孤立电网以及运行孤立电网的方法

文档序号:7385532阅读:721来源:国知局
专利名称:孤立电网以及运行孤立电网的方法
技术领域
本发明涉及一种具有至少一个能量产生器的孤立电网,该能量产生器与第一发电机耦合。此外还具有可以与内燃发动机耦合的第二发电机。在这类孤立电网中,与第一发电机相连的能量产生器通常是可再生的能量产生器,例如风能设备、水电站等。
背景技术
这类孤立电网通常已公知,特别是用于为没有包括在中央供电网内的地区供电,但在这些地区,可以利用可再生的能量源,如风和/或太阳和/或水利等。这些地区可能例如是小岛,或者是具有特殊面积、位置和/或气候条件的偏远地区或难以进入的地区。然而,在这类地区也需要供电、供水和供暖。为此所需的能量,至少是电能,由所述孤立电网提供和分配。这里需要先进的电运行装置,以便在该孤立电网中出现电压波动和/或频率波动时还具有良好的功能,遵循相对较窄的极限值。
为了能遵循该极限值,除其它之外还采用了所谓的风-柴油系统,其中将风能装置用作基本能量源。由该风能装置产生的交流电压经过整流,接着通过换流器转换为具有所需电网频率的交流电压。通过这种方式,可以产生与风能装置的发电机转速无关,并由此与其频率无关的电网频率。
因此,可以通过换流器确定电网频率。在此,由两个不同的方案可用。一个方案是所谓的自引导换流器,它可以自己产生稳定的电网频率。然而,这类自引导换流器需要很高的技术要求,也相应地比较昂贵。另一个代替自引导换流器的方案是电网引导换流器,它们用现有电网同步其输出电压的频率。这类换流器比自引导换流器的价格便宜许多,但是始终需要一个电网,利用该电网能够进行同步。因此,对于电网引导换流器必须能始终利用一个电网成分(Netzbildner),由它提供换流器的电网引导所需的调节量。这类电网成分在公知的孤立电网中例如是由内燃发动机(柴油发动机)运行的同步发电机。
这意味着,内燃发动机必须不断运行,以运行作为电网成分的同步发电机。从维修要求、燃料消耗以及废气对环境的负担角度,这一点也是缺陷,因为即使当内燃发动机必须只将一小部分可供利用的功率(该功率通常仅为3至5Kw)用于运行作为电网成分的发电机时,燃料消耗也不小,并且每小时消耗几公升的燃料。
公知的孤立电网还存在一个问题,即必须具有所谓的“倾卸负载”表示的无功负载,消耗由基本能量产生器产生的剩余电能,使得基本能量产生器在断开负载时不会空转运行,空转可能会由于过高的转速而又导致基本能量产生器的机械损害。特别是对于作为基本能量产生器的风能装置问题极大。

发明内容
本发明要解决的技术问题是,避免上述缺陷并改善孤立电网的效率。
按照本发明,上述技术问题的解决是通过一种具有权利要求1和16的特征的孤立电网以及一种按照权利要求18对孤立电网进行运行控制的方法实现的。从属权利要求描写了优选的扩展。
本发明基于以下知识,即也可以用基本能量产生器(风能装置)的电能运行具有电网成分功能的第二发电机,从而内燃发动机可以完全断开,并去除与第二发电机的耦合。在此,第二发电机不再是发电机,而是发动机运转,其中,为此所需的电能由基本能量产生器或其发电机提供。如果第二发电机和内燃发动机间的耦合是电磁耦合,则可以通过加载基本能量产生器或其发电机的电能来控制该耦合。如果切断该耦合处的电能,则该耦合断开。然后,如上所述,在断开内燃发动机的运行时,对第二发电机加载基本能量产生器的电能,并由该电能进行运行(发动机运转),从而尽管内燃发动机断开,电网成分仍然保持运行。一旦需要接通内燃发动机,并由此需要第二发电机的发电机运行时,可以起动内燃发动机,并借助电可控的耦合将其与第二发电机耦合,以运行内燃发动机,从而发电机运行方式的第二发电机可以为孤立电网产生额外的能量。
采用完全可调的风能装置允许放弃使用“倾卸负载”,因为该风能装置通过其完全可调性,也就是可变转速和可变片式调节(Blattverstellung),可以精确产生所需的功率,从而不需要“清除”剩余能量,因为该风能装置可以精确产生所需功率。这样,该风能装置只产生电网中所需的(或者为进一步加载中间存储器所需的)那样多的能量,也不必不加利用地清除剩余功率,并且该风能装置以及整个孤立电网的总效率比采用“倾卸负载”时显著改善。
在本发明的优选实施方式中,风能装置包括一个接在换流器前的同步发电机。该换流器由整流器、直流中间电路和变频器组成。如果在孤立电网中还设置了其它提供直流电压(直流电流)的能量源,例如光电伏打电池(Photovoltaikelement),则适合的是,将这类诸如光电伏打电池的其它基本能量产生器接到换流器的直流电压中间电路上,从而可以将附加可再生能量源的能量提供给直流电压中间电路。由此,可以提高可由第一基本能量产生器控制的功率供应。
为了一方面随时平衡可用功率的波动和/或提高的功率需求,另一方面可以利用目前尚无需要的可用能量,优选采用可以存储电能并在需要时快速提供该电能的中间电路。这类存储器可以例如是电化学存储器,如蓄电池,也可以是电容器(Caps)或化学存储器,如氢存储器,它通过电解存储用剩余电能产生的氢。为了提供存储器电能,也将这类存储器直接或通过相应的充电电路/放电电路接到换流器的直流电压中间电路上。
能量存储的另一种形式是对存储在惯性轮中的旋转能的转换。在本发明优选的进一步构造中,该惯性轮与两个同步发电机耦合,并因此也同样允许将所存储的能量用于运行电网成分。
如果孤立电网中的能量消耗比基本能量生成器,如风能装置的功率输出容量小得多,则电能可以输送到所有存储器。如果基本能量产生器例如是1.5MW额定功率的风能装置,或是具有10MW额定功率的多个风能装置的组合,且风向使得该基本能量产生器以额定值运行,尽管如此,孤立电网中的功率消耗仍然明显比该基本能量产生器的额定功率小得多,则在这样的运行中(特别是在夜晚和在孤立电网中能量消耗很小的时候),该基本能量产生器这样运行,即对所有的能量存储器充电(充满),以便在孤立电网的功率消耗大于该基本能量产生器提供的功率时,首先一次性(在所述情况下仅短时间的)接通这些能量存储器。
在本发明优选的扩展中,除了接到第二发电机上的能量部件(内燃发动机和惯性轮)之外,所有能量产生器和中间电路都接到一个以总线形式配置的总直流电压中间电路上,该中间电路与一个单独的、电网引导的变流器(换流器)接通。通过在直流电压中间电路上应用单独的电网引导的换流器,可以实现价格非常便宜的设置。
此外还具有优点的是,还具有其它(冗余)内燃电动机以及可与该内燃发动机耦合的第三发电机(例如同步发电机),以便在具有比由可再生能量产生器和存储能量可用的(功率)更大的功率需求时,能通过运行其它(冗余)能量产生系统产生(能量)。


下面示例性地进一步说明本发明的实施方式。其中图1示出根据本发明的孤立电网的原理图;图2示出图1所示原理的一种变形;图3示出根据本发明的孤立电网的优选实施方式。
具体实施例方式
图1示出了安装在变流器前的风能装置,由整流器20以及接在直流电压中间电路28输出端的换流器24组成,其中该风能装置通过整流器20接在直流电压中间电路28上。
第二同步发电机32与换流器24输出端并联,该同步发电机通过电磁耦合34又与内燃发动机30相连。换流器24和第二同步发电机32的输出导线向负载(未示出)提供所需的能量。
为此,风能装置10产生用于供应负载的功率。通过整流器20对由风能装置10产生的能量进行整流,并将该能量供应给直流电压中间电路28。
换流器24由所加的直流电压产生交流电压,并将其供应到孤立电网中。因为出于造价的原因换流器24优选地作为电网引导的换流器,因此设置了电网成分,通过它可以同步换流器24。
该电网成分是第二同步电动机32。在以发动机方式运转的内燃发动机30断开时,同步电动机32工作,并在此过程中作用为电网成分。在这种运行模式下,运行能量是由风能装置10产生的电能。风能装置10必须另外产生这种用于同步发电机32的运行能量,以及整流器20以及换流器24的损耗。
除了作为电网成分的功能之外,第二同步电动机32还要满足其它目的,例如在电网中产生无功功率,提供短路电流,作用为闪变过滤器(Flickerfilter)以及调节电压。
如果断开负载,并由此减小能量需求,则这样控制风能装置10,使其产生相应较小的能量,从而放弃使用倾卸负载。
如果负载的能量需求提高,以致不能再只由风能装置满足,则可以起动内燃电动机28,并用电压加载电磁耦合34。由此,耦合34产生内燃发动机30和第二同步发电机32之间的机械连接,发电机32(以及电网成分)提供(现在以发电机运转方式)所需的能量。
通过合适的风能装置10大小,可以从风能中产生基本足够的能量用于供应负载。由此,将采用内燃发动机30以及由此产生的燃料消耗减至最小。
图2示出了图1所示的孤立电网的一种变形。其结构基本上与图1所示的解决方案一致。不同之处在于,在这里作用为电网成分的第二发电机32不属于内燃发动机30。内燃发动机30与另一个可在需要时接通的第三(同步)发电机36相连。第二同步发电机32始终在发动机运转方式下作用为电网成分、无功功率产生器、短路电流源、闪变过滤器和电压调节器。
图3示出了孤立电网的另一个优选实施方式。在该图中,示出了三个例如形成一个风能组合的具有第一(同步)发电机的风能装置10,这些发电机各接在整流器20上。整流器20与输出端并联,将由风能装置10产生的能量供应到直流电压中间电路28中。
此外示出了三个光电伏打电池12,它们各接在升压转换器(Hochsetzsteller)22上。升压转换器22的输出端同样与直流电压中间电路28并联。
此外还示出了形象地表示中间存储器的蓄电池14。除了电化学存储器如蓄电池14之外,该中间存储器还可以是化学存储器,如氢存储器(未示出)。可以例如用通过电解获得的氢填充该氢存储器。
此外还示出了电容器块18,可以将合适的电容器用作中间存储器。这种电容器可以例如是所谓的西门子公司的超级电容(Ultra-Cap),除了具有很高的存储器容量,该超级电容还以极小的损耗而突出。
蓄电池14和电容器块18(两者都可以为多个数量构成)各通过充电电路/放电电路26接在直流电压中间电路28上。直流电压中间电路28与一个(唯一的)换流器24(或多个并联的换流器)相连,其中,换流器24优选设计为电网引导。
配电装置40(可能与变压器一起)接在换流器24的输出端,该配电装置由换流器24用电网电压供电。同样,第二同步发电机32也接在换流器24的输出端。同步发电机32是孤立电网的电网成分、无功功率产生器、短路电流产生器、闪变过滤器和电压调节器。
第二同步发电机32与惯性轮耦合。该惯性轮16同样是中间存储器,可以例如在电网成分以发动机运转方式运行期间存储能量。
此外,可以为第二同步发电机32配置内燃发动机30和电磁耦合34,它们在可再生的能量源产生的功率很小时运行发电机32,并在发电机运转方式下运行。通过这种方式,可以向孤立电网供应缺少的能量。
用虚线示出属于第二同步发电机32的内燃电动机30和电磁耦合34,以便清楚地表明第二同步发电机32可以选择为仅以发动机运转方式运行为电网成分、无功功率产生器、短路电流源、闪变过滤器和电压调节器。
特别是,如果设置第二同步发电机32而没有内燃发动机,则可以设置具有内燃发动机的第三同步发电机36,以便平衡持续时间更长的功率不足。通过静止状态的开关44,可以将第三同步发电机36与孤立电网断开,以便不作为附加的能量负载来增加孤立电网的负担。
最后,设置了(μp/计算机)控制装置42,它控制孤立电网的各部件,并允许该孤立电网继续自动运行。
通过适当地设置孤立电网各部件可以实现,风能装置10为负载提供基本上足够的能量。在必要时由光电伏打电池补充所提供的能量。
如果风能装置10和/或光电伏打电池12提供的功率小于/大于负载所需,则可以调用(放电/充电)中间存储器14、16和18,以便提供缺少的功率(放电),或存储剩余的能量(充电)。也就是说,中间存储器14、16和18平衡不断波动的可再生能量供应。
在此,重要的是,在哪段时间可以平衡哪些功率波动取决于中间存储器14、16和18的存储器容量。对于很大的中间存储器容量,可以考虑数小时至数天作为时间段。
只有在出现超过中间存储器14、16和18容量的功率不足时,才需要接通内燃发动机30和第二或第三同步发电机32、36。
在上述实施方式中,基本能量产生器始终是一种利用可再生能量源,例如风或太阳(光)的能量产生器。但是,基本能量产生器自身可以用作另一种可再生能量源,例如氢,也可以是消耗矿物燃料的产生器。
在孤立电网中还可以连接着海水淡化装置(未示出),从而在孤立电网中的负载需要的电功率小于基本能量产生器产生的电功率时,该海水淡化装置消耗“剩余的”,也就是已经提供的电功率,以产生可随后存储在贮槽中的可用水/饮用水。如果在某些时刻孤立电网的电能消耗很大,以致所有能量产生器只能刚好产生可供利用的功率,则该海水淡化装置运行到最小程度,必要时甚至完全断开。该海水淡化装置也可以由控制装置42控制。
在电网只需要基本能量产生器的部分电功率时,也可以运行泵水储能水电站(同样未示出),借助其将水(或其它流动介质)从较低势能带到较高势能,从而可以在需要时利用该泵水储能水电站的电功率。该泵水储能水电站也由控制装置42控制。
还可以组合海水淡化装置和泵水储能水电站,也就是将海水淡化装置产生的可用水(饮用水)抽送到较高位置,然后可以在需要时用于运行泵水储能水电站的发电机。
权利要求
1.一种具有至少一个第一能量产生器的孤立电网,该能量产生器利用可再生能量源,其中,该能量产生器优选为具有发电机的风能装置,其中,具有可与内燃发动机耦合的第二发电机,其特征在于,具有转速和片式调节可调的风能装置,以及在所述第二发电机和所述内燃发动机之间的电磁耦合。
2.根据权利要求1所述的孤立电网,其特征在于,所述第一能量产生器具有同步发电机,该同步发电机包括具有直流电压中间电路的变流器,该中间电路具有至少一个整流器和一个换流器。
3.根据权利要求1或2所述的孤立电网,其特征在于,至少一个连接在所述直流电压中间电路上的电部件用于利用直流电压提供电能。
4.根据权利要求3所述的孤立电网,其特征在于,所述电部件是光电伏打电池和/或机械能量存储器和/或电化学存储器和/或电容器和/或化学存储器,作为电中间存储器。
5.根据上述权利要求中任一项所述的孤立电网,其特征在于,一个可与所述第二发电机或一个第三发电机耦合的惯性轮。
6.根据上述权利要求中任一项所述的孤立电网,其特征在于,多个可各自与一个发电机耦合的内燃发动机。
7.根据上述权利要求中任一项所述的孤立电网,其特征在于,一个控制所述孤立电网的控制装置。
8.根据上述权利要求中任一项所述的孤立电网,其特征在于,一个在所述电部件和所述直流中间电路之间的升压/降压变流器(22)。
9.根据上述权利要求中任一项所述的孤立电网,其特征在于,在所述电存储部件和所述直流中间电路之间的充电/放电电路(26)。
10.根据上述权利要求中任一项所述的孤立电网,其特征在于,一个惯性轮,该惯性轮具有一个发电机和一个连接在其后的整流器(20),用于向所述直流电压中间电路(28)供电。
11.根据上述权利要求中任一项所述的孤立电网,其特征在于,所有利用可再生能量源的能量产生器(10,12)和中间存储器(14,16,18)向总直流电压中间电路供电。
12.根据上述权利要求中任一项所述的孤立电网,其特征在于,一个电网引导的换流器。
13.根据上述权利要求中任一项所述的孤立电网,其特征在于,所述用于运行电磁耦合的能量由电存储器和/或由所述基本能量产生器提供。
14.根据上述权利要求中任一项所述的孤立电网,其特征在于,当所述基本能量产生器提供的功率大于孤立电网中连接的其它电负载消耗的功率时,在所述孤立电网中接通一个产生可用水(饮用水)的海水淡化装置/可用水产生装置。
15.根据上述权利要求中任一项所述的孤立电网,其特征在于,具有一个从所述基本能量产生器获得电能的泵水储能水电站。
16.一种具有至少一个第一基本能量产生器的孤立电网,该基本能量产生器用于为孤立电网产生电能,其中,设置了一个具有电网成分功能的同步发电机,其中,在此该同步发电机可工作在发动机运转方式下,且发动机运转方式所需的能量由基本能量产生器提供。
17.根据权利要求16所述的孤立电网,其特征在于,所述发电机可以通过耦合与一个内燃发动机连接,当所述基本能量产生器的电功率大于或约等于所述孤立电网中的电消耗功率时,断开该内燃发动机。
18.一种用于运行控制具有至少一个风能装置的孤立电网的方法,其特征在于,这样控制该风能装置(10),即如果孤立电网中的电功率消耗小于该风能装置的电能产生能力,则使其一直只产生所需要的电功率。
19.根据权利要求18所述的方法,其特征在于,如果所需功率超过了利用可再生能量源的能量产生器(10,12)产生的功率,则首先将电中间存储器(14,16,18)用于能量供应。
20.根据权利要求18和19中任一项所述的方法,其特征在于,具有用于运行至少一个第二发电机的内燃发动机,而且,仅当由利用可再生能量源的能量产生器(10,12)和/或由电中间存储器(14,16,18)提供的功率超过可预先给定的时间段上的可预先给定的门限值时,才接通该内燃发动机。
21.根据权利要求20所述的方法,其特征在于,为了给所述中间存储器充电,从可再生能量源中产生的能量要大于孤立电网中负载所需的能量。
22.应用一种同步发电机作为电网成分,用于向供电网提供交流电压的电网引导的换流器,其中,该发电机工作在发动机运转方式下,并通过惯性轮和/或通过可再生能量产生器产生的电能运行。
全文摘要
本发明涉及一种具有至少一个能量产生器的孤立电网,该能量产生器利用可再生能量源,其中,该能量产生器优选为具有第一同步发电机的风能装置,该孤立电网还具有带有至少一个第一整流器和换流器的直流中间电路、第二同步发电机和与该第二同步发电机耦合的内燃发动机。为了提供一种孤立电网,设置了完全可调的风能装置(10)和在所述第二同步发电机(32)与所述内燃发动机(30)之间的电磁耦合(34),在电网中,只要所述风能装置在尽可能高的效率下为所有接通负载产生足够的功率,则可以完全断开所述内燃发动机。
文档编号H02J3/30GK1470092SQ01817531
公开日2004年1月21日 申请日期2001年9月5日 优先权日2000年9月7日
发明者阿洛伊斯·沃本, 阿洛伊斯 沃本 申请人:阿洛伊斯·沃本, 阿洛伊斯 沃本
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1