子与上述杠杆的另一端部连接的各个连接杆相互连接。
8.一种真空开关设备,具有将多个开关及分别在上下方向驱动上述各开关的活动触点的多个操作杆容纳于真空容器内,并从上述真空容器的上部壁部与外部保持气密地使上述各操作杆的端部突出的真空开关部,设有分别在上下方向驱动与上述各操作杆连接的多个驱动杆的驱动机构构成的电磁驱动部,使该电磁驱动部的上述驱动杆的动作相互联动的连接机构部,其特征在于将在上述真空开关部之上安装了上述电磁驱动部、在该电磁驱动部之上安装了上述连接机构部构成的单相模块三相并列地配置;上述连接机构部具有与上述单相模块的排列方向垂直且水平延伸的轴,被旋转自如地支承在该轴上且一端通过销子分别连接在与上述各驱动杆联动的部件上的多个杠杆;三相排列的相邻的上述连接机构部,通过能伸缩调整的接头将通过销子与上述各杠杆的另一端部分别连接的多个连接杆相互连接。
9.根据权利要求8所述的真空开关设备,其特征在于上述多个开关包括真空断路器及将该真空断路器的固定触点接地的接地开关,上述连接机构部具有对上述真空断路器和上述接地开关的开合进行相反控制的连锁机构。
10.根据权利要求9所述的真空开关设备,其特征在于上述连锁机构设置有在分别驱动上述真空断路器及上述接地开关的上述驱动杆之间的上方水平地延伸的轴,被旋转自如地支承在该轴上的两个杠杆,将该各杠杆的一端分别连接在与上述真空断路器及上述接地开关的各驱动杆联动的部件上的两个销子,在上述各杠杆的另一端部的上述真空断路器及上述接地开关的投入位置控制另一杠杆向投入方向旋转的控制部件。
全文摘要
本发明涉及全真空绝缘型的真空开关设备。本发明的目的在于不损害组装或试验检查的操作性,使真空开关设备小型化并缩小设置面积。本发明通过在具有容纳于真空容器(60)内的开合触点CB及驱动该开合触点的操作杆的真空开关部(6)的上部,安装了具有利用电磁力及弹簧力在上下方向驱动操作杆的驱动杆的电磁驱动部(8),从而使真空开关设备实现单相模块化,以实现缩小设置面积及小型化的同时,能按单相模块进行组装及试验检查,即使在构成三相真空开关设备时,也无损于组装及试验等的操作性。
文档编号H01H33/666GK1737969SQ200510090009
公开日2006年2月22日 申请日期2005年8月9日 优先权日2004年8月17日
发明者森田步, 土层贤治, 黑木拓弥, 小林将人 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1