基于合作博弈理论的安全和经济协调的自动电压控制方法

文档序号:7464610阅读:124来源:国知局
专利名称:基于合作博弈理论的安全和经济协调的自动电压控制方法
技术领域
本发明属于电力系统运行和控制技术领域,特别涉及一种基于合作博弈理论的安全和经济协调的自动电压控制方法。
背景技术
自动电压控制(Automatic Voltage Control, AVC)系统是实现电网安全、经济、优质运行的重要手段,其基本原理是通过协调控制发电机无功出力、变压器分接头、无功补偿设备,实现电网内无功电压的合理分布,以提高电压稳定裕度、降低网络损耗、提高电压合格率等。确定协调控制指令的主要手段是求解最优潮流(Optimal Power Flow,0PF)模型。随着电网调度运行对安全性要求的不断提高,自动电压控制过程中除需考虑电力系统的基态安全性外,其控制结果还需满足静态安全性的要求。由此引入了考虑安全约束的最优潮流(Security Constrained Optimal Power Flow, SC0PF)模型,以同时考虑电力系统的安 全性和经济性,得到满足静态安全性要求的自动电压控制指令。一个典型的安全和经济协调的自动电压控制方法,其具体实施步骤为I、构造电力系统的考虑静态安全约束的最优潮流(Security ConstrainedOptimal Power Flow, SC0PF)模型,如式(I)min f (x0, u0)s. t. g0 (x0, U0) =0gk (xk, U0) =0u < H0 < Ti (16)x < .Vn < xXc < Xk < Xck=l,. . . , Nc式中变量下标k为电力系统运行状态标号,k=0表示正常运行状态(或称故障前状态),k=l,. . . , Nc表示第k个预想故障(为研究电力系统故障对电力系统安全运行产生的影响,而预先设定的电力系统元件(如线路、变压器、发电机、负荷、母线等)的故障及其组合)状态,N。为预想故障个数;U(I为控制变量向量,X0为正常运行状态的状态变量向量,Xk为第k个预想故障状态的状态变量向量;控制变量的值在正常运行状态和预想故障状态下通常保持不变,如发电机的机端电压幅值等;状态变量的值在正常运行状态和预想故障状态下通常不同,其值由电力系统结构和控制变量的值所决定,如负荷母线和联络母线的电压幅值、发电机的无功出力、各母线的电压相角等;目标函数f(X(l,Utl) —般为电力系统有功网损,约束方程go (x。,u0) =0为电力系统正常运行状态潮流方程,gk (xk, u0) =0为第k个预想故障状态下电力系统的潮流方程为控制变量的下限向量、上限向量,2[、无为正常运行状态下状态变量的下限向量、上限向量,为预想故障状态下状态变量的下限向量、上限向量。2、对考虑静态安全约束的最优潮流模型进行求解,得到自动电压控制指令。3、根据得到的自动电压控制指令,对电力系统实施自动电压控制。
这种典型的安全和经济协调的自动电压控制方法,由于其数学模型规模巨大,在实际自动电压控制的实施中往往求解困难,基本无法在满足在线实施要求的时间内求解;同时由于其严格的故障后安全性约束,可能使得模型(16)优化可行域为空,不存在可行解,此时无法得到可用的自动电压控制指令;另外该方法难以灵活扩充不同的安全约束限制。因此这种典型的安全和经济协调的自动电压控制方法难以应对自动电压控制的在线实施的要求。

发明内容
本发明的目的旨在至少解决上述技 术缺陷之一,提出一种新的基于合作博弈理论的安全和经济协调的自动电压控制方法,本方法大大降低了模型规模和求解难度,计算耗时可满足自动电压控制的在线实施的需要;同时在安全约束要求严苛、模型(16)无解时,也可给出一个权衡了经济和安全的协调解,以提供自动电压控制指令;另外该方法可以灵活扩充考虑各种不同的安全性约束,如预想故障状态的静态电压稳定性等。为达到上述目的,本发明提出的基于合作博弈理论的安全和经济协调的自动电压控制方法,其特征在于,该方法包括以下步骤I)建立电力系统的多目标无功电压优化模型,如式⑵min EI (u0, X0)min 、■/() 丨,L i s. t. g0 (u0, x0) =0gk (u0, xk) =0(17) < H0 < x < X0 < x57(.v L , X^) < SImsek=l, ,Nc其中EI为电力系统的经济性指标,SI为电力系统的安全性指标,SIb㈣为自动电压控制指令实施前电力系统的安全性指标。2)将多目标无功电压优化模型⑵分解为经济模型和和安全模型,其中经济模型如下min EI (u0, X0)s. t. g0 (u0, x0) =0(18)u + e^u^u+^X + ex < X0 <x + sx其中三_1、%、三£、€分别为对应11、5\2[、无的松弛向量;安全模型如下min .SY (x,, L v )s. t. gk (u0, xk) =0(19)
SHxlX ...xx )<SIBmek=l,.. . , Nc3)对经济模型和安全模型基于合作博弈理论进行求解,得到自动电压控制指令;4)根据得到的自动电压控制指令,对电力系统实施自动电压控制。本发明的方法与传统的安全和经济协调的自动电压控制方法相比,至少具有以下优点I.大大降低了安全和经济协调的自动电压控制计算模型的规模和求解难度在博弈模型求解过程中,经济模型只是一个简单的最优潮流模型,安全模型求解的计算量很小,与传统方法相比,计算难度大大降低;2.适用于各种不同的安全约束条件在安全性要求不苛刻时,可得到与传统方法 相同或相近的自动电压控制指令,而在安全性要求苛刻、传统模型无解时,也可给出权衡了经济和安全的协调解,以提供自动电压控制指令;3.可灵活考虑各种不同的安全性要求除静态安全性外,如需考虑其他安全性要求,如预想故障状态下的静态电压稳定性等,只需调整安全模型求解的具体方法,给出满足各种安全性要求的安全限值即可。


图I为本发明一个实施例应用在2节点电力系统的系统模型图。
具体实施例方式下面结合附图及实施例详细描述本发明的内容及特点。实施例中的条件数据是示例性的,仅用于解释本发明,而不能对本发明的保护范围的限制。本发明的基于合作博弈理论的安全和经济协调的自动电压控制方法,该方法建立多目标无功电压优化模型,并基于合作博弈理论对该模型进行求解,以同时寻求电力系统经济性和安全性的最优化,给出合理的自动电压控制指令;该方法包括以下步骤I)建立电力系统的多目标无功电压优化模型,如式(2):min EI (u0, X0)mill ‘S7(a-;.L)s. t. g0 (u0, x0) =0gk (u0, xk) =0(20)H < H0 < TlX < .v() < \^/(X1,L ,xNc)<SIB3Sek=l, ,Nc其中EI为电力系统的经济性指标,SI为电力系统的安全性指标,SIb㈣为自动电压控制指令实施前电力系统的安全性指标。2)将多目标无功电压优化模型(20)分解为经济模型和和安全模型,其中经济模型如下
min EI (u0, x0)s. t. g0 (u0, x0) =0(21)E +Eu < 0 <u+eHx+ Sx < X0 <x + ex其中丄u、《、丄x、&分别为对应ui、2L、无的松弛向量;安全模型如下niin .S7(.v,,L .a\.)
s. t. gk (u0, xk) =0(22)^'/(JCpL ,Xx )< Slii^k=l, ,Nc3)对经济模型和安全模型基于合作博弈理论进行求解,得到自动电压控制指令;4)根据得到的自动电压控制指令,对电力系统实施自动电压控制。上述步骤I)建立电力系统的多目标无功电压优化模型包含以下步骤( 1-1)建立电力系统经济性指标计算公式EI=Ploss (x0, U0)(23)其中Lss为电力系统有功网损函数(即将电力系统正常运行状态的有功网损作为电力系统的经济性指标);(1-2)建立电力系统安全性指标计算公式;安全性指标取下列各式之一(或其他合理的方式)进行计算SI = max ||r5(xK )|| o = max max o{xt ,)(24)81 = max= max (25)SI = XIKx<t)|li =(26)
kk I其中3( )= [J(xu),L ,^(xa),L ,外, 6 (Xi,k)为 xk 中第 i 个分量 Xi,k 的越限量,nx为xk中元素的个数。5 Ui k)通常可取Xi,k的越上限量,越下限量,或越限量5(xj k) = max, o|(27)S(xt k) = max {X^l - Xik, oj(28)S(xi ;J = max{xi i;-X - < _' ' o}(29)(1-3)以步骤(1-1)和(1-2)建立的计算公式为优化目标建立多目标无功电压优化模型,如式(12)min EI (u0, X0)min SJ(X1,L , Xhfr)s. t. g0 (u0, x0) =0gk (u0, xk) =0(30)
H<H0<HX ^ A'n ^SI(X1,L ,xNr)<SlB35ek=l, ,Nc上述步骤3)对经济模型和 安全模型基于合作博弈理论进行求解,得到自动电压控制指令包含以下步骤(3-1)令t=l,其中t为博弈周期的序号,t G Z ;(3-2)令 M(t) = U,u{t) = u , x(t) = x,x^ = X 0(3-3)求解经济模型,如式(13),得到经济模型的解(Utl(Wt));具体求解过程为min EI (u0, x0)s. t. g0 (u0, x0) =0(31)u(t) +etl < H0 < H(r) + etix(f> + Sx < X0 < x(t) + Ex(3-31)令_1^ = 0,e =0, _^_x = 0, %=0;(3-32)求解经济模型,若有解,得到经济模型的解(Utl(Wt)),转到步骤(3-4);否则继续;(3-33)增加iu,^,丄x,€(根据自动电压控制计算所针对的电力系统的规模不同,每次的增加量可在区间(0,0.05]进行取值),转到步骤(3-32)。(3-4)当 t>l 时,若 d1” 彡 tol,且 XoW_Xo(H)彡 tol(tol 为收敛判据,根据自动电压控制计算所针对的电力系统的规模不同,可在10+10_2之间进行取值),转到步骤(3-8),否则继续;(3-5)以经济模型的解作为电力系统的基态,进行静态安全分析(以当前潮流结果作为电力系统的基态,模拟电力系统故障发生后的潮流结果,以此来预知电力系统是否存在安全隐患,判断在发生预想故障后电力系统变量是否会出现越限的功能),若静态安全分析结果中安全监视变量(安全监视变量指在电力系统调度运行中监视的一些变量,在静态安全分析的结果中,只关心这些变量在预想故障状态的值是否越限)的值无越限(或越限量小于电力系统运行可允许的最大越限量,可允许的最大越限量可根据实施自动电压控制的电力系统的实际情况和相关安全运行导则(如《电力系统安全稳定导则》)中的要求确定),转到步骤(3-8),否则继续;(3-6)求解安全模型,得到第t+1个博弈周期经济模型中的安全限值W Tt、x(t+1) ;具体求解过程为(3-61)若变量Xi为安全监视变量,计算在第t个博弈周期中预想故障k状态下变量Xi的越上限量和越下限量忍^:
-lr) Ixi^-X^ (Xi(X)叫。(^>^)關 H广"(32)k=l, . . . , Nci = 1,. . .,nx,且Xi为安全监视变量(3-62)记4(° = max / 5,^1 (33)5j,} =max{£.f/5a.}其中Si,k为Xi在正常运行状态的变化量和其导致的Xi在预想故障k状态下的变化量之间的线性系数(该系数在计算过程中可根据经验近似选取,通常按两个变化量之间的灵敏度关系进行取值较为合理)。
(3-63)计算第t+1个博弈周期经济模型中的安全上限T和安全下限£(w)
_ IW)-茗⑴* °)矿 I “(34)^"0)
一 Iiw (gT) = 0)(除此种方法外,还可根据不同的安全要求采取其他的安全限值计算方法)(3-7)令 t = t+1,转到步骤(3-3);(3-8)博弈求解结束,得到自动电压控制的解Odx,)),输出自动电压控制指令。下面通过实施例的方式对本发明的方法做进一步的说明。本发明对一个2节点电力系统进行基于合作博弈理论的安全和经济协调的自动电压控制方法的实施例,该电力系统的组成模型如图I所示。在这个模型中,发电机母线I挂接一台发电机G,通过两条并列线路1A、Ib向负荷端供电,负荷端分段母线2A挂接负荷Da,2B挂接负荷Db。a、b、c、d、e各为一个隔离开关。该电力系统参数(包括线路1A、Ib的阻抗zA、zB,负荷Da、Db的复功率SD.A、SD.B)的值如下zA=rA+jxA=0. 004+j0. 4zA=rA+jxA=0. 004+j0. 4SD. A = PD.A+jQD.A=0. 2+jO. ISD. B = PD.B+jQD.B=0. 8+jO. 4其中r*为线路电阻,x*为线路电抗,P*为负荷有功功率,Q*为负荷无功功率。该电力系统在自动电压控制计算前的潮流结果如表I所示,其中下标“0”表示电力系统正常运行状态。表I 2节点电力系统在自动电压控制计算前的潮流结果
「n~J ~a~ a ~~0~^~-----
1.1500 1.0023 0.7332 1.0353 -0.1679设置所有母线电压幅值作为安全监视变量,发电机母线电压幅值VTO、负荷母线电压幅值在正常运行状态的值Vdci和在预想故障状态下的值Vdi的安全限值分别设置为Fgo G [^,Fg] =
=
Fijl g[^,Fdc] =
设置实施例中的第I种情况设置预想故障为隔离开关d、e断开,即分段母线2B退出运行。
此时传统SCOPF模型有解,但由于故障状态安全约束的要求,其解与不考虑静态安全约束的优化潮流结果不相同。这种情况下,本发明方法求解时,首个博弈周期经济模型的解经静态安全分析后发现预想故障状态下负荷母线电压幅值Vdi越上限,电力系统的安全性指标没有达到最优,因此求解安全模型,得到下一个博弈周期经济模型中的安全限值,对负荷母线的电压幅值限值进行调整,进而在新的博弈周期重新求解经济模型的解。如此往复,在第4个博弈周期(即t=4时),电力系统的安全性指标为0,安全性达到最优,博弈求解结束,得到自动电压控制的解。具体的求解过程如下首先分析电力系统模型中的控制变量和状态变量。在图I的2节点电力系统中,发电机母线的电压幅值\在正常运行状态和预想故障状态下保持不变,为该电力系统模型的控制变量。而其余变量,包括发电机的有功出力Pe、无功出力Qe,负荷母线的电压幅值vD,以及发电机和负荷母线电压相角ep eD,在正常运行状态和预想故障状态下其值不同,为该电力系统模型的状态变量。因此控制变量u={Vj,状态变量X= {Pu QuVd, 0},其中
G = Q G- Q D。步骤I)建立本实施例的第I种情况的2节点电力系统的多目标无功电压优化模型具体内容如下( 1-1)根据电力系统发电机有功出力和负荷有功的差值计算电力系统有功网损,得到电力系统经济性指标计算公式EI =Ploss (x。,u0) =Pgo-Pd. a_Pd. b(1-2)以式(29)计算安全监视变量的越限量,以式(24)计算电力系统的安全性指标,因设置母线电压幅值为安全监视变量,所以在安全性指标计算中只考虑母线电压幅值的越限,得到安全性指标SI = SmaX(D,D) = maX(UUD)将表I中的母线电压幅值以及母线电压幅值约束值带入此公式,可得SI5ase=O. 1067。(1-3)本实施例的第I种情况的2节点电力系统的潮流方程组为
^Gk - ^GO^GGk - ^Cj^ Dk^GDk C0S^ GQ^Dk^GDk S^n 二 ◎
「 -I/\ Qck + ^ GO^GGk + D Dk^GDk COS^ + Dk^GDk二 〇S1 I Ua, X, I = <,
V } 4 + V1mGom + VDkVGfiDGk cos ek + VmVmBmk sin Gk = 0 Qdi - VDkBDDk — f'mJ GQBDGk cos Ok + PmP goGDGk sin =0其中,
权利要求
1.一种基于合作博弈理论的安全和经济协调的自动电压控制方法,其特征在于,该方法包括以下步骤 1)建立电力系统的多目标无功电压优化模型,如式(2):
2.如权利要求I所述方法,其特征在于,所述步骤I)建立电力系统的多目标无功电压优化模型具体包含以下步骤 (1-1)建立电力系统经济性指标计算公式EI=Ploss (x0, u0)(4) 其中Pkjss为电力系统有功网损函数,将电力系统正常运行状态的有功网损作为电力系统的经济性指标; (1-2)建立电力系统安全性指标计算公式;安全性指标取下列各式之一进行计算
3.如权利要求I所述方法,其特征在于,所述步骤3)对经济模型和安全模型基于合作博弈理论进行求解,得到自动电压控制指令包含以下步骤 (3-1)令t = 1,其中t为博弈周期的序号,t G Z ; (3-2)令 u(t) = u, u(t) 二 u , x(t) = x, xf,) = x o (3-3)求解经济模型,如式(13),得到经济模型的解(Utl; (3-4)当 t > I 时,若 lu,)-!!,-1) I ( tol,且 Ix,-^-1) I ( tol ;tol 为收敛判据,在10_4 10_2之间进行取值,转到步骤(3-8),否则继续; (3-5)以经济模型的解作为电力系统的基态,进行静态安全分析,若静态安全分析结果中安全监视变量的值无越限或越限量小于电力系统运行允许的最大越限量,转到步骤(3-8),否则继续; (3-6)求解安全模型,得到第七+1个博弈周期经济模型中的安全限值^+1)、反_、2^+1)、.r(<+1) (3-7)令 t = t+1,转到步骤(3-3); (3-8)博弈求解结束,得到自动电压控制的解(Utl(t),X^t)),输出自动电压控制指令。
4.如权利要求3所述方法,其特征在于,所述步骤(3-3)求解经济模型,得到经济模型的解(Utl(Wt));具体求解过程为 min EI (u0,x0) s. t. g0 (U。,X0) _0
5.如权利要求3所述方法,其特征在于,所述步骤(3-6)求解安全模型,得到第t+1个博弈周期经济模型中的安全限值il(t+1)、F("、l(t+1)、浐的具体求解过程为 (3-61)若变量Xi为安全监视变量,计算在第t个博弈周期中预想故障k状态下变量Xi的越上限量和越下限量客T :
全文摘要
本发明涉及一种基于合作博弈理论的安全和经济协调的自动电压控制方法,该方法包括建立电力系统的多目标无功电压优化模型,将多目标无功电压优化模型分解为经济模型和和安全模型,对经济模型和安全模型基于合作博弈理论进行求解,得到自动电压控制指令;根据得到的自动电压控制指令,对电力系统实施自动电压控制。本方法大大降低了模型规模和求解难度,计算耗时可满足自动电压控制的在线实施的需要;另外该方法可以灵活扩充考虑各种不同的安全性约束。
文档编号H02J3/16GK102801166SQ201210287259
公开日2012年11月28日 申请日期2012年8月13日 优先权日2012年8月13日
发明者孙宏斌, 郭庆来, 张明晔, 张伯明, 吴文传, 王彬 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1