具有模块化的级的DC-DC转换器的制作方法

文档序号:15483877发布日期:2018-09-21 19:36阅读:225来源:国知局

本申请要求2011年5月5日提交的U.S.临时申请No.61/482,838、2011年10月18日提交的U.S.临时申请No.61/548,360以及2011年11月19日提交的U.S.临时申请No.61/577,271的优先权。

技术领域

本公开涉及电源,且尤其涉及电源转换器。



背景技术:

许多电源转换器包括多个开关以及一个或多个电容器,用于例如为便携式电子器件以及消费类电子产品供电。开关式电源转换器使用开关网络将储能元件(例如,电感器和电容器)转换为不同的电气配置,从而调节输出电压或电流。开关电容转换器为开关式电源转换器,其主要使用电容器转移能量。在这样的转换器中,电容器和开关的数量随着转换比的增加而增加。开关网络中的开关通常为由晶体管实现的有源器件。开关网络可集成于单个或多个单片半导体衬底上,或使用分立器件形成。

典型的DC-DC转换器执行电压转换及输出调节。通常在例如降压(buck)转换器这样的单级转换器中实现。但是,也可将这两个功能分成两个专门的级,即,转换级(例如,开关网络)和单独的调节级(例如,调节电路)。转换级将一个电压转换成另一个电压,而调节级确保转换级的电压和/或电流输出保持期望的特性。

例如,参照图1,在一个转换器10中,开关网络12A在其输入端与电压源14连接。然后,调节电路16A的输入连接至开关网络12A的输出。然后,负载18A连接至该调节电路16A的输出。电压源14和负载18A之间的能流在箭头表示的方向上。在2009年5月8日提交的公开号为2009/0278520的US专利中描述了这样的转换器,该专利的内容通过参引的方式并入于此。



技术实现要素:

一方面,本发明的特征在于一种电源转换装置。这样的装置包括具有输入端和输出端的转换器。所述转换器包括具有电感的调节电路以及连接至所述电感的开关元件。这些开关元件受控用于在开关配置之间切换。所述调节电路维持通过所述电感的平均DC电流。所述转换器还包括具有输入端口和输出端口的开关网络。此开关网络包括电荷存储元件以及连接至所述电荷存储元件的开关元件。这些开关元件受控用于在开关配置之间切换。在一个开关配置中,所述开关元件形成电荷存储元件的第一设置,在所述第一设置中,通过所述开关网络的所述输入端口和所述输出端口中的一个来充电电荷存储元件。在另一个配置中,所述开关元件形成电荷存储元件的第二设置,在所述第二设置中,通过所述开关网络的所述输入端口和输出端口中的一个来放电电荷存储元件。所述开关网络和调节电路还满足以下配置中的至少一个:(1)所述调节电路连接在所述转换器的所述输出端和所述开关网络之间,所述开关网络为绝热充电的开关网络;(2)所述调节电路连接在所述转换器的所述输出端和所述开关网络之间,其中,所述开关网络为多相开关网络,或者所述开关网络和所述调节电路为双向的,或者所述调节器电路是多相的;(3)所述调节电路连接在所述转换器的所述输入端和所述开关网络的输入端口之间,所述开关网络为绝热充电的开关网络;(4)所述调节电路连接在所述转换器的所述输入端和所述开关网络的输入端口之间,且所述开关网络为多相开关网络,或者所述开关网络和所述调节电路为双向的,或者所述调节器电路为多相的;(5)所述开关电路连接在所述调节电路和额外的调节电路之间;或(6)所述调节电路连接在所述开关网络和额外的开关网络之间。

本发明的各实施例包括那些所述开关网络包括可重配置的开关网络的实施例,还包括那些所述开关网络包括多相开关网络的实施例。

其它实施例包括那些所述调节电路包括双向调节电路的实施例,包括那些所述调节电路包括多相调节电路的实施例,包括那些所述调节电路为双向的且包括开关式电源转换器的实施例,包括那些所述调节电路为双向调节电路且包括谐振电源转换器的实施例,包括那些所述调节电路连接至所述开关网络的输出的实施例,且包括那些所述调节电路连接在所述转换器的所述输出端和所述开关网络之间的实施例,所述开关网络为绝热充电的开关网络。

在其它实施例中,所述调节电路连接在所述转换器的所述输出端和开关网络之间,且所述开关网络为多相开关网络,或者所述开关网络和所述调节电路为双向的,或者所述调节器电路为多相的。

在其它实施例中,所述调节电路连接在所述转换器的所述输入端和所述开关网络的输入端口之间,所述开关网络为绝热充电的开关网络。

在又一其它的实施中,所述调节电路连接在所述转换器的所述输入端和所述开关网络的输入端口之间,且所述开关网络为多相开关网络,或者所述开关网络和所述调节电路为双向的,或者所述调节器电路为多相的。

除了本发明的各实施例之外,还包括那些所述开关电路连接在所述调节电路和额外的调节电路之间的实施例,以及那些所述调节电路连接在所述开关网络和额外的开关网络之间的实施例。

在各额外的实施例中,所述开关电路被配置为AC开关电路。除了这些实施例之外,还包括那些还包括连接至所述AC开关电路的功率因数校正器电路的实施例。除了这些实施例之外,还包括那些此功率因数校正器电路连接在所述AC开关电路和所述调节电路之间的实施例。

另一方面,本发明的特征在于一种包括转换器的装置,所述转换器具有输入端和输出端。所述转换器包括具有输入端口和输出端口的开关网络。此开关网络包括电荷存储元件以及连接至所述电荷存储元件的开关元件。所述开关元件受控用于将所述电荷存储元件设置在所选的配置中。在至少一个配置中,所述开关元件形成第一组电荷存储元件,用于通过所述开关网络的所述输出端口来放电所述电荷存储元件。在另一个配置中,所述开关元件形成第二组电荷存储元件,用于通过所述开关网络的所述输入端口来充电所述电荷存储元件。所述转换器还包括双向调节电路,其为以下至少一种:连接在所述转换器的输入端和所述开关网络的输入端口之间,或者连接在所述转换器的输出端和所述开关网络的输出端口之间。

在一些实施例中,所述开关网络包括多相开关网络。

除了各实施例之外,还包括那些所述双向调节电路包括降压/增压电路的实施例以及那些所述双向调节电路包括分割-比例积分(split-pi)电路的实施例。

另一方面,本发明的特征在于一种具有输入端和输出端的转换器。所述转换器包括具有输入端口和输出端口的开关网络、电荷存储元件以及连接至所述电荷存储元件的开关元件,所述开关元件用于将所述开关存储元件设置在多个配置中的一个中。在一个配置中,所述开关元件形成第一组电荷存储元件,用于通过所述开关网络的所述输出端口来放电所述电荷存储元件。在另一个配置中,所述开关元件形成第二组电荷存储元件,用于通过所述开关网络的所述输入端口来充电所述电荷存储元件。所述转换器进一步包括调节电路,所述调节电路被配置成用于提供阶升电压,且连接在所述转换器的所述输出端和所述开关网络的输出端口之间。

又一方面,本发明的特征在于一种装置,所述装置具有输入端、输出端、具有输入端口和输出端口的开关网络、电荷存储元件以及连接至所述电荷存储元件的开关元件。所述开关元件受控用于将所述开关元件设置在多个配置中。在一个配置中,所述开关元件形成第一组电荷存储元件,用于通过所述开关网络的所述输出端口来放电所述电荷存储元件。在另一个配置中,所述开关元件形成第二组电荷存储元件,用于通过所述开关网络的输入端口来充电所述电荷存储元件。所述装置进一步包括连接在所述转换器的输入端和所述开关网络的输入端口之间的电源调节电路。

一些实施例还包括连接在所述转换器的输出端和所述开关网络的输出端口之间的负载调节电路。

另一方面,本发明的特征在于一种产品,所述产品包括多个具有输入和输出的开关网络和调节电路,允许其模块化互连以进行DC-DC转换器的组装。

在一些实施例中,至少一个开关网络包括开关电容网络。除了这些之外,还存在那些所述开关电容网络包括绝热充电的开关电容网络的实施例。这些实施例还包括那些所述绝热充电的开关电容网络包括级联乘法器的实施例。在这些实施例中的一些中,由互补的时钟电流源驱动所述级联乘法器。

在其它实施例中,至少一个调节电路包括线性调节器。

各实施例还包括那些所述DC-DC转换器包括串联连接的开关电容网络的实施例,以及那些所述DC-DC转换器包括共用公共开关网络的多个调节电路的实施例。

通过以下详细的描述和附图,本发明的这些以及其他特征将显而易见,其中:

附图说明

图1示出了一种已知的具有单独的调节电路和开关网络的DC-DC转换器。

图1A示出了图1的一种双向变型。

图2-4示出了一种具有调节电路和开关网络的替代配置的DC-DC转换器;

图5示出了图4所示的电源转换器的一种具体实现方式;

图6示出了一种具有多个调节电路的实施例;

图7示出了一种RC电路;

图8示出了一种开关电容DC-DC转换器的模型;

图9A和9B分别示出了运行于充电阶段和放电阶段的一种串并SC转换器;

图10示出了一种具有多个二极管的串行泵浦对称级联乘法器;

图11示出了一种具有多个二极管的并行泵浦对称级联乘法器;

图12示出了电荷泵信号;

图13示出了一种具有多个开关的两相对称串行泵浦级联乘法器;

图14示出了一种具有多个开关的两相对称并行泵浦级联乘法器;

图15示出了四个不同的级联乘法器连同对应的半波变型;

图16示出了开关电容转换器的输出阻抗,其为频率的函数;

图17示出了图1A所示的DC-DC转换器的一种具体实现方式,具有全波绝热充电的交换网络;

图18示出了阶段A期间的图17中所示的DC-DC转换器;

图19示出了阶段B期间的图17中所示的DC-DC转换器;

图20示出了与4:1的绝热充电转换器关联的各种波形;

图21示出了串联连接的多级绝热充电;

图22示出了图21中所示的电源转换器的一种具体实现方式;

图23示出了使用可重配置的开关电容级进行整流的AC电压;

图24示出了一种AC-DC电源转换器结构;

图25示出了图24中所示的AC-DC转换器的一种具体实现方式;

图26示出了AC周期的正半部分期间的图25中所示的AC-DC转换器;

图27示出了AC周期的负半部分期间的图25中所示的AC-DC转换器;

图28示出了一种具有功率因数校正器的AC-DC电源转换器结构;

图29和30示出了图1中所示的DC-DC转换器的一种具体实现方式;

图31和32示出了图3中所示的DC-DC转换器的一种具体实现方式;

图33和34示出了图2中所示的DC-DC转换器的一种具体实现方式;

图35和36示出了图4中所示的DC-DC转换器的一种具体实现方式。

发明的详细描述

本文描述的各实施例至少在一定程度上依赖于对以下内容的认识:在多级DC-DC转换器中,开关网络以及调节电路基本上可以是模块化的且可通过各种不同的方式混合并匹配。这提供了一种用于对这样的转换器进行装配的变革式的集成电源解决方案(TIPSTM)。类似地,图1中所示配置仅表现了一个或多个开关网络12A的多种配置方式中的一种,该开关网络12A具有一个或多个调节电路16A。图1A示出了图1的一种双向变型,其中,如箭头指示的,电力可从源14流向负载18A,或从负载18A流向源14。

关于以下各实施例的描述,存在两个基本元素:开关网络和调节电路。假设结合了同样类型的串联连接的多个元件,那么总共具有四个基本构建框架。这在图1-4中示出。本文公开的各实施例包括图1-4中示出的四个基本构建框架中的至少一个。

额外的实施例通过以不同的方式使开关网络12A和调节电路16A“实例化”成为可能来进一步考虑用于设计DC-DC转换器的面向对象的编程概念,只要其输入和输出继续以便于具有各种特性的DC-DC转换器的模块化组装的方式匹配。

在许多实施例中,开关网络12A实例化为开关电容网络。除了更有用的开关电容拓扑之外还有:全都可以绝热充电并配置在多相网络中的梯拓扑、Dickson拓扑、串并(Series-Parallel)拓扑、斐波那契(Fibonacci)拓扑以及倍增拓扑。特别有用的开关电容网络是绝热充电型全波级联乘法器。然而,也可使用不绝热充电的变型。

如本文所使用的,绝热地改变电容器上的电荷意味着通过经非电容元件传递电荷来引起存储在该电容器中的电荷量的改变。电容器上的电荷的正向绝热变化被认为是绝热充电,而该电容器上的电荷的负向绝热变化被认为是绝热放电。非电容元件的多种示例包括电感器、磁性元件、电阻器及其结合。

在一些情况下,电容器可在部分时间内绝热地充电,而在剩余时间内不绝热地充电。这样的电容器被认为是绝热充电的。类似地,在一些情况下,电容器可在部分时间内绝热放电,而在剩余时间内不绝热地放电。这样的电容器被认为是绝热放电的。

绝热充电包括全部充电都不绝热的充电,且不绝热放电包括全部放电都不绝热的放电。

如本文中所使用的,绝热充电开关网络是具有至少一个绝热充电且绝热放电的电容器的开关网络。不绝热充电的开关网络是不为绝热充电的开关网络的开关网络。

调节电路16A可实例化为具有调节输出电压的能力的任意转换器。例如,降压转换器由于其高效和高速而成为具有吸引力的候选。其他适合的调节电路16A包括增压转换器、降压/增压转换器、反激转换器、古卡(Cuk)转换器、谐振转换器以及线性调节器。

在一个实施例中,如图2中所示,源电压14向第一开关网络12A提供输入,该第一开关网络12A实例化为开关电容网络。第一开关网络12A的输出电压比向调节电路16A(例如,降压、增压或降压/增压转换器)提供的输入电压更低。此调节电路16A向第二开关网络12B提供经调节的电压,该第二开关网络12B为例如其他的开关电容网络。然后,将此第二开关网络12B的高压输出施加到负载18A上。

例如图2中所示的实施例可被配置成用于根据能流的方向调节负载18A或调节源14。

在图3中所示的另一个实施例中,低压源14连接至调节电路16A的输入,将该调节电路16A的输出提供给开关网络12A的输入以将其增压到更高的DC值。然后,将该开关网络的输出提供至负载18A。

例如图3中所示的实施例可用于根据能流的方向调节源14或负载18A。

现参照图4,转换器100的另一个实施例包括连接至其输入102的第一调节电路300A以及连接至其输出104的第二调节电路300B。在第一和第二调节电路300A、300B之间为具有输入202和输出204的开关网络200。该开关网络包括通过开关212互联的多个电荷存储元件210。这些电荷存储元件210分为第一和第二组206、208。

在一些实施例中,开关网络200可为例如图5中所示的双向开关电容网络。图5中的开关电容网络的特征在于并联的第一电容器20和第二电容器22。第一开关24选择性地将第一和第二电容器20、22中的一个连接至第一调节电路300A,且第二开关26选择性地将第一和第二电容器20、22中的一个连接至第二调节电路300B。第一和第二开关24、26均可在高频下运行,由此便于第一和第二电容器20、22的绝热充电和放电。

图5中所示的具体实施例具有两相开关网络200。但是,还可用其他类型的开关网络替代。

在图6中所示的又一个实施例中,多个调节电路16A、16B、16C设置在第一开关网络12A的输出处,用于驱动多个负载18A-18C。对于其中一个负载18C,第二开关网络12B设置在负载18C和对应的调节电路16C之间,由此生成类似于图2中所示的路径。因此,图6提供了调节电路和开关网络的模块化结构怎样有利于混合并匹配各组件以提供DC-DC转换器结构的灵活性的一种示例。

开关电容(SC)DC-DC电源转换器包括开关和电容器的网络。通过使用这些开关使该网络循环通过不同的拓扑状态,能够将能量从该SC网络的输入转移到输出。一些被称为“电荷泵”的转换器可用于在FLASH和其它可重编程的存储器中产生高压。

图7示出了初始充电至一定值VC(0)的电容器C。在t=0时,开关S关闭。此时,随着电容器C充电到其最终值Vin,电流短暂飙升。充电速率可通过时间常数τ=RC来描述,其表示将电压上升至或跌落至其最终值的1/e所花的时间。下面的等式给出了准确的电容器电压vc(t)和电流ic(t):

vc(t)=vc(0)+[Vin-vc(0)](1-e-t/RC) (1.1)

可通过计算电阻器R中损耗的能量来找出充电该电容器时损失的能量:

可通过将等式(1.2)中ic(t)的表达式带入等式(1.3)然后求积分值来进一步简化该等式:

如果允许瞬变(例如,t→∞),充电该电容器时的总能耗不受其电阻值R的影响。在那种情况下,能耗量等于

开关电容转换器可建模为如图8中所示的理想变压器,其具有造成能量转移电容器在充电和放电时发生的功耗的有限输出阻抗R0,如图8中所示。此损耗通常在MOSFET的导通(ON)电阻中耗散,且等于电容器的串联电阻。

给出开关电容转换器的输出电压为:

存在两个限制情况,在这两个限制情况下,可简化各开关电容转换器的操作且能够容易地找出R0。这两个限制情况被称为“慢开关极限(slow-switching limit)”及“快开关限制(fast-switching limit)”。

在快开关限制(τ<<Tsw)下,充电和放电电流几乎不变,这引起各电容器上的三角形AC波纹。因此,R0对MOSFET和电容器的串联电阻敏感,但其并不是工作频率的函数。在此情况下,在快开关限制下运行的转换器的输出阻抗是寄生电阻的函数。

在慢开关限制下,开关周期Tsw比能量转移电容器的RC时间常数τ更长。在此条件下,系统能耗与电容器和开关的电阻无关。由于充电和放电电流的均方根(RMS)是该RC时间常数的函数,此系统能耗部分地上升。如果充电路径的有效电阻Reff减小(例如,减小的RC),则RMS电流增加,且因此总充电能耗不受Reff的支配。最小化此能耗的解决方案是增加开关电容网络中泵电容的大小。

对于开关电容网络来说,具有公共接地、较大的变压比、较低的开关应力、较低的DC电容电压以及较低的输出电容是可取的。除了更有用的拓扑之外,还可有梯拓扑、Dickson拓扑、串并(Series-Parallel)拓扑、斐波那契(Fibonacci)拓扑以及倍增拓扑。

一种有用的转换器是串并开关电容转换器。图9A和9B示出了分别工作在充电阶段和放电阶段的2:1串并开关电容转换器。在充电阶段期间,各电容器串联。在放电阶段,各电容器并联。在充电阶段,电容电压vC1和vC2增加至V1,而在放电阶段,vC1和vC2等于V2,这意味着V2=V1/2。

其它有用的拓扑是如图10和11中示出的级联乘法器拓扑。在两个电荷泵中,源电压为V1,负载电压为V2。在这些类型的电荷泵中,随着耦合的电容器相继充电和放电,沿二极管链泵抽电荷包。如图12中所示,振幅vpump的时钟信号vclk和的相位相差180度。可以串联或并联方式泵抽耦合的电容器。

初始电荷达到输出需花费n个时钟周期。最终泵电容上的电荷比最开始的泵电容上的电荷大n倍,且因此,在两种泵抽配置中,转换器的输出电压V2为V1+(n-1)×vpump。

尽管前述的拓扑适用于阶升电压,它们还可用于通过交换源和负载的位置来降压。在这样的情况下,可用例如MOSFET和BJT这样的受控开关来替代二极管。

前述的级联乘法器为半波乘法器,在半波乘法器中,电荷在时钟信号的一个阶段期间转移。这导致不连续的输入电流。可通过并联连接两个半波乘法器并以180度的相位差运行个这两个乘法器来将这两个半波乘法器都转换为全波乘法器。图13示出了全波对称串连型泵浦级联乘法器,而图14示出了全波对称并联型泵浦级联乘法器。与半乘法器中的二极管不同,图13和图14中的各开关为双向的。因此,在这两种级联乘法器中,电力可从源流向负载,也可从负载流向源。对称乘法器还可转变为全波乘法器。

图15示出了四个不同的阶升型全波对称乘法器及其对应的半波变型。此外,可并联结合N个相并将其以180度/N的相位差运行以减小输出电压波纹并增加输出功率处理能力。

图1-4中示出的模块化结构的基本构建框架可被连接以作为独立的实体或组合实体。在开关网络和调节电路紧密耦合的情形中,有可能通过绝热充电来防止和/或降低开关网络的系统能耗的机制。这通常包括使用调节电路来控制开关网络中各电容器的充电和放电。此外,可响应外部外界刺激而调节调节电路的输出电压且因此调节整个转换器。一种调节输出电压的方法是控制磁性存储元件中的平均DC电流。

调节电路的期望特征是通过开关网络中的电容器来限制均方根(RMS)电流。为此,调节电路使用电阻或磁性存储元件。不幸的是,电阻元件将消耗功率,因此电阻元件的使用不怎么可取。因此,本文描述的各实施例基于调节电路中开关和磁性存储元件的结合。调节电路通过迫使电容器电流通过调节电路中具有平均DC电流的磁性存储元件来限制RMS电流。操作调节电路中的开关以维持通过磁性存储元件的平均DC电流。

调节电路可既限制开关网络中至少一个电容器的RMS充电电流又限制其RMS放电电流。单个的调节电路可通过吸收和/或提供电流来限制开关网络内或外的电流。因此,存在四个基础配置,图1-4中示出了这四个基础配置。假设能流从源到负载,那么在图1中,调节电路16A既可吸收开关网络12A的充电电流又可吸收其放电电流。在图3中,调节电路16A既可提供开关网络12A的充电电流又可提供其放电电流。在图4中,调节电路300A可提供开关网络200的充电电流,调节电路300B可吸收同一开关网络200的放电电流,反之亦然。图2中,调节电路16A既可提供开关网络12B的充电电流又可提供其放电电流,且同时还既可吸收开关网络12A的充电电流又可吸收其放电电流。此外,如果开关网络和调节电路均允许电力双向流动,那么,双向电力流是可能的(源至负载及负载至源)。

一个实施例依赖于至少部分绝热充电的全波级联乘法器。由于具有出众的快开关限制阻抗并且方便放大电压及降低开关应力,级联乘法器成为首选的开关网络。

在各级联乘法器中,通常用时钟电压源泵抽各耦合的电容器。然而,如果用时钟电流源作为替代来泵抽各耦合的电容器,那么可限制各耦合的电容器中的RMS充电和放电电流。在这种情况下,各电容器至少部分绝热充电,因此,即使不消除也降低了与运行于慢开关限制下的开关电容转换器相关联的损耗。这对快开关限制阻抗而言有降低输出阻抗的影响。如由描绘绝热运行的图16中的黑色虚线所示的,在完全绝热充电下,输出阻抗将不再是开关频率的函数。

在所有其他条件相同的情况下,绝热充电的开关电容转换器可在比传统的充电开关电容转换器低得多的开关频率但更高的效率下运行。相反地,绝热充电的开关电容转换器可在与传统的充电开关电容转换器相同的频率和效率下运行,但具有小得多的耦合电容器,例如,小四倍至十倍。

图17示出了一种符合图1A中所示结构的阶降转换器。但是,在此实施例中,开关网络12A是使用调节电路16A的绝热充电型。用四个开关和调节电路16A仿真时钟电流源还移除了输出电容器C0,以允许VX震荡。在此示例中,调节电路16A是增压转换器,其表现为具有较小的AC波纹的恒源。任意具有非电容输入阻抗的电源转换器都将允许绝热操作。尽管开关式电源转换器因其高效率而成为具吸引力的候选,但线性调节器也是实用的。

在运行中,通过关闭标记为1的开关,电容器C4、C5和C6充电,而电容器C1、C2和C3放电。类似地,关闭开关2具有补充的效果。图18中示出了第一拓扑状态(阶段A),其中,关闭所有标记为1的开关并打开所有标记为2的开关。类似地,图19中示出了第二拓扑状态(阶段B),其中,关闭所有标记为2的开关并打开所有标记为1的开关。在此实施例中,调节电路16A限制每个电容器的RMS充电和放电电流。例如,在阶段A期间,通过调节电路16A中的滤波电感器来放电电容器C3,在阶段B期间,通过调节电路16A中的滤波电感器来充电电容器C3,这清楚地展示了绝热的概念。此外,所有的有源组件都用开关实现,使得转换器可处理双向电力。

图20中示出了几个有代表性的节点电压和电流。在两个示出的电流(IP1和IP2)的上升和下降沿上存在轻微的扭曲,但在大多数情况下,这两个电流类似于两个具有180度相位差的时钟。通常,仅当开关栈的至少一端未加载电容时,级联乘法器中才发生绝热充电,就像在此实施例中一样,通过调节电路16A来加载VX节点。

具有图1-4中所示的基本构建框架的模块化结构可扩展以覆盖更广的应用范围,例如,高压DC、AC-DC、降压-增压以及多输出电压。这些应用中的每个都包括独立的转换功能和调节功能。该结构的扩展还可包含多个绝热充电的开关电容转换器。

在许多开关电容转换器中,电容器和开关的数量随转换比线性增加。因此,如果转换比很大,则需要大量的电容器和开关。选择性地,可通过如图21中所描绘的串联连接多个低增益的级来获得较大的转换比。总的开关电容栈的转换比(Vin/VX)如下:

串联堆栈的配置的主要优势是前级上的电压应力比后级的电压应力更大。这通常将需要各级具有不同的电压额定值和尺寸。

仅在后面的开关网络控制前级的充电和放电电流时,前面的串联连接的开关网络才发生绝热充电。因此,优选在前级中使用全波开关电容转换器或在例如具有磁基输入滤波器的单相串并开关电容转化器这样的开关电容级之前使用全波开关电容转换器。

图22示出了具有符合图21中所示结构的串联连接的开关网络的转换器。开关网络12A和12D均为两相级联乘法器。在运行时,标记为1和2的开关总是互补的状态,标记为7和8的开关总是互补的状态。因此,在第一开关状态下,所有标记为“1”的开关打开且所有标记为“2”的开关关闭。在第二开关状态下,所有标记为“1”的开关关闭且所有标记为“2”的开关打开。在此实施例中,关闭开关1,电容器C1、C2、C3充电而电容器C4、C5、C6放电,且关闭开关2具有互补的效果。此外,关闭开关7,电容器C7、C8、C9充电而电容器C10、C11、C12放电,且关闭开关8具有互补的效果。

假设调节电路16A是具有标称2:1的压降比的降压转换器,则电源转换器提供32:1的总阶降电压。此外,如果输入电压是32V且输出电压是1V,那么,第一开关网络12A中的各开关将需要限制8伏,而第二开关网络12D中的各开关将需要限制2伏。

具有图1-4中所示基本构建框架的模块化结构还可被配置成用于处理AC输入电压。开关电容转换器的其中一个主要属性是它们通过重新配置开关电容网络而在较大的输入范围内有效运行的能力。如果AC壁电压(例如,60Hz&120VRMS)可被认为是缓慢移动的DC电压,那么,前端开关电容级应可将时变输入电压变成相对稳定的DC电压。

图23中示出了一个60Hz周期上的120VRMS AC波形的图示,该波形与展开的DC电压叠加。该AC开关网络具有可用的不同配置(1/3、1/2、1/1)以及反相阶。其也被设计用于将DC电压保持在60V以下。一旦AC电压展开,将由图24所示的调节电路16A产生最终的输出电压。有必要在该AC开关网络13A和调节电路16A之间设置另一个开关网络16A以进一步限制电压。如果是这种情况,由于AC开关网络13A为特殊目的的开关网络12A,那么,串联连接的各级的说明是适用的。

图25示出了对应于图24中所示结构的AC-DC转换器。在此实施例中,AC开关网络13A为同步AC桥,紧跟着的是可重新配置的两相阶降级联乘法器,该两相阶降级联乘法器具有三个不同的转换比(1/3、1/2、1/1),而调节电路16A是同步降压转换器。在运行中,标记为7和8的开关总是处于互补状态。如图26中所示,在AC周期(0到π弧度)的正部分期间,全部开关7关闭,而所有标记为8的开关打开。类似地,如图27中所示,在AC周期(0到2π弧度)的负部分期间,所有标记为8的开关关闭,而所有标记为7的开关打开。

除了由开关7和8提供的反相功能外,可如表1中所示的那样选择性地打开和关闭标记为1A-1E的开关和标记为2A-2E的开关,以提供三个不同的转换比:1/3、1/2、1/1。

表1

AC开关网络13A具有数字时钟信号CLK。还生成了第二时钟信号CLKB,该第二时钟信号可简单地补偿CLK(例如,其在CLK较低时较高且在CLK较高时较低),或可生成该第二时钟信号以作为本领域总所周知的非重叠性互补。使用根据表1第一行的开关模式设置,AC开关网络13A提供三分之一(1/3)的压降比。使用根据表1的第二行的开关模式设置,AC开关网络13A提供二分之一(1/2)的压降比。使用根据表1的第一行的开关模式设置,AC开关网络13A提供1的压降比。

连接到壁上的大部分电源满足一定的功率因数标准。功率因数是0和1之间的无量纲数,其定义了实际的功率流和表观功率的比。控制谐波电流并因此增加功率因数的常用方式是使用有源功率因数校正器,如图28中所示。功率因数矫正电路17A使得输入电流与线电压同相,由此使功耗为零。

图29-36示出了符合图1-4中所示结构图的电源转换器的具体实现方式。在每个实现方式中,一个或多个调节电路可限制每个开关网络中的至少一个电容器的RMS充电电流和RMS放电电流,使得所有这些开关网络都为绝热充电的开关网络。但是,如果存在解耦电容器9A或9B,那么,调节电路限制RMS充电和放电电流的能力减弱。电容器9A和9B是可选的,并且为了保证相当恒定的输出电压,使用电容器C0。此外,为了简单起见,每个实现方式中的开关网络具有单一转换比。但是,可使用提供多个不同的转换比的电源转换的、可重新配置的开关网络作为替代。

在运行中,标记为1和2的开关总是处于互补状态。因此,在第一开关状态下,所有标记为“1”的开关打开,且所有标记为“2”的开关关闭。在第二开关状态下,所有标记为“1”的开关关闭且所有标记为“2”的开关打开。类似地,标记为“3”和“4”的开关处于互补状态,标记为“5”和“6”的开关处于互补状态,且标记为“7”和“8”的开关处于互补状态。通常,调节电路在比开关网络更高的开关频率下运行。但是,对开关网络和调节电路之间及其间的开关频率没有要求。

图29示出了一种对应于图1中所示结构的阶升转换器。在此实施例中,开关网络12A为具有1:3的转换比的两相阶升级联乘法器,而调节电路16A为两相增压转换器。在运行中,关闭标记为1的开关并打开标记为2的开关,电容器C3和C4充电而电容器C1和C2放电。相反地,打开标记为1的开关并关闭标记为2的开关,电容器C1和C2充电而电容器C3和C4放电。

图30示出了对应于图1A中所示结构的双向阶降转换器。在此实施例中,开关网络12A为具有4:1的转换比的两相阶升级联乘法器,而调节电路16A为同步降压转换器。在运行中,关闭标记为1的开关并打开标记为2的开关,电容器C1、C2和C3充电而电容器C4、C5和C6放电。相反地,打开标记为1的开关并关闭标记为2的开关,电容器C4、C5和C6充电而电容器C1、C2和C3放电。所有的有源组件都用开关实现,使得转换器可处理双向电力。

图31示出了符合图3中所示结构的阶升转换器。在此实施例中,调节电路16A为增压转换器,而开关网络12A为具有2:1的转换比的两相阶升串并SC转换器。在运行中,关闭开关1,电容器C2充电而电容器C1放电。关闭开关2具有互补效果。

图32示出了符合图3中所示结构的双向上下转换器。在此实施例中,调节电路16A为同步四开关升降压转换器,开关网络12A为具有4:1的转换比的两相阶升级联乘法器。在运行中,关闭标记为1的开关,电容器C4、C5和C6充电而电容器C1、C2和C3放电。关闭开关2具有互补的效果。所有的有源组件都用开关实现,使得转换器能够处理双向电力。

图33示出了一种符合图2中所示结构的反相上下转换器。在此实施例中,开关网络12A为具有2:1的转换比的阶升串并SC转换器,调节电路16A为降压/增压转换器,且开关网络12B为具有2:1的转换比的阶升串并SC转换器。在运行中,关闭开关1,电容器C1充电,而关闭开关2,电容器C1放电。类似地,关闭开关7,电容器C2放电,而关闭开关8,电容器C2充电。

图34示出了一种符合图2中所示结构的双向反相上下转换器。在此实施例中,开关网络12A为具有2:1的转换比的两相阶升串并SC转换器,调节电路16A为同步降压/增压转换器,且开关网络12B为具有2:1的转换比的两相阶升串并SC转换器。在运行中,关闭开关1,电容器C1充电而电容器C2放电。关闭开关2具有互补的效果。类似地,关闭开关7,电容器C4充电而电容器C3放电。关闭开关2具有互补的效果。所有的有源组件都用开关实现,使得转换器能够处理双向电力。

图35示出了一种符合图4中所示框图的阶降转换器。在此实施例中,调节电路300A为增压转换器,开关网络200为具有2:1的转换比的两相阶升串并SC转换器,且调节电路300B为增压转换器。在运行中,关闭标记为1的开关,电容器C1和C2充电,而同时电容器C3和C4放电。关闭开关2具有互补的效果。

图36显示了一种符合图4中所示框图的双向上下转换器。在此实施例中,调节电路300A为同步增压转换器,开关网络200为具有3:2的转换比的两相分数阶降串并SC转换器,且调节电路300B为同步降压转换器。在运行中,关闭开关1,电容器C3和C4充电,而同时电容器C1和C2放电。关闭开关2具有互补的效果。所有的有源组件都用开关实现,使得该转换器能够处理双向电力。

应理解的是,调节电路的拓扑可为具有调节输出电压的能力的任意类型的电源转换器,包括但不限于:同步降压、三级同步降压、SEPIC、软开关或谐振转换器。类似地,根据期望的电压转换和允许的开关电压,开关网络可通过各种开关电容器拓扑实现。

已经描述了一个或多个优选的实施例,本领域的那些普通技术人员应容易理解的是,可使用包含这些电路、技术和概念的其它实施例。因此,这表示,本专利的范围不应限制于所描述的实施例,相反地,其应仅应受限于所附的权利要求的精神和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1