一种电池自适应快速充电方法

文档序号:7047700阅读:180来源:国知局
一种电池自适应快速充电方法
【专利摘要】本发明提出了一种电池自适应快速充电方法,包括以下步骤:步骤一:用电池的标准充电电流对电池进行恒流充电,并采集电池的容量数据和电压数据;步骤二:将容量数据和电压数据转换为关于电池容量和电压关系的方程式;步骤三:对关系方程式进行转换,得到电池充电容量变化和电压变化的关系曲线;步骤四:根据电池的电压变化,按关系曲线输出相应的充电电流。本发明利用电池本身在不同状态具有不同的充电电流需求,提高充电电流倍率,使充电电流适应电池本身在此荷电状态的最大电流需求,提高充电速度,缩短充电时间,达到快速充电的目的。
【专利说明】一种电池自适应快速充电方法
【技术领域】
[0001 ] 本发明涉及电池充放电【技术领域】,尤其涉及一种电池自适应快速充电方法。
【背景技术】
[0002]随着石油日益枯竭和人们环保意识的逐渐增强,具有高效节能、零排放优势的电动汽车倍受关注,是节能环保汽车发展的主攻方向,也是未来汽车产业发展的方向。
[0003]由于电动车能量空间设计有限和行驶工况复杂,对电池的能量密度、功率密度和温度特性等具有较高的要求,现有电池还不能完全达到电动汽车整车的需求,与现有普通燃油车相比,电动车主要存在以下劣势:
[0004]1.续驶里程较短,一股续驶里程在200km以下。
[0005]2.充电速度较慢,一股充电时间在5-7小时。
[0006]电动车为了弥补自身劣势,动力电池持续在向高能量密度和快速充电快速的方向发展。而具有高能量密度的动力电池研发速度与市场需求相差较远,还需要较长的时间去。
[0007]提高电池的快速充电能力是解决电动汽车现有短板的可行的方案之一。目前电池普遍采用的充电方式为恒流转恒压限流的方式,此法充电过程较长,一股充电时间在三小时以上,无法达到快速充电的目的。此外提高充电电流,可以达到快速充电的目的,但电池内部会有副反应发生,对电池性能具有较大影响,表现是寿命明显缩短,同时造成电池的极化电压较大,充电效率较低,电池实际充进的电量较少。另外还有提高充电电压补偿电池在充电过程中各种阻抗产生的压降而达到快速充电的目的,但此种充电方法由于提高充电电压,易造成电解液的副反应发生,同时由于充电电流没有明显变化,电池的整体快充时间没有明显缩短。
[0008]因此,电动汽车市场化亟需寻找一种在不改变电池本身结构和性能,又能够提高电池充电电流,同时不对电池造成伤害的充电方法,来克服现有采用恒流大电流充电导致电池性能变差的缺陷。

【发明内容】

[0009]本发明提供了一种简单、方便的电池快速充电方法,利用电池本身在不同荷电状态具有不同的充电电流需求,提高充电电流倍率,使充电电流适应电池本身在此荷电状态的最大电流需求,从而提高充电速度,缩短充电时间,达到快速充电的目的。
[0010]本发明提出的电池自适应快速充电方法,包括以下步骤:
[0011 ] 步骤一:用电池的标准充电电流对电池进行恒流充电,并采集电池的容量数据和电压数据;
[0012]步骤二:将所述容量数据和电压数据转换为关于电池容量和电压关系的方程式;
[0013]步骤三:对所述方程式进行转换,得到所述电池的充电容量变化和电压变化的关系曲线;
[0014]步骤四:根据所述电池的电压变化,按所述关系曲线输出相应的最大充电电流。[0015]本发明提出的电池自适应快速充电方法,步骤一中,在所述恒流充电前,先将所述电池恒流放电至截止电压,使所述电池的荷电状态为0%。
[0016]本发明提出的电池自适应快速充电方法,步骤一中,在所述恒流充电前,先将所述电池恒温静止5小时以上,恒温温度为22-28°C。
[0017]本发明提出的电池自适应快速充电方法,步骤一中,所述恒流充电的环境温度为20-30。。。
[0018]本发明提出的电池自适应快速充电方法,步骤一中,所述标准充电电流为1/3C。
[0019]本发明提出的电池自适应快速充电方法,步骤二中,所述容量数据和电压数据通过数学分析得到所述关于电池容量和电压关系的方程式;其中,电池容量单位为Ah、电压单位为mV
[0020]本发明提出的电池自适应快速充电方法,步骤三中,所述方程式通过求导或微分得到所述电池的充电容量变化和电压变化的曲线;其中,通过微分得到的方程为一阶微分方程。
[0021]本发明提出的电池自适应快速充电方法,其特征在于,所述电池为多个并联或串联的同型号的电池。
[0022]本发明提出了一种自适应快速充电方法,该方法通过测试电池的标准充电曲线,利用电池的标准充 电曲线转换,获得电池在不同电压状态时具有的最大接受电流的能力,根据电池的不同状态,动态调节充电机的电流,使电池持续处在最佳充电状态,在不影响电池的性能状态下,缩短充电时间,增加电池的使用寿命,提升电动汽车电池的经济型和安全性。
【专利附图】

【附图说明】
[0023]图1为本发明电池自适应快速充电方法的流程图。
[0024]图2为本发明电池自适应快速充电方法实施例中的流程图。
[0025]图3为电池标准充电曲线图。
[0026]图4为电池标准充电曲线图(转换后)。
[0027]图5为电池在不同状态时具有的最大充电电流接受能力曲线图。
[0028]图6为不同充电方式电池循环寿命曲线图。
【具体实施方式】
[0029]结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
[0030]本发明提出的电池自适应快速充电方法,包括以下步骤:
[0031 ] 步骤一:用电池的标准充电电流对电池进行恒流充电,并采集电池的容量数据和电压数据;
[0032]步骤二:将容量数据和电压数据转换为关于电池容量和电压关系的方程式;
[0033]步骤三:对方程式进行转换,得到电池关于充电容量变化和电压变化的关系曲线.-^4 ,[0034]步骤四:根据电池的电压变化,按关系曲线输出相应的最大充电电流。
[0035]本发明提出的电池自适应快速充电方法,步骤一中,在恒流充电前,先将电池恒流放电至截止电压,使电池荷电状态为0%。
[0036]本发明提出的电池自适应快速充电方法,步骤一中,在恒流充电前,先将电池恒温静止5小时以上,恒温温度为22-28°C。
[0037]本发明提出的电池自适应快速充电方法,步骤一中,恒流充电的环境温度为20-30。。。
[0038]本发明提出的电池自适应快速充电方法,步骤一中,标准充电电流为1/3C。
[0039]本发明提出的电池自适应快速充电方法,步骤二中,容量数据和电压数据通过数学分析得到关于电池容量和电压关系的方程式;其中,电池容量单位为Ah、电压单位为V。
[0040]本发明提出的电池自适应快速充电方法,步骤三中,方程式通过求导或微分得到电池关于充电容量变化和电压变化的曲线;其中,通过微分得到的方程为一阶微分方程。
[0041]本发明提出的电池自适应快速充电方法,电池为多个并联或串联的同型号的电池。
[0042]实施例1
[0043]本实施例中的电池自适应快速充电方法,包括以下步骤:
[0044]步骤一:将待充电电池放置在恒温箱中恒温静止5小时以上,恒温箱温度设置为25±3°C。
[0045]步骤二:将待充电电池按照标准电流恒流放电至厂家规定的截止电压。
[0046]步骤三:将待充电电池放置在恒温箱中恒温静止5小时以上,恒温箱温度设置为25±3°C。
[0047]步骤四:将电池按照标准电流恒流充电到厂家规定的截止电压,同时采集电池的电压和充电容量变化数据,恒流充电的环境温度为20-30°C,标准充电电流为1/3C。
[0048]步骤五:对采集的电压数据和容量数据作图,以电池的充电容量为Y轴,电池的电压变化数据为X轴,得到电池标准充电曲线图。
[0049]步骤六:根据电池标准充电曲线图,通过数学转换得到电池关于充电容量和电压连续变化的方程式:Y = F⑴;其中,Y为电池充电容量,X为电池电压。
[0050]步骤七:根据步骤六中所得到的关于充电容量和电压连续变化的方程式,对方程式进行转换,得到关于ΛΥ/ΛΧ的变化方程,将变化方程转换为曲线。
[0051]步骤八:根据步骤七中转换的曲线,得到电池在不同荷电状态时具有的接受最大充电电流能力,充电机以电池电压为输入,输出电池能够接受的最大充电电流。
[0052]实施例2
[0053]为了进一步说明本发明,本实施例中根据现有锂离子电池的充电设定过程,以26Ah的三元材料车用锂离子电池为例,其包括以下步骤:
[0054]步骤一:将电池放置在恒温箱中静止5小时,恒温箱温度设置为25±3°C。
[0055]步骤二:将电池恒流放电到截止电压3.0V,放电电流是8.7A。
[0056]步骤三:将电池在恒温箱中静止5小时,恒温箱温度设置为25±3°C。
[0057]步骤四:将电池按照标准电流恒流充电到厂家规定的截止电压4.15V,同时采集电池的电压和充电容量变化数据,充电电流大小是8.7A,充电截止电压是4.15V,恒流充电的环境温度为25°C。
[0058]步骤五:对采集的数据作图,以电池的充电容量为X轴,电池的电压变化数据为Y轴,得到电池的标准充电曲线,如图3所示,电池标准充电曲线。
[0059]步骤六:对采集的数据作图,以电池的充电容量为Y轴,电池的电压变化数据为X轴,如图4所示,电池标准充电曲线(转换后)。
[0060]步骤七:根据步骤六中所作的曲线(图4),通过曲线拟合,得到关于充电容量和电压的连续的变化曲线,其数学表达式方程为:
[0061]Y = 1.31646457951*10~-4-3.4777242351*10~4*Χ+4.22391866074*10~4*Χ~2-2.02253836922*10~4*Χ~3+5.32154893103*10~3*Χ~4-1.14974488872*10~3*Χ~5+2.65023591498*10~2*Χ~6-4.25589765276*10*Χ~7+2.81526144191*Χ~8。
[0062]步骤八:根据步骤七中得到的关于充电容量和电压的连续的变化曲线方程式,对曲线方程式进行 微分,得到关于Λ Y/ △ X的变化曲线,如图5所示,充电容量变化和电压变化的曲线。其中,本发明中也可以对曲线方程式进行求导来获得充电容量变化和电压变化的曲线。
[0063]步骤九:根据步骤八中转换的曲线(图5),得到电池在不同荷电状态时具有的接受最大充电电流能力,充电机以电池的电压为输入,输出电池能够接受的最大的充电电流。其中,曲线是以电池电压为横坐标,电池容量为纵坐标,电池充电电流倍率是以电池容量为基准,即:26Ah,lC充电,充电电流是26A,0.5C充电,充电电流是13Α。
[0064]本实施例中,图3和图4只对坐标轴进行转换,目的是方便得到容量和电压变化的曲线,即在不同电压下,电池的容量变化大小,方便理解。
[0065]本实施例中,作图的目的是得到电池的标准充电曲线,利用标准充电曲线进行曲线拟合,可以得到标准曲线的拟合方程,为进行曲线微分做准备。
[0066]本发明中,电池可以为多个并联或串联的同型号的电池。
[0067]表1:电池采用不同充电方法所需充电时间的对比
[0068]
【权利要求】
1.一种电池自适应快速充电方法,其特征在于,包括以下步骤: 步骤一:用电池的标准充电电流对电池进行恒流充电,并采集电池的容量数据和电压数据; 步骤二:将所述容量数据和电压数据转换为关于电池容量和电压关系的方程式; 步骤三:对所述方程式进行转换,得到所述电池的充电容量变化和电压变化的关系曲线.步骤四:根据所述电池的电压变化,按所述关系曲线输出相应的最大充电电流。
2.如权利要求1所述的电池自适应快速充电方法,其特征在于,步骤一中,在所述恒流充电前,先将所述电池恒流放电至截止电压,使所述电池的荷电状态为O %。
3.如权利要求1所述的电池自适应快速充电方法,其特征在于,步骤一中,在所述恒流充电前,先将所述电池恒温静止5小时以上,恒温温度为22-28°C。
4.如权利要求1所述的电池自适应快速充电方法,其特征在于,步骤一中,所述恒流充电的环境温度为20-30°C。
5.如权利要求1所述的电池自适应快速充电方法,其特征在于,步骤一中,所述标准充电电流为1/3C。
6.如权利要求1所述的电池自适应快速充电方法,其特征在于,步骤二中,所述容量数据和电压数据通过数学分析得到所述关于电池容量和电压关系的方程式。
7.如权利要求1所述的电池自适应快速充电方法,其特征在于,步骤三中,所述方程式通过求导或微分得到所述电池的充电容量变化和电压变化的曲线。
8.如权利要求7所述的电池自适应快速充电方法,其特征在于,通过微分得到的方程为一阶微分方程。
9.如权利要求1所述的电池自适应快速充电方法,其特征在于,所述电池为多个并联或串联的同型号的电池。
【文档编号】H01M10/44GK103985915SQ201410181165
【公开日】2014年8月13日 申请日期:2014年4月30日 优先权日:2014年4月30日
【发明者】于洪涛, 陈中军, 和祥运, 赵豪星, 刘风磊, 陈沥强, 邓亚明, 葛祥, 梁荣嵘, 李艳, 曹建航, 王慧景, 张海林, 陈慧珺 申请人:上海卡耐新能源有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1