减小接收器与无线电力发射器之间的干扰的制作方法

文档序号:7433332阅读:131来源:国知局
专利名称:减小接收器与无线电力发射器之间的干扰的制作方法
技术领域
本发明大体上涉及无线充电,且更具体地说,涉及与无线电力充电器相关的装置、 系统及方法。
背景技术
通常,例如无线通信装置(例如,手机)等每一电池供电装置需要其自己的充电器及电源,所述电源通常为AC电源插座。当许多装置需要充电(每一装置需要其自己的单独充电器)时,这变为使用不便的。正开发在发射器与耦合到待充电的电子装置的接收器之间使用空中或无线电力发射的方法。使用射频(RF)的无线电力发射是一种方法,其被视为用于为便携式无线电子装置的电池充电的无系缆(im-tethered)手段。在无线电力发射中,板外(off-board)RF发射器及天线将RF能量辐射到待充电的装置。待充电的装置具有接收天线及将RF电力转换为DC电流的电路,所述DC电流可对装置的电池充电,或者可直接为装置供电。可发生高效能量传送的发射天线与接收天线之间的距离为RF操作频率及天线大小的函数。如果天线的大小经设计且以使得其物理上位于彼此的所谓“近场区”内的频率操作,那么耦合效率可显著改进。这通常需要两个天线均以在其下所述天线电学上为较小(例如,最大尺寸<0. 1 个波长)的频率操作。在无线电力耦合的情况下,可能存在由发射器发射的待由无线电力接收装置接收的显著量的电力。对于通信装置来说,其干扰情况可起因于以下各项发射器谐波、无线电力接收装置中的互调制产物、无线电力接收装置中产生的高电压、接收无线电力时的通信接收器天线去调谐,或经由无线电力接收装置中的基带耦合。通过无线电力耦合而产生的此能量在接收器中可引起例如干扰等问题,所述干扰可阻止无线电力接收装置(例如)在进行呼叫或接收呼叫、维持现有呼叫,或建立其它通信链路时有效地通信。


图1说明无线电力传送系统的简化框图。图2说明无线电力传送系统的简化示意图。图3说明用于本发明的示范性实施例中的环形天线的示意图。图4为根据本发明示范性实施例的发射器的简化框图。
图5为根据本发明示范性实施例的接收器的简化框图。图6A到图6C展示各种状态下的接收电路的一部分的简化示意图以说明接收器与发射器之间的消息接发。图7A到图7C展示各种状态下的替代接收电路的一部分的简化示意图以说明接收器与发射器之间的消息接发。图8说明根据本发明示范性实施例的无线充电系统。图9为根据本发明示范性实施例的说明减小接收器的干扰效应的方法的流程图。图10为根据本发明示范性实施例的说明用于减小由无线电力发射器引起的对装置的干扰的方法的流程图。
具体实施例方式词语“示范性”在本文中用以表示“充当实例、例子或说明”。本文中描述为“示范性”的任一实施例未必解释为比其它实施例优选或有利。下文结合附图而陈述的详细描述意在作为对本发明的示范性实施例的描述,且无意表示可实践本发明的仅有实施例。贯穿此描述所使用的术语“示范性”表示“充当实例、 例子或说明”,且未必应解释为比其它示范性实施例优选或有利。所述详细描述出于提供对本发明的示范性实施例的透彻理解的目的而包括特定细节。所属领域的技术人员将明白, 可在无这些特定细节的情况下实践本发明的示范性实施例。在一些例子中,以框图形式来展示众所周知的结构及装置,以避免模糊本文中呈现的示范性实施例的新颖性。词语“无线电力,,在本文中用以表示在不使用物理电磁导体的情况下从发射器发射到接收器的与电场、磁场、电磁场或其它相关联的任何形式的能量。图1说明根据本发明的各种示范性实施例的无线发射或充电系统100。将输入电力102提供到发射器104以供产生用于提供能量传送的辐射场106。接收器108耦合到辐射场106,且产生输出电力110以供由耦合到输出电力110的装置(未图示)存储或消耗。 发射器104与接收器108两者隔开距离112。在一个示范性实施例中,根据相互谐振关系来配置发射器104与接收器108,且在接收器108的谐振频率与发射器104的谐振频率完全相同时,在接收器108位于辐射场106的“近场”中时,发射器104与接收器108之间的发射损耗为最小。发射器104进一步包括用于提供用于能量发射的装置的发射天线114,且接收器 108进一步包括用于提供用于能量接收的装置的接收天线118。根据应用及待与之相关联的装置来设计发射天线及接收天线的大小。如所陈述,高效能量传送通过将发射天线的近场中的大部分能量耦合到接收天线而非以电磁波形式将大部分能量传播到远场而发生。当处于此近场中时,可在发射天线114与接收天线118之间形成耦合模式。天线114及118 周围可发生此近场耦合的区域在本文中称为耦合模式区。图2展示无线电力传送系统的简化示意图。发射器104包括振荡器122、功率放大器1 及滤波器与匹配电路126。所述振荡器经配置以在所要频率下产生振荡器信号,可响应于调整信号123来调整所述所要频率。可通过功率放大器124响应于控制信号125而以一放大量来放大振荡器信号。可包括滤波器与匹配电路126以滤除谐波或其它非所要的频率,且使发射器104的阻抗与发射天线114匹配。
接收器108可包括匹配电路132及整流器与切换电路以产生DC电力输出,以对电池136(如图2所示)充电或对耦合到接收器的装置(未图示)供电。可包括匹配电路132 以使接收器108的阻抗与接收天线118匹配。如图3中所说明,示范性实施例中所使用的天线可配置为“环形”天线150,其在本文中也可称为“磁性”天线。环形天线可经配置以包括空气芯(air core)或物理芯 (physical core)(例如,铁氧体芯)。空气芯环形天线可更好地容许放置于所述芯附近的外来物理装置。此外,空气芯环形天线允许其它组件放置于芯区域内。另外,空气芯环可更易于使得能够将接收天线118(图2)放置于发射天线114(图2)的平面内,在所述平面处, 发射天线114(图2、的耦合模式区可更强大。如所陈述,发射器104与接收器108之间的高效能量传送在发射器104与接收器 108之间的匹配或接近匹配的谐振期间发生。然而,即使在发射器104与接收器108之间的谐振不匹配时,也可以较低效率传送能量。能量传送通过将来自发射天线的近场的能量耦合到驻留于建立了此近场的邻域中的接收天线而非将能量从发射天线传播到自由空间中而发生。环形或磁性天线的谐振频率是基于电感及电容。环形天线中的电感通常为由环产生的电感,而通常将电容添加到环形天线的电感以在所要谐振频率下产生谐振结构。作为非限制性实例,可将电容器152及电容器IM添加到所述天线,以形成产生谐振信号156的谐振电路。因此,对于较大直径的环形天线来说,诱发谐振所需的电容的大小随着环的直径或电感增加而减小。此外,随着环形天线或磁性天线的直径增加,近场的高效能量传送区域增加。当然,其它谐振电路是可能的。作为另一非限制性实例,电容器可并行地放置于环形天线的两个端子之间。另外,所属领域的技术人员将认识到,对于发射天线,谐振信号156 可为到环形天线150的输入。本发明的示范性实施例包括在处于彼此的近场中的两个天线之间耦合电力。如所陈述,近场为天线周围其中电磁场存在但可能并不传播或辐射远离所述天线的区域。近场通常限定于接近所述天线的物理体积的体积。在本发明的示范性实施例中,磁型天线(例如,单匝环形天线及多匝环形天线)用于发射(Tx)天线系统及接收(Rx)天线系统两者,因为与电型天线(例如,小型偶极天线)的电性近场相比,磁型天线的磁性近场振幅趋向于较高。这允许所述对天线之间的潜在较高耦合。此外,还预期“电性”天线(例如,偶极及单极)或磁性天线与电性天线的组合。Tx天线可在足够低的频率下且在天线大小足够大的情况下操作,以在显著大于由早先所提到的远场及电感方法所允许的距离的距离下实现到小型Rx天线的良好耦合(例如,> -4dB)。如果Tx天线的大小经正确设计,那么当将主机装置上的Rx天线放置于受驱动 Tx环形天线的耦合模式区内(即,在近场中)时,可实现高耦合电平(例如,-IdB到-4dB)。图4为根据本发明示范性实施例的发射器的简化框图。发射器200包括发射电路 202及发射天线204。通常,发射电路202通过提供导致在发射天线204四周产生近场能量的振荡信号来将RF电力提供到发射天线204。举例来说,发射器200可在13. 56MHz的ISM 频带下操作。示范性发射电路202包括固定阻抗匹配电路206,其用于使发射电路202的阻抗 (例如,50欧姆)与发射天线204匹配;以及低通滤波器(LPF) 208,其经配置以将谐波发射
7减小到防止耦合到接收器108(图1)的装置的自干扰的电平。其它示范性实施例可包括不同滤波器拓扑(包括(但不限于)使特定频率衰减,同时使其它频率通过的陷波滤波器), 且可包括自适应阻抗匹配,其可基于可测量发射量度(例如,到天线的输出电力或由功率放大器汲取的DC电流)而改变。发射电路202进一步包括经配置以驱动如由振荡器212 确定的RF信号的功率放大器210。发射电路可由离散装置或电路组成,或者可由集成组合件组成。来自发射天线204的示范性RF电力输出可为约2. 5瓦特到8. 0瓦特。发射电路202进一步包括处理器214,所述处理器214用于在特定接收器的发射阶段(或工作周期)期间启用振荡器212、用于调整振荡器的频率,且用于调整输出电力电平以实施通信协议(用于经由邻近装置所附接的接收器与邻近装置相互作用)。如稍后将论述,处理器214可控制无线电力发射器的操作,以减小或关断所产生的无线电力场的发射, 以便使无线电力耦合与无线电力接收装置的通信数据接收同步。无线电力发射的减小或关断可响应于关于发射器所产生的场将是对无线电力接收装置的干扰的起因的预先检测。发射电路202可进一步包括用于检测作用中接收器在由发射天线204产生的近场附近的存在与否的负载感测电路216。举例来说,负载感测电路216监视流动到功率放大器 210的电流,所述电流受作用中接收器在由发射天线204产生的近场附近的存在与否影响。 对功率放大器210上的加载的改变的检测是由处理器214监视,其用于确定是否启用振荡器212以发射能量从而与作用中接收器通信。发射天线204可实施为天线带,其具有经选择以使电阻性损耗保持为低的厚度、 宽度及金属类型。在常规实施方案中,发射天线204可通常经配置以与较大结构(例如,桌子、垫子、灯或其它不便携带的配置)相关联。因此,发射天线204通常将不需要“匝”以便具有实用尺寸。发射天线204的示范性实施方案可为“电学上较小的”(即,波长的分数) 且经调谐以通过使用电容器界定谐振频率而在较低的可用频率下谐振。在发射天线204相对于接收天线在直径上可较大或边长(如果为正方形环)较大(例如,0.50米)的示范性应用中,发射天线204将未必需要大量匝数来获得合理电容。图5为根据本发明示范性实施例的接收器的框图。接收器300包括接收电路302 及接收天线304。接收器300进一步耦合到装置350以向装置350提供所接收的电力。应注意,将接收器300说明为在装置350外部,但其可集成到装置350中。通常,能量是无线传播到接收天线304,且接着经由接收电路302耦合到装置350。接收天线304经调谐以在与发射天线204(图4)的频率相同的频率下或接近相同的频率下谐振。接收天线304可与发射天线204类似地设计尺寸,或可基于相关联装置350 的尺寸来不同地设计大小。举例来说,装置350可为具有小于发射天线204的直径或长度的直径或长度尺寸的便携式电子装置。在此实例中,接收天线304可实施为多匝天线,以便减小调谐电容器(未图示)的电容值,且增加接收天线的阻抗。举例来说,接收天线304可放置于装置350的实质圆周周围,以便最大化天线直径并减小接收天线的环匝(即,绕组) 的数目及绕组间电容。接收电路302提供与接收天线304的阻抗匹配。接收电路302包括用于将接收到的RF能源转换为供装置350使用的充电电力的电力转换电路306。电力转换电路306可包括RF/DC转换器308,且还可包括DC/DC转换器310。RF/DC转换器308将在接收天线304 处接收到的RF能量信号整流为非交变电力,而DC/DC转换器310将经整流的RF能量信号转换为与装置350兼容的能量电位(例如,电压)。预期各种RF/DC转换器,其包括部分及全整流器、调节器、桥接器、倍增器以及线性及切换转换器。接收电路302可进一步包括用于将接收天线304连接到电力转换电路306或者用于断开电力转换电路306的切换电路312。如下文更充分地阐释,将接收天线304与电力转换电路306断开不仅中止对装置350的充电,而且还改变发射器200(图4)所“看到”的 “负载”。如上文所揭示,发射器200包括负载感测电路216,负载感测电路216检测提供到发射器功率放大器210的偏压电流的波动。因此,发射器200具有用于确定接收器何时存在于发射器的近场中的机制。当多个接收器300存在于发射器的近场中时,可能需要对一个或一个以上接收器的加载及卸载进行时间多路复用,以使其它接收器能够更高效地耦合到发射器。也可隐匿 (cloak) 一接收器,以便消除到其它近旁接收器的耦合或减小近旁发射器上的加载。接收器的此“卸载”在本文中也称为“隐匿”。此外,如下文更充分地阐释,由接收器300控制且由发射器200检测的卸载与加载之间的此切换提供从接收器300到发射器200的通信机制。另外,协议可与所述切换相关联,所述协议使得能够将消息从接收器300发送到发射器 200。举例来说,切换速度可为约100 μ sec。在示范性实施例中,发射器200与接收器300之间的通信是指装置感测及充电控制机制,而非常规的双向通信。换句话说,发射器200可使用所发射信号的开/闭键控来调整近场中的能量的可用性。接收器300将这些能量改变解译为来自发射器200的经编码消息。从接收器侧,接收器300使用接收天线304的调谐与去调谐来调整正从近场接受的电力的量。发射器200可检测来自近场的所使用电力的此差异,且将这些改变解译为来自接收器300的消息。接收电路302可进一步包括用以识别接收到的能量波动的信令检测器与信标电路314,所述能量波动可对应于从发射器到接收器的信息性信令。此外,信令与信标电路 314还可用以检测减小的RF信号能量(即,信标信号)的发射,并将所述减小的RF信号能量整流为标称电力,以用于苏醒接收电路302内的未供电或耗尽电力的电路,以便配置接收电路302以进行无线充电。接收电路302进一步包括用于协调本文所描述的接收器300的处理(包括对本文所描述的切换电路312的控制)的处理器316。接收器300的隐匿也可在其它事件(包括检测到向装置350提供充电电力的外部有线充电源(例如,壁式/USB电力))的发生之后即刻发生。如稍后将论述,隐匿可在无线电力发射与通信数据的接收的同步发生之后即刻且在监视并检测由无线电力发射器引起的干扰的过程中发生。除了控制接收器的隐匿外, 处理器316还可监视信标电路314以确定信标状态,并提取从发射器发送的消息。处理器 316也可为获得改进的性能而调整DC/DC转换器310。图6A到图6C展示各种状态下的接收电路的一部分的简化示意图以说明接收器与发射器之间的消息接发。图6A到图6C全部展示相同电路元件,其中差异为各个开关的状态。接收天线304包括特征性电感Li,其驱动节点350。节点350经由开关S IA选择性地耦合到接地。节点350还经由开关SlB选择性地耦合到二极管Dl及整流器318。整流器 318将DC电力信号322供应到接收装置(未图示)以对所述接收装置供电、对电池充电或其组合。二极管Dl与电容器C3及电阻器Rl —同耦合到发射信号320,发射信号320经滤波以去除谐波及非所要的频率。在图6A到图6C的示范性实施例中,可通过修改开关SlA及S2A的状态来改变经由发射器的电流汲取。在图6A中,开关SlA及开关S2A均断开,从而产生“DC断开状态”, 且实质上将负载从发射天线204去除。这减小了发射器所看到的电流。在图6B中,开关SlA闭合,且开关S2A断开,从而产生接收天线304的“DC短路状态”。因此,可使用图6B中的状态来增加发射器所看到的电流。在图6C中,开关SlA断开,且开关S2A闭合,从而产生正常接收模式(本文中也称为“DC操作状态”),其中电力可由DC输出信号322供应,且可检测到发射信号320。在图 6C中所示的状态下,接收器接收正常量的电力,因此与DC断开状态或DC短路状态相比,消耗较多或较少的来自发射天线的电力。反向链路信令可通过DC操作状态(图6C)与DC短路状态(图6B)之间的切换来实现。反向链路信令也可通过DC操作状态(图6C)与DC断开状态(图6A)之间的切换来实现。图7A到图7C展示各种状态下的替代接收电路的一部分的简化示意图以说明接收器与发射器之间的消息接发。图7A到图7C全部展示相同电路元件,其中差异为各个开关的状态。接收天线304包括特征性电感Li,其驱动节点350。节点350经由电容器Cl及开关SlB选择性地耦合到接地。节点350也经由电容器C2而AC耦合到二极管Dl及整流器 318。二极管Dl与电容器C3及电阻器Rl —同耦合到发射信号320,发射信号320经滤波以去除谐波及非所要的频率。整流器318连接到开关S2B,开关S2B与电阻器R2及接地串联连接。整流器318 还连接到开关S3B。开关S3B的另一侧将DC电力信号322供应到接收装置(未图示)以对所述接收装置供电、对电池充电或其组合。在图6A到图6C中,通过经由开关SlB选择性地将接收天线304耦合到接地来改变接收天线304的DC阻抗。相比之下,如在图7A到图7C的示范性实施例中所说明,可通过修改开关SIB、S2B及S3B的状态以改变接收天线304的AC阻抗来修改天线的阻抗从而产生反向链路信令。在图7A到图7C中,可用电容器C2来调谐接收天线304的谐振频率。 因此,可通过使用开关SlB经由电容器Cl选择性地耦合接收天线304(实质上将谐振电路改变到将在将与发射天线最佳耦合的范围之外的不同频率)来改变接收天线304的AC阻抗。如果接收天线304的谐振频率接近发射天线的谐振频率,且接收天线304处于发射天线的近场中,那么可形成耦合模式,其中接收器从辐射场106汲取显著电力。在图7A中,开关SlB闭合,其使天线去调谐且产生“AC隐匿状态”,所述“AC隐匿状态”实质上“隐匿”接收天线304,使其免于被发射天线204检测到,这是因为接收天线不在发射天线的频率下谐振。因为接收天线将不处于耦合模式下,所以开关S2B及S3B的状态对于本论述来说并不特别重要。在图7B中,开关SlB断开,开关S2B闭合,且开关S!3B断开,从而产生接收天线304 的“经调谐假负载状态”。因为开关SlB断开,所以电容器Cl不影响谐振电路,且与电容器 C2组合的接收天线304将处于可与发射天线的谐振频率匹配的谐振频率。开关S;3B断开与开关S2B闭合的组合为整流器产生相对较高的电流假负载,其将经由接收天线304汲取较多电力,这可由发射天线感测到。另外,可检测到发射信号320,因为接收天线处于从发射天
10线接收电力的状态下。在图7C中,开关SlB断开,开关S2B断开,且开关S!3B闭合,从而产生接收天线304 的“经调谐操作状态”。因为开关SlB断开,所以电容器Cl不影响谐振电路,且与电容器C2 组合的接收天线304将处于可与发射天线的谐振频率匹配的谐振频率。开关S2B断开与开关S3B闭合的组合产生正常操作状态,其中电力可由DC输出信号322供应,且可检测到发射信号320。反向链路信令可通过经调谐操作状态(图7C)与AC隐匿状态(图7A)之间的切换来实现。反向链路信令还可通过经调谐假负载状态(图7B)与AC隐匿状态(图7A)之间的切换来实现。反向链路信令还可通过经调谐操作状态(图7C)与经调谐假负载状态(图 7B)之间的切换来实现,这是因为接收器所消耗的电力量将存在差异,其可由发射器中的负载感测电路检测到。当然,所属领域的技术人员将认识到,可使用开关S1B、S2B及S;3B的其它组合来形成隐匿、产生反向链路信令及将电力供应到接收装置。另外,可将开关SlA及SlB添加到图 7A到图7C的电路以形成其它可能组合以进行隐匿、反向链路信令及将电力供应到接收装置。图8说明根据本发明示范性实施例的无线充电系统700。无线充电系统700包括无线电力充电器710及无线电力接收装置720。当耦合时,如在图1到图7中参看发射器 (104,200)及接收器(108、300)所论述,无线电力充电器710为无线电力接收装置720充电。按照图1及图2,具体参看图8,无线电力充电器710包括用于产生辐射场(例如,106) 的发射器(例如,104),所述辐射场用于提供能量传送。无线电力接收装置720包括接收器 (例如,108),所述接收器用于耦合到辐射场106且产生输出电力(例如,110),以供无线电力接收装置720存储或消耗。无线电力接收装置720可包括移动装置,例如手机、个人数字助理(PDA)、音频/视频播放器、相机、膝上型计算机,其组合,以及其中可接收无线电力的其它个人电子装置。无线电力接收装置720还可包括移动性较差的项目,例如电视机、个人计算机、DVD播放器、蓝光播放器,或可耗费或存储电力的任何其它装置。无线电力接收装置720还可包括经配置以从外部来源接收通信数据的通信信道。 发送数据的外部来源的此些实例可包括来自基站、卫星、服务器、个人计算机,或来自可与无线电力接收装置720通信的其它近旁个人电子装置。本发明的实施例可包括从多种物理层接收通信,所述物理层包括WCDMA、CDMA2000, GPS,802. llffi-Fi, LTE、高级LTE、蓝牙等。 通信数据可包括具有用于无线电力接收装置720的命令或指令的数据,或待由无线电力接收装置720中继的数据。通信数据还可包括可转换为待由人类感知的音频或视觉信号的数据信号,或由无线电力接收装置720接收的其它此类通信数据。举例来说,在无线通信系统中,无线通信装置可被相关联基站寻呼以起始通信。此些无线通信装置可配置为无线电力接收装置720,然而,此实例的目的是说明一般无线通信系统框架内的寻呼。因而,对经由无线通信链路接收通信的无线通信装置进行一般参考。换句话说,如果如本文中所使用的无线通信装置照此配置,那么所述无线通信装置包括无线电力接收装置720。借助于实施基站对无线通信装置的此寻呼,基站可在下行链路上具有称作寻呼信道的信道。在示范性寻呼布置中,寻呼信道可再分为多个寻呼时隙。可向一组无线通信装置分配一具有规定周期性的用于接收来自相关联基站的寻呼消息的寻呼时隙。可预期每一无线通信装置在这些寻呼时隙期间监视以寻找来自相关联基站的寻呼消息。可使寻呼时隙的周期性足够长,从而使得无线通信装置中的每一者可在指定寻呼时隙之间有效地关掉多数无线通信装置的电路,且因此节省能量。在此些寻呼时隙之间关掉电路称为无线通信装置进入所谓的“休眠”模式。即使处于休眠模式,无线通信装置仍可跟踪接收到的寻呼时隙。 可致使无线通信装置在无线通信装置的指定寻呼时隙到达之前“苏醒”,调谐到下行链路信道,且实现载波、定时器及帧同步。无线通信装置可接着解码寻呼时隙。如果无线通信装置的识别符包括在无线通信装置的指定寻呼时隙中,那么无线通信装置可知晓寻呼消息意在用于所述特定无线通信装置。无线通信装置可接着采取寻呼消息中所指示的适当行动。如果寻呼消息无意用于所述特定无线通信装置,那么无线通信装置返回休眠模式,且等待接收寻呼时隙。此些寻呼时隙可受到因无线电力发射器与接收器对的耦合而产生的能量场的干涉。另外,在例如无线电话呼叫等正在进行的通信发射期间,数据包可经由可用通信信道发射到无线通信装置。实际呼叫期间的这些数据包发射也可能受到由无线电力发射器与接收器对的耦合产生的能量场的干涉。如果无线通信装置正在通信,同时在充电场内 (例如,扬声器电话、经由蓝牙装置路由的呼叫等),那么此呼叫可发生。为了减小通过无线电力耦合或通常通过由无线电力发射器产生的辐射场而产生的干扰的影响,无线充电系统700可经配置以检测由无线电力充电器710在接收器处引起的干扰的存在。举例来说,无线电力接收装置720可监视无线电力接收装置720的通信信道,例如接收寻呼时的寻呼指示符信道(PICH)上或呼叫期间无线电力接收装置720的前向链路及下行链路通信信道上。监视通信信道以寻找干扰的一个量度为测量PICH的能量干涉比或前向链路信道的信噪比。如果这些比率中的一者降到令人满意的阈值以下,那么无线电力接收装置720可能正经历由无线电力充电器710引起的干扰。为了更确信无线电力充电器710为干扰的显著贡献者,可充分减小或甚至完全关断无线电力充电器710与无线电力接收装置720之间的无线电力耦合的耦合电平,因此无线电力充电系统700可经配置以重新测量通信信道处的干涉或噪声。可如先前所描述通过隐匿(例如,通过去调谐)接收器(例如,108)的天线来减小或关断无线电力耦合电平。在所述情况下,来自无线电力充电器710的发射器(例如,104) 仍可能产生辐射场(例如,106),其可能不完全消除无线电力充电器710的干扰效应。然而,在多个无线电力接收装置正由同一无线电力充电器710同时充电的情况下,去调谐接收器中的天线可能是合乎需要的。通过简单地去调谐接收器中的天线,可减小或消除无线电力充电器710的干涉效应中的一些,同时还允许其它现有无线电力接收装置保持于充电状态。另外或在替代方案中,可将命令发射到无线电力充电器710以减小由无线电力充电器710的发射器产生的辐射场的电力电平或关断由无线电力充电器710的发射器产生的辐射场。所述命令可从无线电力接收装置720发射。或者,不同装置(未图示)可将此命令发送到无线电力充电器710。在无线电力耦合处于减小的电平的情况下,如果重新测量到的干扰测量保持在令人满意的阈值以下,那么无线充电系统700可确定无线电力耦合并非无线电力接收装置 720所经历的干扰的贡献者(或至少并非唯一贡献者)。然而,如果重新测量到的干扰测量在无线电力耦合断开或减小的情况下增加到令人满意的电平之上,那么无线充电系统700 可确定无线电力发射实际上为无线电力接收装置720所经历的干扰的主要贡献者。在所述情况下,无线充电系统700可进一步经配置以使无线电力充电器710与无线电力接收装置 720之间的无线电力耦合同步。同步可通过以下操作而发生在无线电力接收装置720未预期通信数据时的时间使无线电力耦合维持在第一电平,且在无线电力接收装置720预期将发送或接收通信数据时的时间间隔期间减小无线电力耦合电平。预期通信数据的此些时间间隔可在(例如)“苏醒”时以接收寻呼时隙,但也用于在通信链接期间(例如,在呼叫期间)发射数据包。如所属领域的技术人员将理解,预期通信数据的其它实例可包括FDD LTE系统中的所指派的下行链路符号时间或TDD系统(例如,GSM, LTE TDD及TD-SCDMA)中的接收时隙。同步可包括使无线电力充电器710与无线电力接收装置720去耦,其可包括使无线电力接收装置720 的接收器天线去调谐、“屏蔽(mute) ”无线电力充电器710的发射器,或其任何组合。屏蔽发射器可包括减小由无线电力充电器710的无线电力发射器产生的辐射场的强度;或在无线电力接收装置720的通信的所要时间间隔期间完全关掉发射器。因此,无线电力接收装置720可经配置以向发射器发布命令,以在无线电力接收装置720将要在无线电力接收装置720的通信信道上接收数据时的时间周期内停止发射。换句话说,无线电力接收装置720可控制无线电力充电器710的无线电力发射器以在这些关键的通信时间屏蔽发射电力。不同装置可将此些命令发送到无线电力充电器710。在另一示范性实施例中,可在寻呼信道时隙期间经由预测充电来屏蔽无线电力发射器。在预测充电期间,当无线电力接收装置720正被充电时,无线电力接收装置720的寻呼信道时隙信息可预先存储在无线电力充电器710中。这可减小对无线电力充电器710与无线电力接收装置720或不同装置之间的连续通信的需要。因此,在本发明的示范性实施例中,无线电力充电系统700可经配置以用于检测无线电力接收装置720中的干扰情况。无线电力充电系统700可进一步经配置以使无线电力充电器710的无线电力发射器与无线电力接收装置720的无线电力接收器之间的无线电力耦合同步,以便较少或消除由无线电力发射器所产生的场引起的干扰。图9说明根据本发明实施例的减小接收器的干扰效应的方法的流程图400。检测无线电力接收装置的干扰情况001)。干扰可为由谐波能量、互调制产物、高电压或基带耦合引起的干涉的结果。检测干扰情况可包括监视无线电力发射器对通信信道的能量或信号强度的干扰效应(与所述信道上的干涉或噪声相比较)。可使无线电力充电器710中的无线电力发射器与无线电力接收装置720上的无线电力接收器之间的耦合(例如,无线电力发射/接收)与无线电力接收装置接收或发射通信数据同步002)。此同步可响应于存在对无线电力接收装置720的干扰情况的确定。同步402可包括在无线电力接收装置720上的预期通信数据交换的时间间隔期间(例如,在寻呼周期期间或在正在进行的呼叫的包交换期间)减小无线电力耦合。减小无线电力耦合可包括使无线电力接收装置720的无线电力天线去调谐、减小来自无线电力发射器的辐射场,关掉无线电力发射器,或其任何组合。
图10说明根据本发明示范性实施例的展示用于减小由无线电力发射器引起的对无线电力接收装置720的干扰的方法的流程图405。监视(410)对无线电力接收装置720 的干扰的存在。在示范性实施例中,无线电力接收装置720可监视例如PICH等通信信道, 或例如共用导频信道(CPICH)等导频信道,以寻找无线电力接收装置720的载波能量与干涉能量比(Ec/Io)。在另一实例中,在呼叫情形期间,装置可监视链路的质量,以了解在数据包的发射期间是否存在降级的载波噪声比。作出在装置处是否存在干扰的决策020)。继续监视PICH的Ec/Io比的以上实例, 存在针对未受干扰的情况的预期典型值。因此,关于干扰是否存在的决策可基于确定Ec/Io 比是否已降到预定义可接受阈值电平以下。如果Ec/Io比降到预定义阈值电平以下,那么已识别出干扰的存在。Ec/Io比的此阈值电平可设定为(例如)约-16dB。类似地,可为呼叫情形期间经降级的载波噪声比设定阈值。如果在接收器处不存在干扰,那么对无线电力接收装置720的针对干扰的监视 (410)可继续。如果干扰存在,那么可实施另一测试以检测干扰是否正由无线电力发射器引起,或干扰是否为环境中的另一干扰装置的结果。换句话说,干扰的初始确定可仅为关于干扰的存在的确定,且不必为关于干扰源的确定。举例来说,其它干扰影响可能存在于环境中。因此,如果已确定(420)干扰的存在,那么无线电力发射器可仅被识别为干扰中的可疑者ο为了确定无线电力发射器是否为干扰的显著起因,减小(430)无线电力接收器与无线电力发射器之间的无线电力耦合链路(即,无线电力耦合处于减小的耦合电平)。减小无线电力耦合链路可通过屏蔽无线电力发射器(例如减小所产生的辐射场106的强度)或通过关掉发射器持续一时间周期而发生。替代地或另外,无线电力接收器的天线304(图6 到图7)可经去调谐以减小或消除无线电力发射器与无线电力接收器之间的无线耦合。使无线电力接收器的天线304去调谐可具有隐匿无线电力接收器并减小到无线电力接收装置的所接收电力的效应。接收器处的部分隐匿也可通过向整流器二极管加反偏压并减小内部干涉来减小无线电力耦合。作为另一实例,可向接收器二极管加反偏压以减小无线电力華禹合。在接收器300与发射器200断开或处于减小的耦合模式时的时间期间,作出在无线电力接收装置720处是否仍存在干扰的确定040)。在PICH情况下继续以上实例,可重新测量Ec/Io,且将其与预定阈值电平(例如,-16dB)进行比较,以确定是否仍存在干扰。 在传入呼叫情形下,可重新测量载波噪声比的降级,以确定减小无线电力耦合电平是否已补救前向链路问题。如果干扰仍存在(例如,Ec/Io仍在示范性预定义-16dB阈值以下),那么作出无线电力充电器710并非对装置的干扰的起因(或至少并非对装置的干扰的主要贡献者) 的确定G50)。可接着增加(480)无线电力接收器与无线电力发射器之间的无线电力耦合链路以恢复以增加的无线电力耦合电平充电,且无线电力接收装置720可接着返回以监视 (410)干扰的存在。在所述情况下,此返回以监视可在某一经延迟的时间周期之后发生。无线电力接收装置720可替代地完全退出此监视回路。如果干扰在无线电力耦合链路断开或处于经减小的耦合模式的情况下已不存在 (例如,Ec/Io已移到示范性预定义_16dB阈值以上),那么作出无线电力充电器是对装置的干扰的起因(或至少是对装置的干扰的主要贡献者)的确定G60)。在所述情况下,在无线电力接收装置720处的通信数据接收的时间期间,周期性减小(470)无线电力充电器710 与无线电力接收装置720的无线电力耦合链路(即,无线电力耦合处于减小的耦合电平)。 处于减小的无线电力耦合电平可包括无线电力充电器710与无线电力接收装置720之间的无线电力发射/接收的完全断开或去耦。举例来说,可指令无线电力发射器被屏蔽,包括在寻呼信道时隙(例如,PICH时隙)期间减小电力发射或被关掉。在示范性实施例中,无线电力发射器可(例如)经由负载调制与无线电力接收装置720通信以减小无线电力耦合。或者,内部处理器(例如,图4 的214)可基于从无线电力接收装置720接收到的指令或者基于从另一实体接收到的指令而控制无线电力发射器被屏蔽。另外,可通过使无线电力接收装置720的无线电力天线去调谐来实现减小的无线电力耦合电平。对于动作430及440,可能需要首先尝试通过使无线电力接收装置720的无线电力天线去调谐来减小耦合。如果在无线电力接收器自身中产生干扰谐波,或如果谐波在无线电力接收器接通时较强地耦合,那么使无线电力接收装置720的无线电力天线去调谐可提供干扰的足够减小以解决个别无线电力接收装置中的干扰情况。通过使无线电力接收装置720的无线电力天线去调谐来实现干扰的足够减小将是有益的,因为将在不干涉由无线电力发射器产生的场的情况下实现减小干扰。当存在可接着接收较多连续且高效的电荷的多个无线电力接收装置时,以此方式减小干扰可为有益的。使无线电力接收装置720的无线电力天线去调谐也可为有利的,因为使无线电力接收装置720的无线电力天线去调谐可减小维持与无线电力充电器710的双向数据传送的负担。然而,在一些情况下,使无线电力接收装置720的无线电力天线去调谐可能并非足够或合意的。在所述情况下,可另外使用屏蔽无线电力发射器,或在替代方案中,使无线电力接收装置720的无线电力天线去调谐。为了说明各种实施例的效率,可使用不同计算。在存在仅一个装置的实施例中,无线电力发射器的屏蔽可允许装置的约99%的充电率,同时仍接收寻呼。举例来说,在不连续接收循环(DRX)中,装置可每隔1. 秒苏醒以此,且解调PICH。1. 秒可为所推荐的近似系统设定,但所述时间间隔可为可设定的系统参数,其可视系统及服务提供商的要求而改变。接收寻呼并解调寻呼的持续时间可为约6msec。因此,DRX模式期间寻呼可进行的时间的百分比可为约6/1280或约0.5%的时间。此百分比也可为无线电力耦合可减小或关断以防止来自无线电力发射器的干扰的时间百分比,其可导致无线电力接收装置720的约99% 的充电率。在另一示范性实施例中,当存在多个无线电力接收装置720时,与具有仅一个此装置的情况相比,可能存在稍低的充电率。举例来说,在具有五个无线电力接收装置720的情况下,DRX模式可允许约97%的时间的充电。寻呼时隙对于无线电力接收装置720中的每一者的一者或一者以上可为不同的。在所述情况下,每一装置的屏蔽概率与彼此无关地保持为约6/1280。然而,因为寻呼时隙在不同无线电力接收装置720之间可能并不同步,所以无线电力发射器对于五个示范性装置中的每一者可能在不同时间屏蔽,其组合可具有约 97%的充电率。当然,这是假定无线电力发射器经屏蔽以产生减小的辐射场或被完全关掉持续必需的时间周期的实施例。然而,如果在预期通信时间期间通过使受干扰的无线电力接收装置的天线去调谐来减小一个或一个以上无线电力接收装置的干扰为足够的,那么无
15线电力发射器可保持接通,并为其它无线电力接收装置720提供无线电力,所述其它无线电力接收装置720并未正受到干扰或并未处于其通信模式。无线电力接收装置720可使用其订户身份(例如国际移动订户身份(IMSI))来计算其寻呼时机。服务提供商可决定将参数设于何处。本文中所使用的特定值应被看作示范性的。每一服务提供商可选择例如寻呼的持续时间及周期性、可容许的干涉等级以及不可接受的干涉等级等参数。因此,服务提供商可能够基于服务提供商的所要寻呼要求及可接受的干涉值来确定充电率。换句话说,可在已知的周期性时间将寻呼提供给无线电力接收装置720,服务提供商可基于服务提供商的自身偏好以及寻呼及无线充电的要求而更改所述时间。对于传入呼叫干扰,充电系统可能是不太高效的,因为可能要求无线电力接收装置720在通信链路上接收数据包持续大于接收寻呼所需的时间量的时间周期。在一些情况下,可能需要在整个呼叫期间而非仅在数据包发射/接收的时刻使充电(即,无线电力耦合链路)减小或甚至完全断开。此方法在无线电力接收器的操作期间可为连续的,然而,一旦无线电力接收器检测到无线电力接收器在无线电力发射器的近场中,就可起始所述方法。在所述情况下,一旦辨识到无线电力耦合,无线电力接收装置720就可开始监视以了解无线电力发射器或无线电力发射器与无线电力接收器的组合是否正引起对无线电力接收装置720的干扰。一旦将无线电力接收装置720从充电场去除,无线电力接收装置720就可辨识到无线电力发射器很可能并非干扰的起因,且无线电力接收装置720可停止监视与由无线电力充电器710的发射器产生的辐射场有关的干扰。另外,如果补救对无线电力接收装置720的干扰的尝试不成功,那么无线电力接收装置720可停止监视持续一时间周期,且保持于连续充电场中直到被物理去除为止。无线电力接收装置720可经配置以在足够长的时间周期之后再次监视,以了解情况是否已改变,其可准许对干扰进行补救。如果已确定无线电力充电器710的干扰情况,且无线电力充电器710及无线电力接收装置720的耦合周期性地减小(例如,与无线电力接收装置720的通信发射/接收同步),那么可能需要周期性地重新测试以了解干扰的情况是否已改变。在此情况下,可能需要退出,且在动作410处重新开始,并监视干扰的存在。重新测试的周期可为标准周期,但也可为视不同服务提供商而可变的。周期性地重新测试可较佳地最大化用无线电力为一个或一个以上无线电力接收装置充电的时间百分比。本文中所描述的方法适用于多种通信标准,例如⑶MA、WCDMA, OFDM,802. 11、GPS、 蓝牙、LTE、高级LTE等。所属领域的技术人员将理解,可使用多种不同技术及技法中的任一者来表示信息及信号。举例来说,可通过电压、电流、电磁波、磁场或磁粒子、光场或光粒子,或其任何组合来表示可能贯穿此详细描述所提到的数据、指令、命令、信息、信号、位、符号及码片。所属领域的技术人员将了解,结合本文中所揭示的示范性实施例而描述的各种说明性逻辑块、模块、电路及算法步骤可实施为电子硬件、计算机软件或两者的组合。为了清楚地说明硬件与软件的这种可互换性,已在上文大体按其功能性而描述了各种说明性组件、块、模块、电路及步骤。将此功能性实施为硬件还是软件取决于特定应用及强加于整个系统上的设计约束。所属领域的技术人员对于每一特定应用可以不同的方式实施所描述的功能性,但此些实施决策不应被解释为引起与本发明的示范性实施例的范围的偏离。可用经设计以执行本文中所描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件,或其任何组合来实施或执行结合本文中所揭示的示范性实施例而描述的各种说明性逻辑块、模块及电路。通用处理器可为微处理器,但在替代方案中,处理器可为任何常规处理器、控制器、微控制器或状态机。处理器还可实施为计算装置的组合,例如 DSP与微处理器的组合、多个微处理器的组合、结合DSP核心的一个或一个以上微处理器, 或任何其它此类配置。结合本文中所揭示的示范性实施例而描述的方法或算法的步骤可直接包含于硬件中、由处理器执行的软件模块中或所述两者的组合中。软件模块可驻留在随机存取存储器(RAM)、快闪存储器、只读存储器(ROM)、电可编程ROM(EPROM)、电可擦除可编程 ROM(EEPROM)、寄存器、硬盘、可装卸盘、CD-ROM或此项技术中已知的任何其它形式的存储媒体中。示范性存储媒体耦合到处理器,使得处理器可从存储媒体读取信息,并将信息写入到存储媒体。在替代方案中,存储媒体可与处理器成一体式。处理器及存储媒体可驻留在 ASIC中。ASIC可驻留在用户终端中。在替代方案中,处理器及存储媒体可作为离散组件驻留在用户终端中。在一个或一个以上示范性实施例中,所描述的功能可以硬件、软件、固件,或其任何组合来实施。如果以软件来实施,那么所述功能可作为一个或一个以上指令或代码存储在计算机可读媒体上或经由计算机可读媒体而传输。计算机可读媒体包括计算机存储媒体及通信媒体两者,通信媒体包括促进将计算机程序从一处传送到另一处的任何媒体。存储媒体可为可由计算机存取的任何可用媒体。作为实例而非限制,此计算机可读媒体可包含 RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置,或可用以运载或存储呈指令或数据结构形式的所要程序代码且可通过计算机存取的任何其它媒体。而且,严格地说,可将任何连接均称为计算机可读媒体。举例来说,如果使用同轴电缆、 光纤电缆、双绞线、数字订户线(DSL),或例如红外线、无线电及微波等无线技术从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤电缆、双绞线、DSL,或例如红外线、无线电及微波等无线技术包括在媒体的定义中。在本文中使用时,磁盘及光盘包括压缩光盘(CD)、 激光光盘、光学光盘、数字多功能光盘(DVD)、软性磁盘及蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘使用激光以光学方式再现数据。上述各项的组合也应包括在计算机可读媒体的范围内。提供对所揭示示范性实施例的先前描述以使得所属领域的技术人员能够制作或使用本发明。对这些示范性实施例的各种修改对于所属领域的技术人员来说将是显而易见的,且在不脱离本发明的精神或范围的情况下,本文所定义的一般原理可应用于其它实施例。因此,本发明无意限于本文所展示的实施例,而是应被赋予与本文所揭示的原理及新颖特征一致的最宽范围。
权利要求
1.一种方法,其包含在第一无线通信装置的非通信周期期间,以耦合电平耦合无线电力充电器与所述第一无线通信装置之间的无线电力;以及在所述第一无线通信装置的通信周期期间,以减小的耦合电平耦合所述无线电力充电器与所述第一无线通信装置之间的无线电力。
2.根据权利要求1所述的方法,其进一步包含检测所述第一无线通信装置中由所述无线电力充电器所产生的辐射场引起的干扰。
3.根据权利要求2所述的方法,其中检测干扰包括监视以寻找所述第一无线通信装置中的干扰;以减小的耦合电平耦合无线电力;以及在所述耦合无线电力处于所述减小的耦合电平时的周期期间,监视以寻找所述第一无线通信装置中的干扰。
4.根据权利要求3所述的方法,其中所述监视以寻找干扰包括监视所述第一无线通信装置的寻呼信道的能量干涉比。
5.根据权利要求3所述的方法,其中监视以寻找干扰包括在经由通信信道与所述第一无线通信装置通信期间监视信噪比。
6.根据权利要求4所述的方法,其中当所述寻呼信道的所述能量干涉比小于预定阈值时,确定检测到干扰。
7.根据权利要求5所述的方法,其中当所述通信信道的所述信噪比小于预定阈值时, 确定所述检测到干扰。
8.根据权利要求1所述的方法,其中以减小的耦合电平耦合所述无线电力充电器与所述第一无线通信装置之间的无线电力包括使与所述第一无线通信装置的无线电力接收器相关联的天线去调谐。
9.根据权利要求1所述的方法,其中以减小的耦合电平耦合所述无线电力充电器与所述第一无线通信装置之间的无线电力包括减小由所述无线电力充电器产生的辐射场的电力电平。
10.根据权利要求9所述的方法,其中减小由所述无线电力充电器产生的所述辐射场的所述电力电平包括停用由所述无线电力充电器产生的所述辐射场的发射。
11.根据权利要求1所述的方法,其进一步包含在第二无线通信装置的非通信周期期间,以所述耦合电平耦合所述无线电力充电器与所述第二无线通信装置之间的无线电力;以及在所述第二无线通信装置的通信周期期间,以减小的耦合电平耦合所述无线电力充电器与所述第二无线通信装置之间的无线电力。
12.根据权利要求11所述的方法,其进一步包含以所述耦合电平耦合所述无线电力充电器与所述第一无线通信装置之间的无线电力,同时以所述减小的耦合电平耦合所述无线电力充电器与所述第二无线通信装置之间的无线电力。
13.一种无线通信装置,其包含无线电力接收器,其经配置以从无线电力充电器的无线电力发射器接收无线电力;通信信道,其经配置以接收通信数据;以及处理器,其经配置以用于在于所述通信信道上接收通信数据期间,将所述无线电力接收器与所述无线电力发射器之间的无线电力耦合减小到减小的耦合电平。
14.根据权利要求13所述的无线通信装置,其中所述处理器进一步经配置以确定因所述无线电力发射器所产生的辐射场而导致的干扰情况,且其中当所述干扰情况存在时,减小无线电力耦合在接收通信数据期间发生。
15.根据权利要求13所述的无线通信装置,其中所述处理器经配置以用于通过使与所述无线电力接收器相关联的天线去调谐来减小无线电力耦合。
16.根据权利要求13所述的无线通信装置,其中所述处理器经配置以用于通过将命令发射到所述无线电力充电器以减小由所述无线电力发射器产生的辐射场来减小无线电力華禹合。
17.根据权利要求16所述的无线通信装置,其中所述命令经配置以抑制所述无线电力发射器所产生的所述辐射场。
18.根据权利要求13所述的无线通信装置,其中所述通信信道包含寻呼信道,且通信数据的接收在寻呼时隙期间发生。
19.根据权利要求13所述的无线通信装置,其中通信数据的接收包括在所述通信信道上的通信期间接收数据包。
20.根据权利要求13所述的无线通信装置,其中所述通信信道经配置以从与外部装置的通信链路接收通信数据,所述外部装置包括以下各项中的至少一者基站、卫星、服务器、 个人计算机及个人电子装置。
21.根据权利要求20所述的无线通信装置,其中所述通信链路是根据以下各项中的至少一者而配置CDMA、WCDMA、0FDM、802. 11、GPS、蓝牙、LTE、高级LTE及近场通信链路。
22.一种无线电力充电器,其包含无线电力发射器,其经配置以用于产生辐射场以用于与无线电力接收装置的无线电力接收器耦合;以及处理器,其与所述无线电力发射器通信,其中所述处理器经配置以用于在所述无线电力接收装置正接收通信数据时,减小由所述无线电力发射器产生的所述辐射场的电力电平。
23.根据权利要求22所述的无线电力充电器,其中减小由所述无线电力发射器产生的所述辐射场的所述电力电平在对所述无线电力接收装置的干扰期间发生。
24.根据权利要求22所述的无线电力充电器,其中所述处理器经配置以用于通过抑制所述无线电力发射器所产生的所述辐射场来减小所述无线电力发射器所产生的所述辐射场的所述电力电平。
25.根据权利要求22所述的无线电力充电器,其进一步包括与所述处理器通信的接收天线,其中所述接收天线经配置以用于从外部装置接收命令,所述命令用于控制所述无线电力发射器所产生的所述辐射场的所述电力电平的所述减小。
26.根据权利要求22所述的无线电力充电器,其中所述处理器进一步经配置以控制在所述无线电力接收装置接收通信数据的预测时间期间所述无线电力发射器所产生的所述辐射场的所述电力电平的所述减小。
27.根据权利要求沈所述的无线电力充电器,其中所述无线电力接收装置接收通信数据的预测时间在所述无线电力接收装置的经指派寻呼期间发生。
28.根据权利要求25所述的无线电力充电器,其中所述外部装置为所述无线电力接收直ο
29.一种设备,其包含用于在第一无线通信装置的非通信周期期间以耦合电平耦合无线电力充电器与所述第一无线通信装置之间的无线电力的装置;以及用于在所述第一无线通信装置的通信周期期间以减小的耦合电平耦合所述无线电力充电器与所述第一无线通信装置之间的无线电力的装置。
全文摘要
示范性实施例是针对减小由无线电力发射器所产生的辐射场引起的干扰。示范性实施例包括检测因来自充电装置的无线电力发射器的辐射场而导致的对无线电力接收装置的干扰情况。此些实施例包括使无线电力耦合与所述无线电力接收装置的通信同步。使无线电力耦合同步可包括在预期所述无线电力接收装置在通信信道上接收信号时,以第一电平进行无线电力耦合。使无线电力耦合同步可进一步包括在未预期所述无线电力接收装置在所述通信信道上接收信号时,以较高速率进行耦合。
文档编号H02J7/02GK102224653SQ200980146520
公开日2011年10月19日 申请日期2009年11月23日 优先权日2008年11月21日
发明者斯坦利·S·通丘, 菲利普·D·科恩 申请人:高通股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1