一种电力电子变压器的拓扑结构的制作方法

文档序号:7429102阅读:154来源:国知局
专利名称:一种电力电子变压器的拓扑结构的制作方法
技术领域
本实用新型涉及一种应用在配电网的电力电子变压器,属于电力电子在电力系统 中的应用技术领域。
背景技术
电力变压器自19世纪被发明以来,已经成为输配电系统的基本组成设备,数量巨 大。目前,传统的电力变压器通常采用铁芯油浸式,具有制作工艺简单、可靠性高等优点,但 是缺点也十分明显,包括体积、重量大,空载损耗较高,变压器油对环境存在威胁,其主要 作用是变压和隔离,功能比较单一,铁芯饱和时,会产生谐波,在投入电网时还会造成较大 的励磁涌流。传统电力变压器的缺点和单一的功能很难满足未来电网建设的需求和目标。为此上世纪70年代电力电子变压器(PET-Power electronic transformer)的概 念被提出,PET是利用电力电子换流技术实现电压变换和能量传递的。其突出特点是通过 电压型变换器(VSC)对其原副边交流侧电压、电流的幅值和相位进行连续可控调节。因此, PET不仅可以克服传统变压器的缺陷,还可以解决电力系统面临的电磁环网、电能质量、无 功动态补偿以及提高系统稳定极限等问题。因此,随着电力电子器件水平和高频变压器材料的发展,电力电子变压器必将会 代替传统变压器而在电力系统中得到广泛的应用。
发明内容技术问题本实用新型的目的是提出一种电力电子变压器的拓扑结构,不仅实现 电压变换、电气隔离、能量传递还能对配电网线路的电压进行自动调节,可以灵活的应用在 不同输入电压等级的配电网线路上。相比传统的电力变压器,大大减小了变压器的体积,降 低了损耗,提高了整体的变换效率,而且可以稳定输出电压,抑制线路电压的跌落、上升、闪 变、过电压和欠电压等电压质量问题。技术方案本实用新型公开了一种电力电子变压器的拓扑结构,该装置采用三级 构成,即输入级、隔离级、输出级;三相电路的结构相同,各单相输入级、输出级的功率变换 器组的输入端按照星型连接,功率变换器采用桥式拓扑结构;隔离级包括各单相的高频变 压器;单相结构基本功率单元的输入端并联一个电容,基本功率单元中,第一功率变换器的 输出端接高频变压器的原边,高频变压器的副边连接第二功率变换器的输入端;基本功率 单元的输出端连接滤波器的输入端,滤波器的输出端接三相供电网络。基本功率单元基于AC-AC型电力电子变压器,各相输入级中第一功率变换器采用 第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元组成桥式拓 扑结构,第一功率开关单元、第二功率开关单元互补导通后接高频变压器原边正端,第三功 率开关单元、第四功率开关单元互补导通后接高频变压器原边负端,所述每个功率开关单 元由两个IGBT和一个反向连接的二极管并联组成;各相输出级中第二功率变换器采用第 五功率开关单元、第六功率开关单元、第七功率开关单元、第八功率开关单元组成桥式拓扑
3结构,第五功率开关单元、第七功率开关单元的正端接高频变压器副边正端,第六功率开关 单元、第八功率开关单元的负端接高频变压器副边负端,第五功率开关单元、第六功率开关 单元互补导通后接滤波器的输入端,第七功率开关单元、第八功率开关单元互补导通后接 滤波器的输入端,所述每个功率开关单元由两个IGBT和一个反向连接的二极管并联组成。各单相输入级中第一功率变换器串联连接;输出级采用桥式功率变换器并联结 构,滤波器由输出滤波电感一与输出滤波电容组成,输出滤波电感一负极接第五功率开关 单元、第六功率开关单元输出端,输出滤波电容负端接第七功率开关单元、第八功率开关单 元输出端,输出滤波电容正端接输出滤波电感一正极;或者输出级采用桥式功率变换器级 联结构,滤波器由输出滤波电容并接在输出滤波电感一、输出滤波电感二的同名端组成,输 出滤波电感一负极接第一个基本功率单元中第五功率开关单元、第六功率开关单元的输出 端,输出滤波电感二负极接第3个基本功率单元中第七功率开关单元、第八功率开关单元 的输出端。该电力电子变压器中的三相结构相同,每相结构由基本功率单元组合而成,图1 为该电力电子变压器的基本功率单元结构模型图。其工作原理为原方将工频信号通过电 力电子变换器转化为高频信号,即升频,然后通过中间高频隔离变压器耦合到副方,再利用 电力电子变换器还原成工频信号,即降频。通过采用适当的控制方案来控制电力电子装置 的工作,从而将一种频率、电压、波形的电能变换为另一种频率、电压、波形的电能。图2为 该装置的基本功率单元拓扑结构图。基本功率单元采用三级构成,即子输入级、子隔离级、 子输出级;子输入级由功率变换器构成,功率变换器采用桥式拓扑结构,包括功率开关单元 S1、^、S2和否,每个功率开关单元由两个IGBT及其反并联二极管连接组成,可以实现电流 双向流动;子隔离级为高频变压器,可以减小装置体积,提高整体效率,实现电压变换及能 量传递的功能;子输出级由功率变换器构成,和输入级一样,功率变换器也采用桥式拓扑结 构,包括第五功率开关单元、第六功率开关单元、第七功率开关单元、第八功率开关单元,每 个功率开关单元由两个IGBT及其反并联二极管连接组成,可以实现电流双向流动,输出级 还连接滤波器,以提高电压电流波形质量。图3为该装置的输出级采用功率变换器并联的 单相结构图,单相的输入级由基本功率单元的子输入级功率变换器串联而成,并在每个基 本功率单元的输入端并联相同的电容器,以实现将输入电压平均分配到每个基本功率单元 的作用;隔离级由各个基本功率单元的子隔离级高频变压器构成;输出级由基本功率单元 的子输出级功率变换器并联而成。图4为该装置的第二种单相拓扑结构,单相的输入级由 基本功率单元的子输入级功率变换器串联而成,并在每个基本功率单元的输入端并联相同 的电容器,以实现均压作用;隔离级由各个基本功率单元的子隔离级高频变压器构成;输 出级由基本功率单元的子输出级功率变换器级联而成,输出级还连接滤波器,以提高电压 电流波形质量。图5和图6分别是采用功率变换器并联的单相结构和采用功率变换器级联 的单相结构的该装置的三相结构拓扑图,由三个单相结构组合而成,输入级由各单相的输 入级功率变换器组按照星型连接组成,隔离级由各单相的隔离级高频变压器组组成,输出 级由各单相的输出级功率变换器组按照星型连接,以适应三相四线制线路的应用。电力电子变压器单相输入级采用由基本功率单元的子输入级功率变换器串联连 接,无需利用变压器耦合就可直接输入高压,输出级有两种拓扑结构第一种是采用桥式功 率变换器并联结构,第二种是采用桥式功率变换器级联结构,以满足高压高功率场合的需
4要。整个装置的每相结构由基本的功率单元组合而成,可以灵活的应用在不同电压等级的 配电线路上。应用在配电网的电力电子变压器,不仅可以替代传统电力变压器,实现电压变 换、能量传递、电气隔离的作用,还可以通过相应的控制策略稳定输出电压,实现电压调节 器的作用,抑制线路的电压跌落、上升、闪变、过电压和欠电压等电压质量问题。有益效果本实用新型的电力电子变压器,除了具备传统电力变压器器的优点外, 还具有以下优点1.由于采用高频变压器进行变压,所以大大减小了整体装置的体积,提高了整个 装置的效率。2.采用基本功率单元组合的方式构成,便于灵活应用于各个电压等级的配电网线 路上。单相输入级采用由基本功率单元的输入级功率变换器串联连接,无需利用变压器耦 合就可直接输入高压,输出级采用桥式功率变换器并联结构或者级联结构以满足高压高功 率场合的需要。3.实现负荷和供电系统之间的干扰隔离,抑制谐波,改善电网电气环境。采用相应 的控制策略,可以实现自动电压调节的功能,抑制线路电压的跌落、上升、闪变、过电压和欠 电压。4.本电力电子变压器所使用的大功率电力电子器件可瞬时(us级)关断,因此电 力电子变压器采用控制方法,可实现故障电流限制作用。5.本电力电子变压器利用全数字化技术实现在线监控,便于数字化变电站实施, 同时可以通过自身的保护和监控,省去老式的继电保护装置。

图1 为本实用新型的基本功率单元结构模型框图。图2 为本实用新型的基本功率单元拓扑结构框图。图3 为输出级采用功率变换器并联的单相结构图。图4 为输出级采用功率变换器级联的单相结构图。图5 为输出级采用功率变换器并联的三相结构图。图6 为输出级采用功率变换器级联的三相结构图。其中有功率变换器1、功率变换器2、高频变压器3、滤波器4。第一功率开关单元S1、第二功率开关单元历、第三功率开关单元S2、第四功率开关 单元石、第五功率开关单元S3、第六功率开关单元历、第七功率开关单元S4、第八功率开关 单元石。Vin 单相装置输入电压,Vo:单相线路输出电压,Lai 输出滤波电感一,La2:输出滤波电感二,Cl、C2、Cn 均压电容,Cal 输出滤波电容。UA、UB、UC 三相电力电子变压器输入电压端,Ua、Ub、Uc、N 三相电力电子变压器输出电压端。
具体实施方式
下面是本实用新型的具体实施例来进一步描述本实用新型是一种电力电子变压器的拓扑结构,该装置采用三级构成,即输入级、 隔离级、输出级;三相结构相同,各单相输入级、输出级的功率变换器组的输入端按照星型 连接,所述功率变换器采用桥式拓扑结构;隔离级包括各单相的高频变压器组;单相结构 包括基本功率单元的输入端并联一个电容,其中,第一功率变换器1的输出端接高频变压 器3的原边,高频变压器3的副边连接第二功率变换器2的输入端;基本功率单元的输出端 连接滤波器4的输入端,滤波器4的输出端接三相供电网络。在应用在配电网的电力电子变压器中,基本功率单元基于AC-AC型电力电子变压 器,各相输入级中第一功率变换器1采用桥式拓扑结构由第一功率开关单元S1、第二功率 开关单元石、第三功率开关单元S2、第四功率开关单元石组成,第一功率开关单元S1、第二 功率开关单元召互补导通后接高频变压器3原边正端,第三功率开关单元S2、第四功率开 关单元石互补导通后接高频变压器3原边负端,所述每个功率开关单元由两个IGBT和一个 反并联二极管并联组成;各相输出级中第二功率变换器2采用桥式拓扑结构由第五功率开 关单元S3、第六功率开关单元历、第七功率开关单元S4、第八功率开关单元石组成,第五功 率开关单元S3、第七功率开关单元S4的正端接高频变压器3副边正端,第六功率开关单元 53、第八功率开关单元而的负端接高频变压器3副边负端,第五功率开关单元S3、第六功率 开关单元召互补导通后接滤波器4的输入端,第七功率开关单元S4、第八功率开关单元& 互补导通后接滤波器4的输入端,所述每个功率开关单元由两个IGBT和一个反并联二极管 并联组成。各单相输入级中第一功率变换器1串联连接;输出级采用桥式功率变换器并联结 构,滤波器4由输出滤波电感一 Lai与输出滤波电容Cal组成,输出滤波电感一 Lai负极接 第五功率开关单元S3、第六功率开关单元石输出端,输出滤波电容Cal负端接第七功率开 关单元S4、第八功率开关单元石输出端,输出滤波电容Cal正端接输出滤波电感一 Lai正 极。输出级也可以采用桥式功率变换器级联结构,滤波器4由输出滤波电容Cal并接 在输出滤波电感一 Lai、输出滤波电感二 La2的同名端组成,输出滤波电感一 Lai负极接第
一个基本功率单元中第五功率开关单元S3、第六功率开关单元@的输出端,输出滤波电
感二 La2负极接第3个基本功率单元中第七功率开关单元S4、第八功率开关单元玩的输出端。输入级由采用桥式拓扑结构的功率变换器串联而成,以适应输入为不同电压等级 的需要;隔离级采用多个高频变压器分别进行隔离、变压和能量传递的形式;输出级有两 种拓扑结构第一种由采用桥式拓扑结构的功率变换器并联构成,如图5所示输出级采用 桥式功率变换器并联结构,满足低电压大电流的需要。第二种是采用桥式拓扑结构的功率 变换器级联构成,同时连接LC滤波器,如图6所示输出级采用桥式功率变换器级联结构,满 足高压高功率的需要,以提高电压电流波形质量。整个装置由基本的功率单元组合而成,可 以灵活的应用在不同电压等级的配电网线路上[0039]该装置中的三相结构相同,由单相结构组合而成,每个单相结构又由基本功率单 元组成,基本功率单元的工作原理是原方将工频电压信号通过功率变换器1转化为高频 信号(600Hz到1. 2kHz),即升频,然后通过中间高频隔离变压器3耦合到副方,再利用功率 变换器2还原成工频电压信号,即降频。通过相应控制,可以改变输出电压基波的幅值。基 本功率单元采用三级构成,即子输入级、子隔离级、子输出级;子输入级由功率变换器1构 成,功率变换器采用桥式拓扑结构,包括第一功率开关单元S1、第二功率开关单元济、第三 功率开关单元S2、第四功率开关单元石,每个功率开关单元由两个IGBT及其反并联二极管 连接组成,可以实现电流双向流动;子隔离级为高频变压器3,可以减小装置体积,提高整 体效率,实现电压变换及能量传递的功能;子输出级由功率变换器2构成,和输入级一样, 功率变换器采用桥式拓扑结构,包括功率第五功率开关单元S3、第六功率开关单元历、第七 功率开关单元S4、第八功率开关单元玩,每个功率开关单元由两个IGBT及其反并联二极管 连接组成,可以实现电流双向流动,输出级还连接滤波器4,以提高电压电流波形质量。整个装置单相结构的输入级由基本功率单元的输入级功率变换器串联而成,无需 利用变压器耦合就可直接输入高压,并在每个基本功率单元的输入端并联相同的电容器, 以实现将输入电压平均分配到每个基本功率单元的作用;隔离级由各个基本功率单元的隔 离级高频变压器构成;输出级有两种拓扑结构第一种由基本功率单元的输出级功率变换 器并联而成,第二种由基本功率单元的输出级功率变换器级联而成。电力电子变压器的输入级由各单相的输入级功率变换器组按照星型连接组成;隔 离级由各单相的隔离级高频变压器组组成,进行隔离、变压、能量传递的形式;输出级采用 由各单相的输出级功率变换器组按照星型连接,以适应三相四线制线路。采用相应的控制 策略,可以实现自动电压调节的功能,抑制线路电压的跌落、上升、闪变、过电压和欠电压等 电压质量问题。
权利要求一种电力电子变压器的拓扑结构,其特征在于该装置采用三级构成,即输入级、隔离级、输出级;三相电路的结构相同,各单相输入级、输出级的功率变换器组的输入端按照星型连接,功率变换器采用桥式拓扑结构;隔离级包括各单相的高频变压器;单相结构基本功率单元的输入端并联一个电容,基本功率单元中,第一功率变换器(1)的输出端接高频变压器(3)的原边,高频变压器(3)的副边连接第二功率变换器(2)的输入端;基本功率单元的输出端连接滤波器(4)的输入端,滤波器(4)的输出端接三相供电网络。
2.如权利要求1所述的一种电力电子变压器的拓扑结构,其特征在于基本功率单元 基于AC-AC型电力电子变压器,各相输入级中第一功率变换器(1)采用第一功率开关单元 (S1)、第二功率开关单元(亙)、第三功率开关单元(S2)、第四功率开关单元(历)组成桥式 拓扑结构,第一功率开关单元(S1)、第二功率开关单元(石)互补导通后接高频变压器(3) 原边正端,第三功率开关单元(S2)、第四功率开关单元(历)互补导通后接高频变压器(3) 原边负端,所述每个功率开关单元由两个IGBT和一个反向连接的二极管并联组成;各相输 出级中第二功率变换器(2)采用第五功率开关单元(S3)、第六功率开关单元(石)、第七功 率开关单元(S4)、第八功率开关单元组成桥式拓扑结构,第五功率开关单元(S3)、第 七功率开关单元(S4)的正端接高频变压器(3)副边正端,第六功率开关单元(历)、第八功 率开关单元纟玩)的负端接高频变压器(3)副边负端,第五功率开关单元(S3)、第六功率开 关单元(石)互补导通后接滤波器(4)的输入端,第七功率开关单元(S4)、第八功率开关单 元(盈)互补导通后接滤波器(4)的输入端,所述每个功率开关单元由两个IGBT和一个反 向连接的二极管并联组成。
3.如权利要求1所述的一种电力电子变压器的拓扑结构,其特征在于各单相输入级中 第一功率变换器(1)串联连接;输出级采用桥式功率变换器并联结构,滤波器(4)由输出滤 波电感一(Lai)与输出滤波电容(Cal)组成,输出滤波电感一(Lai)负极接第五功率开关 单元(S3)、第六功率开关单元(石)输出端,输出滤波电容(Cal)负端接第七功率开关单元 (S4)、第八功率开关单元(玩)输出端,输出滤波电容(Cal)正端接输出滤波电感一(Lai) 正极;或者输出级采用桥式功率变换器级联结构,滤波器(4)由输出滤波电容(Cal)并接在 输出滤波电感一(Lai)、输出滤波电感二(La2)的同名端组成,输出滤波电感一(Lai)负极 接第一个基本功率单元中第五功率开关单元(S3)、第六功率开关单元(历)的输出端,输出 滤波电感二(La2)负极接第3个基本功率单元中第七功率开关单元(S4)、第八功率开关单 元(石)的输出端。
专利摘要一种电力电子变压器的拓扑结构采用三级构成,即输入级、隔离级、输出级;三相电路的结构相同,各单相输入级、输出级的功率变换器组的输入端按照星型连接,功率变换器采用桥式拓扑结构;隔离级包括各单相的高频变压器;单相结构基本功率单元的输入端并联一个电容,基本功率单元中,第一功率变换器(1)的输出端接高频变压器(3)的原边,高频变压器(3)的副边连接第二功率变换器(2)的输入端;基本功率单元的输出端连接滤波器(4)的输入端,滤波器(4)的输出端接三相供电网络。该装置可以对线路输出电压进行自动调节,稳定输出电压,抑制线路电压的跌落、上升、闪变、过电压和欠电压等电压质量问题。
文档编号H02M5/293GK201584899SQ20092023429
公开日2010年9月15日 申请日期2009年8月6日 优先权日2009年8月6日
发明者倪喜军, 白杰, 赵剑锋 申请人:东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1