基于有效测量量程而动态调整测量采样的方法及系统的制作方法

文档序号:6867773阅读:264来源:国知局
专利名称:基于有效测量量程而动态调整测量采样的方法及系统的制作方法
技术领域
本发明大致有关一种工业程序,尤其有关根据有效测量量程(metrology capacity)而动态调整测量采样的各种方法及系统。
背景技术
在完整地参阅了本申请案之后,熟悉相关技术者将可了解本发明可广泛应用于涉及各种不同类型的装置或工件的制造之各种工业。举例而言,将在制造集成电路装置时所遭遇的各种问题之环境下讨论本申请案的背景。然而,并不将本发明视为只限于使用于半导体制造工业内。
半导体工业中一直有驱策力来提高诸如微处理器、存储器装置等的集成电路装置之品质、可靠性、及产出率。客户对于可更迅速且更可靠地工作的较高品质之计算机及电子装置的需求更强化了此种驱策力。这些需求已使得诸如晶体管等的半导体装置之制造以及设有此种晶体管的集成电路装置之制造有了持续的改良。此外,若能减少典型晶体管的各组成部分制造时之缺陷,则亦可降低每一晶体管的整体成本、及设有此种晶体管的集成电路装置之成本。
一般而言,系利用其中包括光刻步进机(photolithographystepper)、蚀刻工具、沉积工具、研磨工具、热退火工艺工具、植入工具等的各种工艺工具,而对一批晶圆执行一组工艺步骤。在过去数年中,构成半导体工艺工具的基础之技术已获致更多的注意,而造成了此种工艺工具的精进。然而,尽管该领域中已有这些进展,但是目前在市场上可购得的许多该等工艺工具仍然有某些缺点。更具体而言,此种工具经常缺乏诸如以使用者易于使用的格式提供历史性参数数据的能力等的先进工艺数据监视能力,也缺乏事件记录(event logging)、目前工艺参数及整批次的工艺参数之实时图形显示、以及远程(亦即本地及世界各地)监视。这些缺点可能对诸如产出率、正确性、稳定性及可重复性、工艺温度、以及机械工具参数等的关键性工艺参数造成了非最佳的控制。由于批次内的差异性(within-run disparities)、各批次间之差异性(run-to-run disparities)、及各工具间之差异性(tool-to-tool disparities)可能造成产品品质及效能的偏差,所以显露了前文所述的变化性;反之,用于此类工具的理想之监视及诊断系统将提供一种监视该变化性之装置,并提供一种对关键性参数的控制之最佳化装置。
改善半导体生产线的作业之一种技术包括使用遍及全工厂的(factory wide)控制系统来自动地控制各种工艺工具的作业。所述制造工具与由若干工艺模块构成的制造架构或网络通讯。每一个制造工具通常连接到设备接口。该设备接口连接到用来协助该制造工具与该制造架构间之通讯的机器接口。该机器接口通常可能是先进工艺控制(Advanced Process Control;简称APC)系统中的一部分。该APC系统根据制造模型而激活控制描述语言程序(control script),该控制描述语言程序可以是用来自动撷取工艺执行所需的数据之软件程序。半导体装置经常是逐步经过多个制造工具,以便进行多个工艺,而产生了与经过处理的半导体装置的品质有关之数据。
在该工艺期间,可能发生会影响到所制造装置的性能之各种事件。亦即,工艺步骤中的变化可能造成构成该装置的各特征部位之变化、以及装置性能的变化。诸如特征关键尺寸、掺杂浓度、接触电阻、及微粒污染等的因素皆有可能影响到该装置的最终性能。系根据各性能模型来控制生产线中的各种工具,以便减少工艺的变化。一般被控制的工具包括光刻步进机、研磨工具、蚀刻工具、及沉积工具。将处理前及(或)处理后的测量数据供应到所述工具的工艺控制器。所述工艺控制器根据该性能模型及该测量信息来计算诸如工艺时间等的操作方式参数,以便尝试使处理后的结果尽量接近目标值。以此种方式减少变化时,将可获致更高的产出率、更低的成本、及更高的装置性能等成效,所有这些成效都等同于更高的获利率。
通常系根据所制造装置的设计值而执行各种工艺的目标值。例如,特定的工艺层可具有目标厚度。可自动控制各沉积工具及(或)研磨工具的操作方式,以便减少与该目标厚度有关的变化。在另一例子中,晶体管栅电极的关键尺寸可具有相关联的目标值。可自动控制各光刻工具及(或)蚀刻工具的操作方式,以便得到目标关键尺寸。
通常将控制模型用来产生控制动作,以便根据所收集的与所控制的工艺工具所进行的处理有关之反馈(feedback)或前馈(feedforward)测量数据,而改变该工艺工具的操作方式设定值。为了有效地运作,在将测量数据提供给控制模型时,必须适时地且以在数据量上足以维持该控制模型预测其所控制的工艺工具的未来作业的能力之方式,将测量数据提供给该控制模型。
在许多制造工业中,投入了相当大的努力以确保精确地执行了工艺作业,以便使所产生的装置符合目标规格。此种情形尤其适用于半导体制造工业,而在半导体制造工业中,将许多测量工具及传感器用来取得大量的测量数据,以便确定在工艺工具中执行的工艺作业的有效性及正确性,且(或)确定所产生的工件是否符合产品规格。为达到该目的,一般半导体制造工厂可能投注大量的资源以取得此种测量数据。现代的半导体制造工厂通常将设有用来执行各种测量作业的许多测量工具或测量工作站。例示的测量数据可包括工艺层的厚度、在基材之上形成的的特征部位之关键尺寸、以及表面的平坦度等的测量数据。某些测量工具专门用来执行一种测量作业(例如,关键尺寸的测量),而其它的测量工具可执行多种测量作业。此外,一般的半导体制造工厂可设有可执行相同测量作业的多种工具。
在半导体制造环境中,系针对各种工艺作业而建立测量采样率。可根据诸如栅极蚀刻工艺等特定工艺的关键性及(或)工艺作业在可控制性的稳定程度之各种因素而改变采样率。在半导体制造环境中,通常将测量采样率设定在低于被选择进行采样的所有产品总和将完全使用所有有效测量量程(metrology capacity)之水准。通常可将该采样水准称为基准采样率。将基准采样率设定在小于最大采样水准,以便在一个或多个测量工具因诸如例行维护及其中一个测量工具发生计划外的问题等的各种理由而无法工作之后,可让测量工具“赶上(catch-up)”累积的在制品(Work-In-Progress;简称WIP)。例如,如果四个有效测量工具中之一个测量工具无法工作,则在该无法工作的测量工具恢复工作之前,在制品(WIP)将缓缓累积在测量队列。此时,所有四个有效测量工具都将在高于正常使用率之使用率下运作,直到在制品(WIP)队列减少到正常值为止。
前文所述测量方式的一个问题在于未充分利用极珍贵的资源,亦即,测量工具。一般而言,在所有其它条件都相同的情形下,当将基准采样率保持得较高时,可得到与制造设备目前工作情形有关的更多信息。可将额外的测量信息用来更迅速地识别制造设备内可能正在降低产品良率及(或)产品性能的问题。
应付测量量程改变的替代性方法是将采样率保持在近乎完全利用所有在正常生产状态下的测量工具之极高的水准。当一个或多个测量工具被撤离生产线时,可以人工方式降低采样率,以便减少累积在测量队列中之在制品(WIP)的数量。在此种机制下,当无法工作的测量工具回到生产线时,将采样率恢复到其正常高的水准。此种方法的一个问题在于需要有人员在测量工具无法工作时降低较高的基准采样率,且该人员在受影响的测量工具回到生产线时再以人工方式提高采样率而回到所述较高的基准采样率。这是一种无效率的程序,需要被授权调整工厂的采样率计划的人员勤勉地监视测量工具容量。如果不以及时的方式降低较高的基准采样率,则在制品(WIP)将累积在测量队列中。此外,因为此种方法采用了较高的基准采样率,所以当受影响的测量工具回到生产线时,只有很少的超额测量量程可用来处理所累积的在制品(WIP)。相反地,如果不以一种及时的方式重新建立该较高的基准采样率,则由于测量数据的数量减少,因而将不利地影响到对迅速识别制造设备内可能对生产及产品良率有不利影响的问题之能力。
本发明系有关克服或至少减少前文所述的一种或多种问题之影响。

发明内容
本发明大致有关根据有效测量量程(metrology capacity)而动态调整测量采样的各种方法及系统。在一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程;以及将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率。
在另一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程的该步骤包含在与通常有效的测量工具总数比较下确定目前有效的测量工具的数目,其中假定所有所述测量工具都是可完全互换使用的;将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;以及根据该新的测量采样率而执行额外的测量作业。
在又一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程的该步骤包含在与通常可用来执行特定测量作业的测量工具总数比较下确定目前可用来执行该特定测量作业的测量工具的数目,其中所有所述测量工具都至少适于执行该特定测量作业;将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;以及根据该新的测量采样率而执行额外的测量作业。
在又一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程的该步骤包含确定可用来执行该至少一个测量作业及与该至少一个测量作业不同的至少一个第二测量作业的测量工具;将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;其中在确定该新的测量采样率时,减少该第二测量作业的采样率,以便因而空出用来执行该至少一个测量作业的额外测量量程;以及根据该新的测量采样率而执行额外的测量作业。


若参照前文中之说明并配合各附图,将可了解本发明,在所述附图中,相同的代号识别类似的组件,这些附图有图1是根据本发明的一实施例的制造系统的简化方块示意图;
图2是根据本发明的一实施例的系统的更详细的简化方块示意图;以及图3是根据本发明的一实施例而控制测量采样的方法的简化流程图。
虽然本发明易于作出各种修改及替代形式,但是所述图式中系以举例方式示出本发明的一些特定实施例,且已在本说明书中说明了这些特定实施例。然而,我们当了解,本说明书对这些特定实施例的说明之用意并非将本发明限制在所揭示的所述特定形式,相反地,本发明将涵盖最后的申请专利范围所界定的本发明的精神及范围内之所有修改、等效物、及替代。
具体实施例方式
下文中将说明本发明的一些实施例。为了清楚说明的目的,在本说明书中将不说明实际实施例的所有特征。当然,我们当了解,在任何此种实际实施例的开发过程中,必须作出许多与实施例相关的确定,以便达到开发者的特定目标,诸如符合与系统相关的及与商业相关的限制条件,而所述限制将随着各实施例而有所不同。此外,我们当了解,虽然此种开发的工作可能是复杂且耗时的,但是此种开发工作是对此项技艺具有一般知识者而言将如同例行程序般且可在参阅本发明揭示事项后受益。
现在将参照各附图而说明本发明。为了说明之目的,在所述图式中以示意图之方式示出各种结构、系统、及装置,以便不会让熟习此项技术者习知的细节模糊了本发明。然而,所述附图被加入,以便描述并解释本发明之各例子。应将本说明书所用的字及词汇了解及诠释为具有与熟习相关技术者对这些字及词汇所了解的一致之意义。不会因持续地在本说明书中使用术语或词汇,即意味着该术语或词汇有特殊的定义(亦即与熟习此项技术者所了解的一般及惯常的意义不同之定义)。如果想要使术语或词汇有特殊的意义(亦即与熟习此项技术者所了解的意义不同之意义),则会将在本说明书中以一种直接且亳不含糊地提供该术语或词汇的特殊定义之下定义之方式明确地表达该特殊的定义。
请参阅图1,图中提供了例示制造系统10之简化方块示意图。在该实施例中,制造系统10适于制造半导体装置。虽然系以可在半导体制造设备中实施本发明之方式说明本发明,但是本发明并不受此限制,且可将本发明应用于其它制造环境。可将本说明书中述及的技术应用于各种工件或制造项目(item)。例如,可配合其中包括(但不限于)微处理器、存储器装置、数字信号处理器、特定应用集成电路(Application Specific Integrated Circuit;简称ASIC)、或其它装置的各种集成电路装置之制造而使用本发明。亦可将所述技术应用于集成电路装置以外的工件或制造项目。
以网络20连接制造系统10的各种组件,而可让所述组件交换信息。该例示制造系统10包含多个工具30至80。每一个工具30至80可被连接到计算机(图中未示出),以便介接(interfacing)到网络20。将所述工具30至80中类似的工具编成一组,如以英文字母在字尾表示。例如,该工具组30A至30C代表诸如化学机械平坦化工具的某一类型之工具。特定晶圆或特定批的晶圆在被制造时,逐步经过所述工具30至80,其中每一个工具30至80执行流程中之一特定功能。半导体装置制造环境的例示工艺工具包括测量工具、光刻步进机、蚀刻工具、沉积工具、研磨工具、快速热退火工具、及植入工具等的各种工艺工具。图中之所述工具30至80之排列与分组仅为例示之目的。在实际的制造设备中,可按照任何顺序或分组而排列所述工具30至80。此外,所述工具之间按照一特定分组的连接之意义代表了至网络20的连接,而不是代表所述工具30至80间之连接。
制造执行系统(Manufacturing Execution System;简称MES)服务器或控制器90管理制造系统10的高阶作业。MES服务器90可监视制造系统10的各种实体(entity)(亦即,各晶圆批(lots)、工具30至80)之状态,并透过工艺流(process flow)控制制造物品流(flow ofarticles of manufacture)(例如,半导体晶圆批)。数据库服务器100系用以储存与该流程中之各种实体及在工艺流之制造物品的状态有关之数据。数据库服务器100可将信息储存在一个或多个数据储存单元110中。所述数据可包括工艺前及工艺后的测量数据、工具状态、晶圆批优先级、及操作方式等的数据。控制器90亦可将操作方式提供给图1所示的一个或多个工具,或将各种操作方式执行在一个或多个工具之命令。当然,控制器90不需要执行所有这些功能。此外,可由分布在整个系统10的一个或多个计算机执行针对控制器90所述的所述功能。
系以软件或操作之算法与符号表示法之方式对计算机存储器内的数据位呈现本发明的各部分、及对应的详细说明。这些说明及表示法是对此项技艺具有一般知识者用来在有效的方式下将其工作之内涵(substance of work)传递给对此项技艺具有一般知识的其它人士之说明及表示法。在本文的用法中,且在一般性的用法中,术语“算法”(“algorithm”)被认知为一系列有条理并可得到所需结果之步骤。所述步骤是需要对物理量作物理操作的那些步骤。虽非必然,但这些物理量之形式通常为可被储存、传送、结合、比较、及以他种方式操作之光信号、电性信号、或磁性信号。将这些信号称为位、数值、元素、符号、字符、项(term)、或数字等术语时,已证明经常是较便利的,主要也是为了普遍使用之故。
然而,应了解的是,所有这些术语及其它类似的术语都与适当的物理量有关,而且只是适用于这些物理量的便利性标记而已。除非有其它特别的陈述,或在说明中系为显而易见,否则诸如“处理”、“运算”、“计算”、“确定”、或“显示”等的术语都意指计算机系统或类似电子运算装置之动作及处理,且此种计算机系统系将该计算机系统的寄存器及存储器内表现为物理量、电子量之数据操作并变换成该计算机系统的存储器、寄存器、或其它此种信息储存装置、传输装置、或显示装置内同样表现为物理量之其它数据。
制造系统10亦包含在例示工作站150上执行的测量控制单元12。可将测量控制单元12用来控制配合在制造系统10中执行的制造作业而采用之各种测量工具。为了将于下文中说明之目的,测量控制单元12可与控制器90通讯,且(或)与和个别工具30至80相关联的一个或多个工艺控制器145通讯。所述工艺控制器145所用的特定控制模型系取决于所控制的工具30至80之类型。可使用一般习知的线性或非线性技术而凭经验地发展所述控制模型。所述控制模型可以是较简单的基于公式之模型(例如,线性、指数、加权平均等的模型)、或诸如类神经网络、主成分分析(Principal Component Analysis;简称PCA)模型、偏最小平方法射影至特征结构(Projection to LatentStructures;简称PLS)模型等的较复杂之模型。控制模型的特定实施例可根据所选择的模型化技术及所控制的工艺而改变。特定控制模型的选择及发展将是在对此项技术具有一般知识者的能力范围内,因而为了顾及说明的清晰且为避免模糊了本发明,本说明书中将不详细说明所述控制模型。
适用于制造系统10的例示信息交换及工艺控制架构是诸如可利用先前由KLA-Tencor,Inc.所提供的催化(Catalyst)系统实施的先进工艺控制(APC)架构。该催化系统使用与半导体设备及材料国际协会(Semiconductor Equipment and Materials International;简称SEMI)计算机整合式制造(Computer Integrated Manufacturing;简称CIM)架构相符的系统技术,且系基于该先进工艺控制(APC)架构。可公开地自总部设于Mountain View,CA的SEMI取得CIM(SEMIE81-0699-Provisional Specification for CIM Framework DomainArchitecture)及APC(SEMI E93-0999-Provisional Specificationfor CIM Framework Advanced Process Control Component)规格。
所述处理及数据储存功能被分散到图1所示之不同的计算机或工作站,以便提供一般的独立性及中央信息储存。当然,可在不脱离本发明的精神及范围下,使用不同数目的计算机及不同的配置。
图2是根据本发明的实施例的测量系统50的更详细之简化方块示意图。如图所示,测量控制单元12系连接到多个测量工具14而操作。在该实施例中,示出四个此种例示的测量工具14-1、14-2、14-3、及14-n。然而,本发明可采用任何数目的此种测量工具。所述例示测量工具14可执行各种测量作业中之一种或多种测量作业。例如,测量工具14可执行诸如工艺层的厚度之测量、特征部位的关键尺寸之测量、表面的平坦度、薄膜电阻系数、薄膜光学特性(例如,n及k)、缺陷情形、及覆盖物对齐(overlay alignment)等的测量之测量作业。
可将测量系统50用来根据有效测量工具容量而自动调整或控制测量采样率。在某些情形中,所述测量工具14执行大致相同类型的测量作业,例如,层的厚度之测量、特征部位的关键尺寸之测量等的测量作业。然而,所述测量工具14对所有的测量作业不必然是完全可互换使用的。例如,如果有两个测量工具14及三个测量作业,则不需要使所述两个测量工具14中之每一测量工具可用于所述三个测量作业中之每一测量作业。测量控制单元12也有对所形成的采样率计划执行某些限制的能力。例如,可施加不容许特定工艺作业的采样率低于预先选择的界限之限制,例如可为关键性工艺作业建立75%的最小采样率。在半导体制造作业中,可将此种限制施加到诸如栅极蚀刻工艺作业等的极关键性的工艺作业。
根据本发明的一态样,测量控制单元12可将各种控制算法用来控制测量系统50内的测量工具14所执行之测量作业。在一实施例中,采用第一控制算法,其中假定特定类型的所有测量工具14都是可完全互换使用的。在此种情形中,当一个或多个测量工具14无法工作(不论因任何理由)时,可以下式所示方式为每一作业确定新的或经过调整的测量采样率Ratei,new=Ratei,baseNAvai;ableNTotal---(1)]]>其中Ratei,new代表作业i的新的测量采样率,Ratei,base代表作业i的基准测量采样率,NAvailable代表目前有效的测量工具14之数目,且NTota1代表正常可用来执行测量作业的测量工具14之总数。只要放入该第一算法,新的采样率即反映了因所有测量工具14中之某些测量工具无法使用而造成的基准采样率的减少。
在另一实施例中,测量系统50可采用第二算法。使用该第二算法时,测量控制单元12只考虑或计算可用于特定测量作业的测量工具14之数目。例如,测量控制单元12可只考虑可执行关键尺寸测量的测量工具14。在该实施例中,可以下式所示方式确定新的或经过调整的测量采样率Ratei,new=Ratei,baseNi,AvailableNi,Total---(2)]]>其中系以前文所述之方式定义Ratei,new及Ratei,base,Ni,Avai1able代表目前可用于测量作业i的测量工具14之数目,且Ni,Total代表正常可用于测量作业i的测量工具14之总数。请注意,第一算法(公式1)是所有的测量工具14可用于所有的测量作业的特殊情形下的第二算法(公式2)之子集(subset)。
该第二算法的好处是该算法在计算上是简单的。与该第二算法有关的可能缺点是该算法不容许对在无法工作的测量工具14上执行的作业以外的作业减少作业之测量采样率。例如,如果并非由故障的测量工具执行测量作业j,则该第二算法将不容许为了空出测量量程以执行测量作业i而减少测量作业j的采样率。
在又一实施例中,测量系统50可采用第三算法。使用该第三算法时,测量控制单元12可修改由无法工作的测量工具14执行那些测量作业以外的测量作业之采样率。当所有的测量工具14都可使用时,该方法可维护(平均上)较接近所有测量作业的基准测量采样率之测量采样率。在该方法中,第一步骤是产生总体采样率。该总体采样率是所有测量作业的个别测量采样率之总和RateTotal=Σi=1NRatei---(3)]]>其中RateTota1是总体采样率,N是测量工具14可执行测量作业的类型(例如,厚度测量、关键尺寸测量)的测量作业之总数,且Ratei是作业i的基准采样率。
次一步骤是根据有效测量工具而将该RateTota1值乘以一比率RateAvailable=RateTotalNAvailableNTotal---(4)]]>其中系以前文所述之方式定义RateTotal,RateAvailable是新的有效容量,NAvailable是有效测量工具14的数目,且NTotal是可能可用于该测量类型测量工具14之总数。一般而言,类型意指可被用来执行相同测量作业的一组测量工具。例如,不论测量工具的制造商为何,如果数个工具可执行相同的测量作业(例如,薄膜厚度),则将所有这些工具视为具有相同的类型。
最后的步骤是解下列公式minΣi=1N(Ratei,new-Ratei,base)2---(5)]]>且解该公式时是在下列限制下进行RateAvailable≤Σi=1NRatei,new---(6)]]>实际上,该第三算法系在有效测量量程(RateAvailable)的限制下将新的测量采样率(Ratei,new)与基准测量采样率(Ratei,base)间之偏差的平方最小化。该第三算法的好处在于该第三算法可少量减少多个作业的测量采样率,以便应付测量量程的减少。然而,解该第三算法的计算复杂性高于前文所述其它两个算法的计算复杂性。
请注意,在上述的例子中,系将总体采样率(RateTotal)用来作为总测量量程的代表。如果测量一批晶圆的时间不会随着不同的作业而有大幅的改变,则上述方法所得的结果通常是良好的估计值。在测量时间有大幅改变的情形中,则可使用加上了这些时间差异的修改后之公式。举例而言,该修改后之公式可以是RateTotal=Σi=1NTimei*Ratei---(7)]]>且限制条件将是RateAvailable≤Σi=1NTimei*Ratei,new---(8)]]>其中Timei代表进行作业i时的一批之周期时间,且系以前文所述之方式定义所有其它的变量。
本发明系大致有关根据有效测量量程而动态调整测量采样之各种方法及系统。在一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程;以及将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率。
在另一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程之该步骤包含在与通常有效的测量工具总数比较下确定目前有效的测量工具之数目,其中假定所有所述测量工具都是可完全互换使用的;将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;以及根据该新的测量采样率而执行额外的测量作业。
在又一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程之该步骤包含在与通常可用来执行特定测量作业的测量工具总数比较下确定目前可用来执行该特定测量作业的测量工具之数目,其中所有所述测量工具都至少适于执行该特定测量作业;将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;以及根据该新的测量采样率而执行额外的测量作业。
在又一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程之该步骤包含确定可用来执行该至少一个测量作业及与该至少一个测量作业不同的至少一个第二测量作业的测量工具;将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;其中在确定该新的测量采样率时,减少该第二测量作业的采样率,以便因而空出用来执行该至少一个测量作业的额外测量量程;以及根据该新的测量采样率而执行额外的测量作业。
前文所述的特定实施例只是举例,这是因为熟悉此项技术者在参阅本发明的揭示之后将可易于以不同但等效之方式修改并实施本发明。例如,可按照不同的顺序执行前文所述的所述工艺步骤。此外,除了在最后的申请专利范围所述者之外,将不对本说明书示出的结构或设计之细节作出任何限制。因此,显然可改变或修改前文所揭示的特定实施例,且将所有此类变化视为在本发明的范围及精神内。因此,本发明之权利保护范围应如后述之申请专利范围所列。
权利要求
1.一种方法,包含下列步骤提供测量控制单元(12),该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程;以及将该所确定的有效测量量程提供给该测量控制单元(12),其中该测量控制单元(12)根据该所确定的有效测量量程而确定新的测量采样率。
2.如权利要求1所述的方法,其中,所述测量控制单元(12)适于控制多个测量工具(14)。
3.如权利要求2所述的方法,其中,所述测量工具(14)中的每一个测量工具都是相同的类型。
4.如权利要求1所述的方法,其中,所述至少一个测量作业包括测量关键尺寸、测量层的厚度、测量表面平坦度、测量电性特性、测量薄膜电阻系数、测量薄膜光学特性、测量缺陷情形、及测量覆盖物对齐情形中的至少一个作业。
5.如权利要求1所述的方法,进一步包含下列步骤根据该新的测量采样率而执行额外的测量作业。
6.如权利要求5所述的方法,其中,该方法进一步包含下列步骤在已根据该新的测量采样率而执行所述额外的测量作业一段时间之后,根据该基准测量采样率而执行额外的测量作业。
7.如权利要求1所述的方法,其中,确定有效测量量程的该步骤包含下列步骤在与通常有效的测量工具(14)总数比较下,确定目前有效的测量工具(14)的数目,其中假定所有测量工具(14)都是可完全互换使用的。
8.如权利要求1所述的方法,其中,确定有效测量量程的该步骤包含下列步骤在与通常有效来执行特定测量作业的测量工具(14)总数比较下,确定目前有效来执行该特定测量作业的测量工具(14)的数目,其中所有测量工具(14)都至少适于执行所述特定测量作业。
9.如权利要求1所述的方法,其中,确定有效测量量程的该步骤包含下列步骤确定有效来执行该至少一个测量作业及与该至少一个测量作业不同的至少一个第二测量作业的测量工具(14);以及在确定该新的测量采样率的该步骤中,减少该第二测量作业的采样率,以便因而空出用来执行该至少一个测量作业的额外测量量程。
10.如权利要求1所述的方法,其中,经由执行下列计算而确定该新的测量采样率Ratei,new=Ratei,baseNAvailableNTotal]]>其中Ratei,new代表作业i的新的测量采样率,Ratei,base代表作业i的基准测量采样率,NAvailable代表目前可用的测量工具的数目,且NTotal代表正常可用的测量工具的总数。
11.如权利要求1所述的方法,其中,经由执行下列计算而确定该新的测量采样率Ratei,new=Ratei,baseNi,AvailableNi,Total]]>其中Ratei,new代表作业i的新的测量采样率,Ratei,base代表作业i的基准测量采样率,Ni,Available代表目前可用于作业i的测量工具的数目,且Ni,Total代表正常可用于作业i的测量工具的总数。
12.如权利要求1所述的方法,其中,经由执行下列步骤而确定该新的采样率使用下列公式而确定所有测量作业的总体测量采样率RateTotal=Σi=1NRatei]]>其中Ratetotal是所有测量作业的总体测量采样率,N是给定类型的测量工具可执行的测量作业的总数,且Ratei是给定作业的基准测量采样率;对于有效的测量工具,通过使用下列计算将该RateTotal值乘以一比率得到RateAvailable=RateTotalNAvailableNTotal]]>其中RateTotal是所有测量作业的总体测量采样率,RateAvailable是新的有效量程,NAvailable是目前可用的测量工具的数目,且NTotal是正常可用的测量工具的总数;以及执行下列计算minΣi=1N(Ratei,new-Ratei,base)2]]>且满足RateAvailable≤Σi=1NRatei,new.]]>
13.一种方法,包含下列步骤提供测量控制单元(12),该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程,其中确定有效测量量程的该步骤包含在与通常有效的测量工具(14)总数比较下确定目前有效的测量工具(14)的数目,其中假定所有测量工具都是可完全互换使用的;将该所确定的有效测量量程提供给该测量控制单元(12),其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率;以及根据该新的测量采样率而执行额外的测量作业。
14.如权利要求13所述的方法,其中,所述测量控制单元(12)适于控制多个测量工具。
15.如权利要求14所述的方法,其中,所述测量工具(14)中的每一个测量工具都是相同的类型。
16.如权利要求13所述的方法,其中,该方法进一步包含下列步骤在已根据该新的测量采样率而执行所述额外的测量作业一段时间之后,根据该基准测量采样率而执行额外的测量作业。
全文摘要
本发明大致有关根据有效测量量程而动态调整测量采样的各种方法及系统。在一实施例中,该方法包含下列步骤提供测量控制单元,该测量控制单元适于为至少一个测量作业确定基准测量采样率;确定有效测量量程;以及将该所确定的有效测量量程提供给该测量控制单元,其中该测量控制单元根据该所确定的有效测量量程而确定新的测量采样率。
文档编号H01L21/66GK101032013SQ200580033293
公开日2007年9月5日 申请日期2005年6月23日 优先权日2004年10月5日
发明者M·A·普尔迪 申请人:先进微装置公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1