永磁式步进电机的制作方法

文档序号:7425078阅读:177来源:国知局
专利名称:永磁式步进电机的制作方法
技术领域
本发明涉及一种PM式步进电机,特别是涉及一种能够进一步降低振动和噪音的PM式步进电机。
由本申请人提出的一种传统的永磁式步进电机在公开号为10-136631的日本未审查专利申请中公开。在该传统的永磁式步进电机中,为了有效的降低起动转矩的高次谐波分量,定子单元的轭的极齿布置成以等间隔偏离位置。即,当极齿(以)等间隔从位置离开(布置成偏离该位置),基本上出现的起动转矩的高次谐波分量在轭内可消去并降低。
其它传统的永磁式步进电机在公开号为5-252719的日本未审查专利申请,公开号为8-126290的日本未审查专利申请,公开号为3-7050的日本未审查专利申请,公开号为9-233802的日本未审查专利申请等之中公开。
当然,公开号为5-252719的日本未审查专利申请公开了一种两相永磁式步进电机,其中由无磁性材料构成的部件设置在第一相和第二相之间,并在轴向上堆叠在一起。
公开号为8-126290的日本未审查专利申请公开了一种连接轭的方法,该轭构成永磁式步进电机的定子。
公开号为3-7050的日本未审查专利申请公开了一种永磁式步进电机,其中轭的相邻极齿通过一个桥连接。
公开号为9-233802的日本未审查专利申请公开了一种永磁式步进电机,该永磁式步进电机配备有板簧,该板簧在一个轴向上偏压转子的旋转轴。
在公开号为10-136631的日本未审查专利申请中公开的永磁式步进电机中,事实是例如起动转矩的第四次高次谐波分量可降低。然而,不可能第四次高次谐波和第二次高次谐波都降低。而且,在一些部分,外轭的极齿和内轭的极齿之间的间隙极其小,因此在这些极齿之间的漏磁通流增加,从而导致产生的转矩降低。
另一方面,本发明人作出的仔细研究表明在永磁式步进电机中,如传统上所报道,由于永磁铁的起磁力作用,相对于转子的旋转角周期性产生起动转矩,除了所述起动转矩的高次谐波分量导致振动和噪音外,当电机驱动时,由于电磁力作用,极齿的轴向振动导致的振动和噪音不可忽略。然而,在公开号为10-136631的日本未审查专利申请中公开的永磁式步进电机中,没有做什么来降低噪音,例如极齿的轴向振动产生的冲击声。
在公开号为5-252719的日本未审查专利申请中公开的永磁式步进电机中,通过相之间提供的部件,有可能避免第一相和第二相极齿的直接碰撞。然而,专门针对起动转矩的降低,该技术没有采用这样一种构造,其中,夹在具有极齿的相之间的部件的碰撞,和具有极齿的部件的碰撞所产生的声音已经导致(引起)噪音增加。
在公开号为8-126290的日本未审查专利申请中公开的永磁式步进电机中,提供一种无连接方法,它可防止具有极齿的电机盖的碰撞,而且,具有极齿的盖的碰撞所产生的声音已经导致(引起)噪音增加。
相反,在公开号为3-7050的日本未审查专利申请中公开的永磁式步进电机中,极齿的底部的强度增加,因此,当驱动电机时,由于电磁力导致的极齿振动的降低可望实现。然而,由于它采用这样一种构造,即其中设有一个桥,部件的数量相当大,从而导致生产成本的增加。
而且,在公开号为9-233802的日本未审查专利申请中公开的永磁式步进电机中,当驱动电机时导致极齿的轴向振动的电磁力的反作用力作用在转子侧时,转子也轴向振动,从而引起板簧弹性变形,并且,当在板簧偏移的方向上移动时,与一个部件例如轴承碰撞,以产生冲击声。
本发明针对传统技术中的问题。本发明的一个目的是提供一种永磁式步进电机,它能够进一步降低起动转矩的高次谐波分量,而且提供这样一种永磁式步进电机,它能降低驱动电机时由于电磁力导致极齿和旋转轴的轴向振动所产生的噪音。
为获得上述目的,根据本发明的权利要求1,提供一种永磁式步进电机,它包括一个转子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定间距P1交替布置在外圆周上,和围绕该转子的定子,定子具有一个定子单元,该定子单元配备有外轭和内轭,该外轭和内轭的内圆周上具有梳齿状定子极齿,
其特征在于每个外轭和内轭具有n组齿组,每个齿组由m个定子极齿构成,而且假定该齿组内的定子极齿的间距为P2,齿组的间距为P3,P2≠P1, ……(1)P3≠m●P1,和……(2)P3≠m●P2……(3)其中,P1,P2和P3是电角度,m和n是等于或大于2的整数。
根据本发明的权利要求2,提供一种如权利要求1所述的永磁式步进电机,其特征在于外轭和内轭的齿组设置成外扼的其中任意一个齿组沿圆周方向仅叠加在内扼的其中一个齿组上。即,在本发明的权利要求2中,例如假定m=3,外轭的任意一个齿组的三个极齿和与其成对的内轭的齿组的三个极齿沿圆周方向布置第一外轭,第一内轭,第二外轭,第二内轭,第三外轭,和第三内轭没有沿圆周方向叠加在另一齿组上。在其中若干个定子单元堆叠在一起的多相永磁式步进电机的情况下,它满足在每个定子单元内这种关系成立。
根据本发明的权利要求3,提供一种如权利要求1或2所述的永磁式步进电机,其特征在于关系式P2=P1{l±i/u},和 ……(4)P3=P1{m±i’/(n●v’)}……(5)成立,其中u是正整数,i是非u的倍数的正整数,i’是非n的倍数的正整数,而v’是主高次谐波降低的的次。
根据本发明的权利要求4,提供一种如权利要求3所述的永磁式步进电机,其特征在于关系式P2=P1{l-i/u},和 ……(6)P3=P1{m+i’/(n●v’)}……(7)或者关系式P2=P1{l-i/u},和 ……(8)P3=P1{m-i’/(n●v’)}……(9)成立。
根据本发明的权利要求5,提供一种如权利要求1或2所述的永磁式步进电机,其特征在于关系式P2=P1{l±i/(m●v)},和 ……(10)
P3=P1{m±i’/(n●v’)}……(11)成立,其中v和v’是主高次谐波减少的次,i是非m的倍数的正整数,i’是非n的倍数的正整数。
根据本发明的权利要求6,提供一种如权利要求5所述的永磁式步进电机,其特征在于关系式P2=P1{l-i/(m●v)},和……(12)P3=P1{m+i’/(n●v’)}……(13)或者关系式P2=P1{l-i/(m●v)},和……(14)P3=P1{m-i’/(n●v’)}……(15)成立。
为实现上述目的,根据本发明的权利要求7,提供一种永磁式步进电机,它包括一个转子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定间距交替布置在外圆周上,和围绕该转子的定子,该定子具有这样一种构造,其中配备有外轭和内轭的若干定子单元堆叠在一起,而且外轭和内轭在内圆周上具有梳齿状定子极齿,轴向间隙位于轴向相邻的定子单元的定子极齿的底部之间,因此底部相互不接触。
根据本发明的权利要求8,提供一种如权利要求1至6中任一所述的永磁式步进电机,其特征在于该定子具有这样一种构造,其中若干所述定子单元堆叠在一起,而且一个轴向间隙位于轴向相邻的定子单元的定子极齿的底部之间,因此该底部相互不接触。
根据本发明的权利要求9,提供一种如权利要求7或8所述的永磁式步进电机,其特征在于轴向相邻的定子单元之间设有一个隔离件,该隔离件仅与定子单元的定子极齿的底部之外的部分接触,以形成轴向间隙。
根据本发明的权利要求10,提供一种如权利要求7或8所述的永磁式步进电机,其特征在于定子极齿的底部变形以便离开轴向相邻的另一个定子极齿的底部,从而形成轴向间隙。
而且,为实现上述目的,根据权利要求11所述的一种永磁式步进电机,它包括一个转子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定间距交替布置在外圆周上,和围绕该转子的定子,定子具有一个定子单元,该定子单元配备有外轭和内轭,该外轭和内轭的内圆周上具有梳齿状定子极齿,其中定子极齿的前端附近的外圆周上设有一个约束部件,该约束部件由非磁性材料制成并约束定子极齿。
根据本发明的权利要求12,提供一种如权利要求1至10中任一所述的永磁式步进电机,其特征在于在定子极齿的前端附近的外圆周上设有一个约束部件,该约束部件由非磁性材料制成并约束定子极齿。
根据本发明的权利要求13,提供一种如权利要求11或12所述的永磁式步进电机,其特征在于单独提供用来约束外轭的定子极齿的约束部件,和用来约束内轭的定子极齿的约束部件。
根据本发明的权利要求14,提供一种如权利要求11或12所述的永磁式步进电机,其特征在于约束部件的宽度可从外轭的定子极齿的前端附近覆盖到内轭的定子极齿的前端的附近。
根据本发明的权利要求15,提供一种如上述权利要求1至14中任一所述的永磁式步进电机,其特征在于约束部件是环。
为实现上述目的,根据本发明的权利要求16,提供一种永磁式步进电机,它包括一个转子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定间距交替布置在外圆周上,和围绕该转子的定子,该定子具有这样一种构造,其中配备有外轭和内轭的一个定子单元沿轴向上插入盖子之间,而且外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于提供一种防止盖碰撞结构,它用于防止具有盖的定子极齿碰撞。
根据本发明的权利要求17,提供一种如权利要求16所述的永磁式步进电机,其特征在于防止盖碰撞结构具有这样一种构造,其中与盖接触的定子极齿的底部与盖粘合(连接)。
根据本发明的权利要求18,提供一种永磁式步进电机,它包括一个转子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定间距交替布置在外圆周上,和围绕该转子的定子,该定子具有一个定子单元,该定子单元配备有外轭和内轭,而且外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于在定子极齿的底部,肋通过加压模制整体成形。
为实现上述目的,根据本发明的权利要求19,提供一种永磁式步进电机,它包括一个转子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定间距交替布置在外圆周上,和围绕该转子的定子,在相互轴向分隔开的两个位置,转子的旋转轴由定子侧面上的部件可旋转地支撑,该定子具有一个定子单元,该定子单元配备有外轭和内轭,而且外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于借助能够在轴向弹性变形的弹性部件(通过其中介),转子的旋转轴的相互轴向分隔开的两个位置由转子侧面部件支撑。
在本发明的权利要求1中,如公式(1)表示,在齿组中的定子极齿的间距P2与转子极化形成的N极和S极的间距P1不同,因此,对应这种偏差的高谐波的次降低。
有可能假定由m个定子极齿构成的一个齿组是对应于转子侧面上的m个磁极对的一个极齿。这样,如公式(2)所示,齿组的间距P3与m个磁极对的间距m●P1不同,因此,对应于该偏差的次的高次谐波降低。
而且,当齿组的间距P3是该齿组中的定子极齿的间距P2的m倍时,在若干齿组上,定子极齿的间距固定,且齿组之间的交界处消失。这样,如公式(3)所示,齿组的间距P3不是齿组中的定子极齿的间距P2的m倍。
以这种方式,在权利要求1所述的本发明中,更高次的高次谐波降低,因此,高次谐波有效降低,因此提供更安静平稳的旋转。
而且,一般来说,公知的是在转子磁极间距PR和定子极齿间距PS之间,当关系式PS=PR{1±1/(m●v)}……(16)成立时,有可能降低包括起动转矩第v次的若干高次谐波分量。
每次的高次谐波由预定周期的正弦波表示,因此,如公式(16)中所示的定子极齿的偏差可以是i倍PR{1/(m●v)}(I是非m倍数的正整数),即PR{i/(m●v)}。
这样,在权利要求5所述的本发明中,齿组中的定子极齿的间距P2在公式(10)中表示,有可能降低包括第v次的若干高次谐波分量。而且,当齿组的间距P3与在转子侧面上的磁极对的间距P1之间的关系为P3=m●P1{l±i’/(n●v’)}……(17)包括第v次的若干高次谐波降低。然而,由于在齿组中产生的高次谐波可分解到m个转子极齿上,相对于转子侧面上的m个磁极对,齿组的间距的偏差可以是(1/m)。
这样,从上述公式(17)中,P3=m●P1{l±i’/(n●v’●m)}=P1{l±i’/(n1●v’)}这样,可获得上述公式(11)。这样,在权利要求5所述的本发明中,齿组的间距P3表示在上述公式(11)中,因此,还有可能降低包括第v’次的若干高次谐波。
而且,在权利要求3所述的本发明中,假定m●v=u(u是正整数),且I是非u的倍数的正整数,公式(4)由公式(10)获得,齿组的间距P3在公式(5)(与公式(11)相同)中表示,因此,有可能降低包括第v’次的若干高次谐波。
而且,在权利要求4所述的本发明中,如权利要求3所限定的本发明中的公式(4)和(5)的右侧的“±”由“-”和“+”(公式(6)和(7))的结合,或“-”和“-”(公式(8)和(9))的结合替换,如权利要求6所限定的本发明中,公式(10)和(11)的右侧的“±”由“-”和“+”(公式(12)和(13))的结合,或“-”和“-”(公式(14)和(15))的结合替换。
当选择权利要求4或6所限定的本发明的结合时,不怕转子极齿之间的间隙变得极小,因此,有可能防止在转子极齿之间的漏磁通流增加,从而有可能防止产生的转矩大大降低。
在权利要求7或8所限定的本发明中,定子具有若干定子单元堆叠在一起的构造。然而,由于在靠近定子单元的定子极齿的底部之间形成的间隙,即使由于驱动电机产生的电磁力作用使定子极齿在轴向上振动,仍有可能降低定子极齿的底部相互碰撞的可能性。权利要求9或10所述的构造很容易形成这种间隙。
而且,在权利要求11或12所示的本发明中,在定子极齿的前端附近的外圆周上设有一个约束部件,该约束部件由非磁性材料制成并约束定子极齿,因此,如果当驱动电机时电磁力作用在定子极齿上,有可能防止定子极齿的变形。约束部件不一定必须设置在定子极齿的前端;它可设置在前端附近的位置,在此有可能约束定子极齿的变形。
而且,如权利要求13所述的本发明中,可独立设置用来约束外轭的定子极齿的约束部件和用来约束内轭的定子极齿的约束部件,或者,如权利要求14所述的本发明中,约束部件的宽度足以覆盖从外轭的定子极齿的前端附近到内轭的定子极齿的前端附近,从而减少部件数量。而且,如权利要求15所述的本发明中,一个环可用作约束部件,该环装配到定子极齿的外圆周上,其中环的壁厚小于安装时与定子极齿相对的激励线圈和定子极齿之间的距离,因此,即使环连接到定子极齿上,安装也很容易。
而且,如权利要求16所述的本发明中,提供一种防盖碰撞结构,以防止定子极齿的底部与盖碰撞,因此,即使由于驱动电机时的电磁力作用,定子极齿在轴向上振动,也有可能减少定子极齿的底部与盖碰撞的可能性。如权利要求17所述的本发明中,通过使与盖接触的定子极齿的底部与该盖连接(例如通过焊接),这种防盖碰撞结构可很容易实现。
在权利要求18所述的本发明中,通过加压模制,肋在定子极齿的底部内整体成形,因此,即使由于驱动电机时的电磁力作用而产生轴向使定子极齿振动的力,也有可能消除或最大程度的减少定子极齿的轴向振动,而且,有可能防止定子极齿与其它部件碰撞,或最大程度减小发生碰撞时的冲击。并且,由于肋通过加压模制单独整体成形,与桥作为分离部件的情况相比,有可能降低成本。
而且,在权利要求19所述的本发明中,借助(通过其中介)能够在轴向上弹性变形的弹性部件,轴向相互分隔开的转子的旋转轴的两部分由定子侧部件(例如,盖)支承,因此,如果由于驱动电机时的电磁力作用导致定子极齿轴向振动的力的反作用力输入,有可能降低旋转轴与轴承等碰撞的可能性。
现在参考附图来描述本发明的实施例。


图1是根据本发明的第一实施例的永磁式步进电机的截面图。
图2是在永磁铁和定子极齿之间的位置关系的展开图。
图3是表示该实施例的操作的波形图。
图4是传统的例子的波形图。
图5是起动转矩的高次谐波分量的频率分析的结果的视图。
图6是第二实施例中永磁铁和定子极齿的位置关系的展开图。
图7是根据第三实施例的永磁式步进电机的截面图。
图8是内轭的平面图。
图9是具有叠加在其上的分隔件的内轭的平面图。
图10是外轭的平面图。
图11是内轭的改进型式的截面图。
图12是定子极齿的改进型式的透视图。
图13是从不同方向看去定子极齿改进型式的透视图。
图14是定子极齿的改进型式的侧视图。
图15是第四实施例的外轭和内轭的透视图。
图16是第四实施例的永磁式步进电机的截面图。
图17是表示定子极齿如何变形的视图。
1永磁式步进电机10转子11旋转轴12A,12B永磁铁20定子21A第一定子单元21B第二定子单元22激励线圈23外轭24内轭25,26定子极齿27环30A,30B盖31a,31b板簧图1和2表示本发明的第一实施例。在该实施例中,本发明用于两相永磁式步进电机。
即,该实施例的永磁式步进电机1装配有可旋转的转子10和以非接触状态围绕该转子10的定子20。
转子10具有旋转轴11,借助轴承30a和30b(通过其中介),该旋转轴11可旋转的支承在由作为定子侧部件的盖30A和30B轴向相互分隔开的两个位置。然而,在旋转轴11和轴承30a和30b之间,设有板簧31a和31b,该板簧用作能够在轴向上弹性变形的弹性部件,因此,旋转轴11在一范围内可相对于盖30A和30B轴向移动,在该范围中,板簧31a和31b可以弹性变形。
而且,在盖30A和30B之间的旋转轴11的位置,存在相互轴向分隔开的固定的筒状永磁铁12A和12B。这些永磁铁12A和12B是相同结构,并如图2(a)所示,它是外圆周表面的展开图,N极和S极以固定间距P1交替并沿圆周极化。
另一方面,定子20包括第一和第二定子单元21A和21B,该第一和第二定子单元垂直堆叠在一起,形成对应于永磁铁12A和12B的两次。定子单元21A和21B除了在下述定子极齿的圆周位置内有一些偏差和垂直倒转外,它们是相同的部件。
即,每个第一和第二定子单元21A和21B配备有激励线圈22,外轭23和内轭24,激励线圈22通过将导线缠绕成筒形并在其上进行绝缘处理来成形,激励线圈22布置在外轭23和内轭24之间。
外轭23配备有覆盖激励线圈22的外圆周表面的筒状壳体部分23a,在靠近盖30A或30B的侧面上覆盖激励线圈22的端表面的盘状板部分23b,和若干梳齿状定子极齿25,该定子极齿25从板部分23b的中心沿激励线圈22的内圆周表面轴向伸展。外轭23的壳体部分23a,板部分23b和定子极齿25通过压制由一块钢板整体成形。
内轭24设有盘状板部分24a,该盘状板部分24a覆盖远离盖30A或30B的激励线圈22的端表面,和沿激励线圈22的内圆周表面从板部分24a的中心轴向延伸的若干梳齿状定子极齿26。外轭23的板部分24a和定子极齿26通过压制由一块钢板整体成形。
外轭23的定子极齿25的数量与内轭24(在本实施例中是12)的定子极齿26的数量相同,定子极齿25和26交替布置在激励线圈22的内圆周表面上,以便相互不接触。
图2(b)是外轭23和内轭24的一部分的展开图,它表示每个第一定子单元21A和第二定子单元21B的外轭23和内轭24的六至七个定子极齿25a至25g和定子极齿26a至26f和261。下面将描述定子极齿25和26的特定位置。
第一定子单元21A和第二定子单元21B布置在盖30A和30B之间,并在下列条件下固定就位,即它们堆叠在一起,以便定子极齿25和26的圆周位置移动(偏移)一个预定角度。
而且,在上述结构的永磁式步进电机1中,通过驱动电路(未表示)顺序接通电流,以便流经激励线圈22,从而形成旋转磁场,且转子10受驱动。
接着,描述本实施例的定子极齿25和26的特定位置。提供了十二个定子极齿25和十二个定子极齿26。其中,六个定子极齿25和六个定子极齿26相结合以构成一组。即,存在两组,每组适当的分成下述齿组。这样,仅描述六个定子极齿25和六个定子极齿26的成形位置。
即,在本实施例中,在权利要求3所述的本发明中公式(4)和(5)的关系成立,以便在权利要求1所述的本发明中的公式(1)至(3)的关系可成立。特别是,在权利要求4所述的本发明中的公式(8)和(9)的关系成立。
在本实施例的永磁式步进电机中,用来确定间距P2和P3的值如下所述m=3,n=2,u=32,i=1,I’=1,v’=4即,在本实施例中,每个轭23和24配备有六个定子极齿25a至25f,26a至26f。针对外轭23,六个定子极齿25a至25f分成两个齿组,每个齿组由三个定子极齿25a至25c,25d至25f组成。而针对内轭24,六个定子极齿26a至26f分成两个齿组,每个齿组由三个定子极齿26a至26c,26d至26f组成。
外轭23和内轭24的每个齿组调节成例如,外轭23的一个齿组25a至25c沿圆周叠加在内轭24的仅一个齿组26a至26c上。如果齿组的数量或构成每个齿组的定子极齿的数量改变,则该关系保持(是)相同的。
而且,当上述值代入公式(8)和(9)内,P2=P1{1-1/32},和P3=P1{3-1/8}确定定子极齿25a至25f和26a至26f的成形位置,以获得这些间距P2和P3。
在该构造中,由于v’=4,有可能降低起动转矩的第四次高次谐波。图3是波形图,它通过对两相永磁式步进电机实际进行测量来获得,该步进电机的步长数是48,并采用该实施例的构造。图4是通过对传统的永磁式步进电机进行类似的测量获得的图,与图4相比较可知,波幅基本上减小。而且,通过对图3和4的结果进行频率分析可知,如图5所示,第四次高次谐波的实质降低已查实。
而且,在本实施例中,有可能避免外轭23的定子极齿25和内轭24的定子极齿26之间的间隙变得极其小。即,例如,考虑图2(b)所示的定子极齿25d和定子极齿26c之间的间距P4。假定定子极齿25和定子极齿26以固定间距布置,间距P2等于间距P1,因此,P4=P1/2。然而,在上述公开号为10-136631的日本未审查专利申请的永磁示步进电机的情况下,如果定子极齿25和定子极齿26的间距P2没有固定,相邻的定子极齿25和定子极齿26的间距在一些位置大,而在另一些位置小,因此相邻的定子极齿25和定子极齿26的间距的最小值必须小于P1/2。
然而,在本实施例中,当间距P2和P3根据权利要求4所述的本发明中的公式(8)和(9)(当选择公式(6)和(7)时相同)调节时,由于间距P2的偏差方向和由于间距P3的偏差方向相互抵偿,因此,有可能避免间距P4变得太小。
参考图2(b)来特别对此说明。例如当认为在设定间距P2和P3之前的状态固定时,其中间距P2等于间距P1,以及当认为齿组25a至25c和26a至26c的中央定子极齿25b和26b的位置固定时,并且当根据公式(8)相对于这些固定位置调节间距P2时,定子极齿25a和25c接近定子极齿25b,且定子极齿26a和26c接近定子极齿26b。相对于齿组25d至25f和26d至26f也产生类似的运动。结果,齿组的端部之间的距离变化,因此端部相互分隔(间距P4增加)。这样,如果,根据公式(9)设定齿组的间距P3,将导致齿组的端部之间的距离变化,因此,端部相互接近(即,如果间距P4减少),由于设定了间距P2,已经实现了间距P4的增加,因此,有可能防止间距P4变得极其小。当代替公式(8)和(9)而是采用公式(6)和(7)时,可防止间距大大降低。在本实施例的构造中,间距P4的最小值等于0.88(P1/2),与公开号为10-136631的日本未审查专利申请中公开的永磁式步进电机的情况下间距的最小即0.83(P1/2)相比,该值较大。
而且,当间距P4不是极其小时,它有可能防止在定子极齿25d和26c之间的漏磁通流的增加,因此,有可能防止产生的转矩的实质降低。
而且,在本实施例中,板簧31a和31b分别设置在旋转轴11和轴承30a之间,以及旋转轴11和轴承30b之间,因此可有利的获得振动的进一步降低。即,即使当导致定子极齿25和26的轴向振动的力是由驱动永磁式步进电机1时的电磁力产生,且该力的反作用力通过永磁铁输入到转子10侧面,旋转轴在板簧31a和31b有可能弹性变形的范围内可轴向移动,因此旋转轴11与轴承30a和30b碰撞,从而降低产生滑动和冲击声音的可能性。
图6是本发明的第二实施例的视图;它是与表示上述第一实施例的图2类似的展开图。由于该实施例的永磁式步进电机的一般构造与第一实施例相同,步进电机没有表示,且省略了叠加的描述,与第一实施例的相同的部件和位置由相同的数字标记表示,省略了对其的描述。
在本实施例中,权利要求5所述的本发明中的公式(10)和(11)的关系成立,以便如权利要求1所述的本发明中的公式(1)至(3)的关系可成立。特别是,如权利要求6所述的本发明中的公式(14)和(15)的关系成立。
在该实施例的永磁式步进电机中,用来确定间距P2和P3的值如下所述m=3,n=2,i=2,v=4,i’=1,v’=2。
即,在本实施例中,外轭23的六个定子极齿25a至25f分成两个齿组,每个齿组由三个定子极齿25a至25c,25d至25f构成,且内轭24的六个定子极齿26a至26f分成两个齿组,每个齿组由三个定子极齿26a至26c,26d至26f构成。而且,从公式(14)和(15)可知,间距P2和P3可根据如下获得P2=P1{1-2/12}P3=P1{3-1/4}在该构造中,由于v=4,通过在齿组中的定子极齿25a至25c,25d至25f,26a至26c,和26d至26f的间距P2内的偏移,起动转矩的第四次高次谐波降低,而且,由于v’=2,通过定子极齿25a至25c和25d至25f之间,以及26a至26c和26d至26f之间的间距P3内的偏移,起动转矩的第二次高次谐波降低。这样,与传统的永磁式步进电机不同,它能降低许多次高次谐波,因此有可能获得更安静和更平稳的转动。
而且,在本实施例中,公式(14)和(15)适合设置间距P2和P3,因此,与上述第一实施例相同,当设定间距P2时,间距P4增加(扩大)。这样,当设定间距P3时,如果间距P4变小,有可能防止其变的太小,因此有可能防止定子极齿25d和26c之间的漏磁通流增加,从而有可能防止产生的转矩大大降低。当采用公式(12)和(13)来代替公式(14)和(15)时,有可能防止间距变得太小。
图7至10是本发明的第三实施例的视图。图7是与图1类似的两相永磁式步进电机1的截面图。与第一实施例的相同的部件和位置由相同的数字标记表示,省略了对其的描述。在本实施例中,定子极齿25和26的圆周位置关系根据上述第一和第二实施例中的公式(6)和(7),公式(8)和(9),公式(12)和(13),和公式(14)和(15)设定。
而且,在本实施例中,盘状间隔件40设置在第一定子单元21A和第二定子单元21B之间。然而,在间隔件40的中心,设有环形开口40a,该环形开口40a的直径几乎与内轭24的板部分24a的直径d相同(见图8),因此,如图9所示,间隔件40仅与内轭24的板部分24a接触,而不与定子极齿26的底部接触。
这样,在轴向相邻的第一定子单元21A和第二定子单元21B之间设有轴向间隙41,因此定子极齿26的底部相互不接触。
另一方面,外轭23的板部分23b与盖30A和30B接触,对于与盖30A和30B接触的部分,焊接点w设置在定子极齿25的底部,在焊接点w进行点焊,以便将定子极齿25的底部与盖30A或30B连接。特别是,在该实施例中,如图10所示,焊接点w设置在定子极齿25的每个其它底部上,以便进行点焊,因此,定子极齿25不会很容易的从盖30A和30B上脱离。
而且,在具有上述构造的本实施例中,即使引起定子极齿25和26轴向振动的力是由驱动永磁式步进电机1时的电磁力产生,其所带来的噪音不容易产生。第一个原因在于,在与第一实施例相同的该实施例中,板簧31a和31b分别设置在旋转轴11和轴承30a之间,以及旋转轴11和轴承30b之间。
第二个原因在于形成间隙41。即,即使由于驱动永磁式步进电机1时的电磁力导致内轭24的定子极齿26轴向振动,由于形成间隙41,有可能避免在第一定子单元21A上的定子极齿26与第二定子单元21B侧面上的定子极齿26碰撞。而且,通过减少内轭24的接触部分,有可能降低第一和第二定子单元21A和21B之间的磁场干扰,因此,有可能避免电磁力的波动或导致旋转不均衡。
而且,第三个原因在于定子极齿25不容易与盖30A和30B分离。即,即使由于驱动永磁式步进电机1时的电磁力导致轴向力输入到外轭23的定子极齿25,只要定子极齿25不与盖30A和30B分离,当返回到初始位置时,定子极齿25不能与盖30A和30B碰撞。
这样,在本实施例的构造中,由于与第一和第二实施例类似的作用,有可能降低起动转矩的高次谐波分量,而且,由于驱动永磁式步进电机1时的电磁力导致定子极齿25和26轴向振动的力引起的振动,因此,有可能获得有利的非常安静和平稳的转动。
在该实施例中,外轭23的定子极齿25的底部通过焊接与盖30A和30B连接的构造对应于用来防止盖碰撞的结构。
在第三实施例中,间隙41通过利用间隔件40成形,这不应该限于该结构。通过使定子极齿26的底部在离开(以便分离)相邻的内轭24的方向上变形,有可能形成间隙41。特别是,如图所示,例如,在图11(a)中,间隙41可以台阶状方式使定子极齿26的底部变形来形成间隙41,或者如图11(b)所示,通过使定子极齿26的底部弯曲,间隙41可变形。当通过压制形成内轭24时,可整体获得如图11(a)和11(b)所示的构造,因此生产成本不增加。
而且,由于驱动永磁式步进电机1的电磁力导致的噪音降低的构造,还有可能采用图12至14所示的构造。图12是内轭24和其附近的板部分24的一个定子极齿26的透视图。图13是从相反方向看去的透视图,图14是相同部分的侧视图。沿内轭24的径向伸展的肋42a,42b和42c在定子极齿26的底部的中央和两侧上通过压制整体成形。有可能采用外轭23的定子极齿25的类似构造。而且,当肋42a,42b和42c在定子极齿25和26上成形时,即使导致定子极齿25和26轴向振动的力由驱动永磁式步进电机1时的电磁力产生,有可能消除或最大程度减少定子极齿25和26的振动,因此,有可能防止定子极齿25和26与盖30A和30B碰撞,其它定子极齿26与其靠近或使冲击最小,而且有可能消除或最大程度减小噪音。
而且,在图12至14的构造中,通过冲压整体形成肋42a,42b和42c,因此,与以后分离部件紧固的构造不同,生产成本没有增加。
图15至17表示本发明的第四实施例。图15是外轭23和内轭24的透视图。永磁式步进电机的一般构造与第一实施例相同,因此,它没有表示在附图中,下面省略了对其的描述。与第一实施例的相同的部件和位置由相同的数字标记表示,省略了对其的描述。
而且,在本实施例中,如图15所示,在外轭23的定子极齿25的前端的外圆周内,提供用作约束部件的环27,以限制定子极齿25的向外和径向的变形,而且,由于该环27,内轭24的定子极齿26的向外变形也受到约束。即,环27由非磁性材料例如铝或黄铜形成,而且,如图16的截面图所示,环的宽度使得当环27与外轭23和内轭24的定子极齿25连接时,它可覆盖从外轭23的定子极齿25的前端到内轭24的定子极齿26的端,它们相互接合,并且,环的壁厚使得当环27与定子极齿25和26连接时,在环27和激励线圈22之间留有余地,而且定子极齿25和26的向外的变形可受约束。
而且,例如,在环27压配合到外轭23的定子极齿25的外圆周表面上之后,内轭24的定子极齿26被迫进入环27,因此环27与外轭23的定子极齿25和内轭24的定子极齿26连接。
当驱动电机时径向或轴向作用的电磁力作用到定子极齿25和26上时,由于这些定子极齿25和26部分的低刚度,定子极齿25和26每次向外径向变形,在转子10和定子极齿25和26的磁极的相对位置发生变化,从而引起轴向变形,以便产生振动和噪音。即,与图17(a)所示的电机没有受到驱动的情况相比,在图17(b)所示的电机受到驱动的情况下,定子极齿径向向外变形,越靠近前端,变形越大。尽管图17(b)只表示了一个定子极齿,该现象在外轭23和内轭24的定子极齿25和26中可观察到。
然而,在本实施例中,提供环27,该环27与靠近定子极齿25和26的前端的部分接合,因此,有可能约束定子极齿25和26的径向和向外变形。这样,定子极齿25和26的变形受到约束,因此由于定子极齿25和26的变形引起的振动也受到约束。
通过例如用树脂或类似物或埋置金属来填充定子极齿25和26与激励线圈22之间的间隙,可限制定子极齿25和26的变形。然而,树脂具有低硬度,而且必须用树脂填充定子极齿25和26与激励线圈22之间的间隙,以便将其固定,结果是装配花费了太多时间。另一方面,从制造的观点来看,埋置金属的方法很困难。而且,无意中的应力可作用在定子极齿25和26上。然而,在本实施例中,必须将环27与定子极齿25和26连接,因此,很容易进行装配。而且,由于环27成形以便在它与激励线圈22之间留有余地,因此,即使当安装定子极齿25和26与激励线圈22时,也很容易进行装配。
而且,如图17所示,安装变形在定子极齿25和26的前端要比在其底部大。然而,在该实施例中,环设置在定子极齿25和26的前端附近,这意味着环27设置在定子极齿25和26的安装变形最大的位置,因此,有可能有效的约束定子极齿25和26的变形。
尽管在本实施例中,外轭23和内轭24的定子极齿25和26受到约束,这应该不限制其构造。还有可能提供两个环用来约束外轭23的定子极齿25的环,和用来约束内轭24的定子极齿26的环。然而,通过由单独的环27来约束外轭23和内轭24的定子极齿25和26,有可能约束电机的部件数量的增加至最小水平。
而且,尽管在该实施例中,环27提供作为定子极齿25和26的约束部件,该约束部件不一定必须是环的形式。例如,它可以是线圈形式的部件,而且任何类型的部件可应用,只要它能够约束定子极齿25和26的变形。
而且,尽管在上述实施例中,环27的壁厚使得当环27与定子极齿25和26连接时,在环27和激励线圈22之间留有余地,该余地不一定必须保留;但壁厚必须小于环27和激励线圈22之间的距离。基本上,壁厚应使得当装配定子极齿25和26与激励线圈22时,即使当环27连接时,装配也可很容易的进行。
而且,在该实施例中,有可能在与定子极齿25和26相对的环27的侧面上形成与定子极齿25和26相适应的凹槽或类似结构,以便布置定子极齿25和26,并且当定子极齿25和26与环27接合时将其用作引导件。
而且,尽管在上述实施例中,环27用来覆盖定子极齿25和26的前端,环不一定必须覆盖到前端;它足以覆盖靠近前端的部分,因此定子极齿25和26的变形可受到约束。
尽管在上述实施例中,本发明的永磁式步进电机应用于两相永磁式步进电机1,本发明的应用目标不仅限于此。本发明还可应用于单相或三相或多相永磁式步进电机。
而且,尽管在上述第一和第二实施例中,间距P2和P3设定为目的在于起动转矩的第四次高次谐波分量或者起动转矩的第二次高次谐波分量和第四次高次谐波分量的降低,这不应限于此。例如,在三相永磁式步进电机的情况下,有可能采用一种构造,其中第四次高次谐波分量和第六次高次谐波分量可降低,而且,在四相永磁式步进电机的情况下,有可能采用这样一种构造,其中第四次高次谐波分量和第八次高次谐波分量可降低,其选择可任意进行。
如上所述,在权利要求1至6所述的本发明中,在齿组中的定子极齿的间距P2和齿组的间距P3适当的设置,因此高次的高次谐波可降低,因此,高次谐波可有效的降低,且可实现更安静和平稳的旋转。
特别是,在权利要求4或6所述的本发明中,有可能防止定子极齿之间的间隙变得极其小,因此,有可能防止定子极齿之间的漏磁通流的增加,从而有可能避免产生的转矩的大大降低。
而且,在权利要求7至19所述的本发明中,即使导致外轭和内轭定子极齿的轴向振动的力由驱动永磁式步进电机的电磁力产生,振动和冲击声音没有产生或不容易产生,因此,有可能获得更安静的永磁式步进电机。
特别是,根据权利要求7至9所述的本发明中,有可能降低定子单元之间的磁场干扰,因此有可能防止力的波动和由此产生的旋转的不均衡。而且,根据权利要求11至15所述的本发明,即使产生了导致定子极齿径向振动的力,也不会发生(不产生)振动,因此还有可能约束力所产生的振动,该力导致径向振动。
权利要求
1.一种脉冲调制式步进电动机,它包括一个转子和围绕该转子的定子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定齿距P1交替布置在外圆周上,定子具有一个定子单元,该定子单元配备有外轭和内轭,该外轭和内轭的内圆周上具有梳齿状定子极齿,其特征在于每个所述外轭和内轭具有n组齿组,每个齿组由m个所述定子极齿构成,而且假定该齿组内的所述定子极齿的齿距为P2,所述齿组的齿距为P3,P2≠P1,P3≠m●P1,且P3≠m●P2其中,P1,P2和P3是电角度,m和n是等于或大于2的整数。
2.如权利要求1所述的脉冲调制式步进电动机,其特征在于外轭和内轭的齿组设置成外扼的其中任意一个齿组沿圆周方向仅叠加在内扼的其中一个齿组上。
3.如权利要求1或2所述的脉冲调制式步进电动机,其特征在于关系式P2=P1{l±i/u},和P3=P1{m±i’/(n●v’)}保持为真,其中u是正整数,i是非u的倍数的正整数,i’是非n的倍数的正整数,而v’是主高次谐波降低的阶。
4.如权利要求3所述的脉冲调制式步进电动机,其特征在于关系式P2=P1{l-i/u},和P3=P1{m+i’/(n●v’)}或者关系式P2=P1{l-i/u},和P3=P1{m-i’/(n●v’)}保持为真。
5.如权利要求1或2所述的脉冲调制式步进电动机,其特征在于P2=P1{l±i/(m●v)},和P3=P1(m±i’/(n●v’)}保持为真,其中v和v’是主高次谐波减少的次,i是非m的倍数的正整数,i’是非n的倍数的正整数。
6.如权利要求5所述的脉冲调制式步进电动机,其特征在于关系式P2=P1{l-i/(m●v)},和P3=P1{m+i’/(n●v’)}或者关系式P2=P1{l-i/(m●v)},和P3=P1{m-i’/(n●v’)}保持为真。
7.一种脉冲调制式步进电动机,它包括一个转子和围绕该转子的定子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定齿距交替布置在外圆周上,该定子具有一种构造,其中配备有外轭和内轭的若干定子单元堆叠在一起,而且外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于轴向间隙位于轴向相邻的所述定子单元的所述定子极齿的底部之间,因此底部相互不接触。
8.如上述权利要求1至6中任一所述的脉冲调制式步进电动机,其特征在于该定子具有一种构造,其中若干所述定子单元堆叠在一起,而且一个轴向间隙位于轴向相邻的定子单元的定子极齿的底部之间,因此该底部相互不接触。
9.如权利要求7或8所述的脉冲调制式步进电动机,其特征在于轴向相邻的定子单元之间设有一个隔离件,该隔离件仅与定子单元的定子极齿的底部之外的部分接触,以形成轴向间隙。
10.如权利要求7或8所述的脉冲调制式步进电动机,其特征在于定子极齿的底部在离开(以便隔离)轴向相邻的另一个定子极齿的底部的方向上变形,以形成轴向间隙。
11.一种脉冲调制式步进电动机,它包括一个转子和围绕该转子的定子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定齿距交替布置在外圆周上,所述定子具有一个定子单元,该定子单元配备有外轭和内轭,该外轭和内轭的内圆周上具有梳齿状定子极齿,其特征在于所述定子极齿的前端附近的外圆周上设有一个约束部件,该约束部件由非瓷材料制成并约束所述定子极齿。
12.如上述权利要求1至10中任一所述的脉冲调制式步进电动机,其特征在于在定子极齿的前端附近的外圆周上设有一个约束部件,该约束部件由非磁性材料制成并约束定子极齿。
13.如权利要求11或12所述的脉冲调制式步进电动机,其特征在于单独提供用来约束外轭的定子极齿的约束部件,和用来约束内轭的定子极齿的约束部件。
14.如权利要求11或12所述的脉冲调制式步进电动机,其特征在于约束部件的宽度用于从外轭的定子极齿的前端附近覆盖到内轭的定子极齿的前端的附近。
15.如上述权利要求1至14中任一所述的脉冲调制式步进电动机,其特征在于约束部件是一个环。
16.一种脉冲调制式步进电动机,它包括一个转子和围绕该转子的定子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定齿距交替布置在外圆周上,该定子具有这样一种构造,其中配备有外轭和内轭的一个定子单元沿轴向上插入盖子之间,而且所述外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于提供一种防止盖碰撞结构,它用于防止所述定子极齿与所述盖碰撞。
17.如权利要求16所述的脉冲调制式步进电动机,其特征在于防止盖碰撞结构具有这样一种构造,其中与盖接触的定子极齿的底部与盖粘合(连接)。
18.一种脉冲调制式步进电动机,它包括一个转子和围绕该转子的定子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定齿距交替布置在外圆周上,该定子具有一个定子单元,该定子单元配备有外轭和内轭,而且所述外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于在所述定子极齿的底部,肋通过压模整体成形。
19.一种脉冲调制式步进电动机,它包括一个转子和围绕该转子的定子,该转子中永磁铁的成对的N和S磁极沿圆周方向以固定齿距交替布置在外圆周上,在相互轴向分隔开的两个位置,所述转子的旋转轴由所述定子侧面上的部件可转动地支撑,该定子具有一个定子单元,该定子单元配备有外轭和内轭,而且所述外轭和内轭在内圆周上具有梳齿状定子极齿,其特征在于借助能够在轴向弹性变形的弹性部件(通过其中间),所述转子的旋转轴的所述相互轴向分隔开的两个位置由所述转子侧面部件支撑。
全文摘要
本发明提供一种永磁式步进电机,它能进一步降低起动转矩的高次谐波分量。为每个外轭23和内轭24设置n组齿组,每个齿组由m个定子极齿25a-25f,26a-26f构成,并且定子极齿25a-25f,26a-26f的间距P2,齿组的间距P3,和永磁铁的N极和S极的间距P1设定为下列关系式:P2≠P1,P3≠m·P1,和P3≠m·P2成立,其中P1,P2和P3是电角度,m和n是等于或大于2的整数。
文档编号H02K1/14GK1289169SQ00128698
公开日2001年3月28日 申请日期2000年9月21日 优先权日1999年9月22日
发明者小池良和, 池上昭彦 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1