数控降压-升压调节器的制作方法与工艺

文档序号:12039982阅读:160来源:国知局
数控降压-升压调节器的制作方法与工艺
数控降压-升压调节器相关申请引用本申请要求2012年4月20日提交的题为“DigitallyControlledBuck-BoostRegulator”的美国临时专利申请号61/636,130的优先权,其内容通过引用特此整体地结合。

背景技术:
降压-升压转换器电路允许转换器在三个不同模式中的一个下进行操作:(1)降压模式(VOUT<VIN),(2)升压模式(VOUT>VIN),以及(3)降压-升压模式(VOUT≈VIN)。在其中输入电压可以在宽范围内改变的应用中,可以采用此类转换器作为调压器。在此类转换器中存在的某些挑战是在所有操作模式上使效率最优化以及以无缝方式在各种模式(即降压/升压/降压-升压)之间转移,其中,几乎不存在对输出电压质量的影响。

技术实现要素:
在本公开的一个实施例中,数控降压升压调节器包括H桥电路,其包括被配置成接收输入电压信号并基于该输入电压信号和向其提供的开关信号来生成输出电压信号的多个开关。该调节器还包括被配置成响应于输出电压信号的值而生成脉宽调制(PWM)控制值的控制器以及被配置成接收PWM控制值并生成所映射PWM控制值并且被配置成响应于此而输出所映射PWM值的量化器。该调节器还包括被配置成基于所映射PWM值而生成开关信号并将所生成的开关信号提供给H桥电路的数字脉宽调制器。在本公开的另一实施例中,数控降压升压调节器包括:H桥电路,其包括被配置成接收输入电压信号并基于该输入电压信号和向其提供的开关信号来生成输出电压信号的多个开关;以及被配置成响应于输出电压信号的值而生成脉宽调制(PWM)控制值的控制器。该调节器还包括量化器,其被配置成接收PWM控制值并生成用于在PWM控制值的预定范围之外的PWM控制值的第一映射,并且生成用于在预定范围内的PWM控制值的第二、不同映射,并被配置成响应于此而输出所映射PWM值。该调节器还包括被配置成基于所映射PWM值而生成开关信号并将所生成的开关信号提供给H桥电路的数字脉宽调制器。控制降压-升压调节器的方法包括:基于调节器的反馈输出电压而生成脉宽调制(PWM)控制值,并且确定PWM控制值是否在预定值范围内。该方法还包括:如果PWM控制值在预定值范围之外,则基于第一映射函数将PWM控制值映射到所映射PWM控制值;并且如果PWM控制值在预定值范围内,则基于第二、不同映射函数将PWM控制值映射到所映射PWM控制值。该方法还包括基于所映射PWM控制值来计算占空因数并确定是降压操作模式还是升压操作模式。附图说明图1是图示出根据本公开的一个实施例的数控降压-升压转换器的电路示意图。图2A—2C是图1的H桥电路的电路示意图,其中,分别地图示出降压模式(图2A)、升压模式(图2B)和旁路模式(图2C)下的开关方案;以及图3是图示出根据本公开的另一个实施例的以数字方式控制降压-升压转换器的方法的流程图。图4是图示出根据本公开的实施例的采用数控调节器的便携式设备的方框级图。具体实施方式现在将参考附图来描述本公开,其中,相同的参考标号自始至终用来指示相同的元件,并且其中,所图示的结构和设备不一定按比例描绘。本公开通过消除降压-升压操作模式并采用具有数字脉宽调制器(PWM)的数字控制环路以保证从降压至升压模式的过渡为无缝而使效率最优化并提供降压-升压转换器中的无缝模式切换。此外,本公开的降压-升压转换器有利地完全消除了降压-升压操作模式,因此避免了其中H桥驱动电路中的全部四个开关正在被动态地开关的操作模式。图1图示出DC-DC调节器,诸如根据本公开的一个实施例的降压-升压转换器100。转换器100包括H桥式驱动电路102,其包括在图中标记为A、B、C和D的、驱动诸如线圈的电感负载的四个开关。在降压操作模式下,接收到的输入电压VIN大于输出电压VOUT。在此类操作中,开关C在整个降压模式期间以静态方式关断(即打开)且开关D开启(即闭合),而开关A和B按照PWM时段被动态地开关,如图2A中所图示。针对25%的占空因数,例如,开关A被闭合且开关B打开达到PWM时段的25%,并且然后它们切换并且A打开且B被闭合达到PWM时段的剩余75%。在此整个时间期间,开关C关断,而开关D开启。仍参考图1的H桥驱动电路102,在升压操作模式下,接收到的输入电压VIN小于输出电压VOUT。在此类操作中,开关A在整个升压模式期间以静态方式开启(即闭合)且开关B关断(即打开),而开关C和D按照PWM时段被动态地开关,如图2B中所图示。例如,针对25%的占空因数,开关C开启,开关D关断达到PWM时段的25%,并且然后开关C关断且开关D开启达到PWM时段的剩余75%。在此整个时间期间,开关A开启而开关B关断。再次参考图1,还可以在避免任何动态开关的高效旁路模式下驱动H桥驱动电路102。在此类旁路模式下,开关B和C被静态地保持关断,并且开关A和D被静态地保持开启,导致输入电压VIN经由线圈被直接耦合到输出端,如图2C中所图示。在这种情况下,输出电压VOUT近似输入电压VIN,并且由于未执行开关A、B、C和D的动态开关,避免了与之相关联的动态损耗。如下面将更全面地认识到的,本发明将先前把调节器置于降压-升压模式的PWM控制值映射到生成旁路模式的一个或多个值,因此完全避免降压-升压操作模式。虽然图1图示出用以实现DC-DC转换器的H桥驱动电路102,但可以采用其他类型的DC-DC转换器电路,诸如Dickson电荷泵和开关电容器DC-DC转换器。可以采用采取输入电压并基于该输入电压根据向其提供的开关信号来提供输出电压的任何电路,并且预期所有此类变化落在本公开的范围内。如图1中所图示,输出电压VOUT被反馈到模数转换器104(数字控制环路)以生成数字化输出电压值106。控制器108接收数字化输出电压值106,并生成基于VOUT/VIN的PWM控制值(PIDOUT)110。也就是说,控制器108采取数字化输出电压值106,并且将其连同输入电压VIN的数字值一起用来计算PWM控制值(PIDOUT)110。例如,在一个实施例中如下计算稳态(或平均)PWM控制值(PIDOUT)110:VOUT/VIN=(100–PIDOUT)/100,针对PIDOUT>0(降压模式),以及VOUT/VIN=100/(100+PIDOUT),针对PIDOUT<0(升压模式)。对于降压模式(VIN>VOUT)而言,并且因此:PIDOUT=100–100(VOUT/VIN),因此,对于降压模式而言,PIDOUT>0,以及对于升压模式(VOUT>VIN)而言,并且因此:PIDOUT=100(VIN/VOUT)-100,因此,对于升压模式而言,PIDOUT<0。应认识到的是,在本公开的一个实施例中,控制器108包括PID(比例积分微分)控制器或PI控制器。在这种背景下,实际上不执行以上计算,而是替代地反馈输出电压VOUT并且响应于此而生成误差信号,并且PID控制器108执行控制算法以使误差最小化。然而,在稳态背景下,PIDOUT值将近似为了帮助认识本公开的控制而提供的以上等式。另外,虽然提供了PID或PI控制器作为一个示例,但应理解的是,可以采用任何类型的控制器或控制算法并且预期此类替换落在本公开的范围内。此外,可以利用查找表(LUT)类型的解决方案,其中,对于给定VOUT值而言,从查找表中选择特定PIDOUT值。然后将所计算的PWM控制值(PIDOUT)110提供给量化器/映射器电路112,其输出PWM控制值114(其表示期望的占空因数)。此值构成PWM控制值(PIDOUT)110到避免降压-升压操作模式的控制值的映射。例如,量化器/映射器电路112传递落在预定值范围之外的PIDOUT值的PIDOUT值110。在一个示例中,值的范围是:-10<X<10。因此,对于小于-10且大于10的值而言,传递PIDOUT值并且由此计算占空因数。此外,针对落在预定范围内的PIDOUT的值,在一个实施例中如下映射PIDOUT值:-10<PIDOUT<-5,则PIDOUT被迫使为=-10-5<PIDOUT<5,则PIDOUT被迫使为=05<PIDOUT<10,则PIDOUT被迫使为=10。如在用于所映射PIDOUT的以上等式中可以看到的,对于降压-升压操作模式(VIN≈VOUT)而言,PIDOUT接近于零。因此,对于接近于零的PIDOUT的小值而言,为了避免降压-升压模式(即,其中,占空因数将接近于100%,但不是100%,并且其中开关是低效的,因为剩余的百分比完全被开关的动态性质消耗)下的操作,使用迫使转换器进入旁路模式的映射。在这种情况下,简单地根本不执行任何开关并将占空因数保持在100%是更高效的。如在这种情况下可以认识到的,开关A和D被连续地闭合,并且开关B和C连续地打开且H桥驱动电路102在连续旁路模式下操作。因此,量化器/映射器112采取接近于零的引起次优效率的PIDOUT值110,并迫使此类值为零以在旁路模式下操作。此外,也在预定范围内但距离零更远的PIDOUT值110分别被迫到范围边缘。因此,在一个实施例中,在-5与-10之间的PIDOUT值110被迫使为-10(负范围边缘),而在5和10之间的PIDOUT值110被迫使为10(正范围边缘)。因此,在-10与10之间允许的唯一值是零。虽然本实施例利用范围-10<X<10,但应理解的是,可以根据需要使此范围扩展或收缩,其中,映射范围的尺寸反映设计权衡,因为较宽的范围以时域脉动为代价改善效率。仍参考图1的转换器100,噪声成形器块116从量化器/映射器112接收量化误差(Qerror)。例如,如果被传递至量化器/映射器112的PIDOUT110值是-6的值,则量化器/映射器112迫使此值为-10,因此引入4的量化误差。此值(Qerror)被传递至噪声成形器116,其将信息传递至控制器108以用于未来计算。用一阶式噪声成形器,块116简单地将量化误差传递至控制器108。替换地,用二阶或更高阶的噪声成形器,块116可以计算修正因数,其为当前量化误差的函数以及前一量化误差的函数。此外,噪声成形器116可以利用使用其他因数的进一步成形,并且预期此类替换落在本公开的范围内。在如何能够利用量化误差来修改PWM控制值的一个示例中,如果下一个PIDOUT值再次为-6,则控制器108将4的前一量化误差与该值相加以获得值-2。由于此“已修正值”在-5和5之间,所以其被量化器/映射器112迫使为零,并且计算出-2的量化误差(Qerror)。此值然后将在控制器108处与PIDOUT的下一值相加,以此类推。量化器/映射器112还操作以将PIDOUT的负值(升压模式值)映射到能够被下游数字脉宽调制器(PWM)118适当地解释的正值。我们知道,对于降压模式而言VOUT/VIN=D(占空因数),并且在升压模式下VOUT/VIN=1/(1-D)。使用先前提供的PIDOUT等式,我们能够根据PIDOUT在映射器112中计算占空因数,其中D=(100-PIDOUT)/100,对于降压模式而言,PIDOUT>0,以及D=1-((100+PIDOUT)/100),对于升压模式而言,PIDOUT<0。另外,量化器/映射器112经由模式信号120向降压或升压块122指示,使得块122知道哪些开关将动态地操作。例如,如果DPWM118从量化器/映射器112接收到20%的占空因数值114,则DPWM118生成信号,其中,PWM时段的20%,信号为“高”,并且PWM时段的80%,信号为“低”。如果PIDOUT值是正的,则量化器/映射器112在线路120上输出指示降压模式的第一状态,并且因此,来自DPWM118的20%占空因数信号被提供给开关A和B(A开启达20%,B关断达20%,然后A关断达80%且B开启达80%),同时C被保持关断并且D被静态地保持开启达到整个PWM时段。替换地,如果量化器/映射器112在线路120上输出指示升压模式的第二状态(PIDOUT是负的),则20%占空因数信号被提供给开关C和D(C开启达20%,D关断达20%,然后C关断达80%且D开启达80%),同时A被保持开启且B被静态地保持关断达到整个PWM时段。在图3中图示出控制降压-升压调节器的方法。虽然下面将方法200图示为和描述为一系列动作或事件,但将认识到的是本公开不受此类动作或事件的所图示排序限制。例如,根据本发明,某些动作可以按照不同的顺序和/或与除本文中所图示和/或所描述的那些之外的其他动作或事件同时地发生。另外,可能并不要求所有的所图示步骤以实现根据本公开的方法。方法200通过反馈降压-升压调节器的输出电压VOUT在202处开始。在一个非限制性实施例中,此类反馈来自H桥驱动电路,诸如图1的转换器102。在204处,基于反馈输出电压VOUT而生成PWM控制值。在一个实施例中,PWM控制值可以包括从图1中的控制器108输出的值110。在一个实施例中,PWM控制值是基于输出电压VOUT和输入电压VIN,其中,其比率指示转换器是在降压模式还是升压模式下操作。在一个非限制性实施例中,PWM控制值可以包括图1的PIDOUT110,其可以以稳态方式如由下式近似的那样来表征:PIDOUT=100–100(VOUT/VIN),对于降压模式而言,以及PIDOUT=100(VIN/VOUT)–100,对于升压模式而言。如以上针对图1所突出强调的,方法200可以使用PID式控制器,其根据反馈的VOUT来确定误差信号并且采用旨在使误差信号最小化的控制算法。以上等式简单地表征在调节器以稳态式方式操作的情况下此类值可能看起来像什么。在动态模式下,该值可以改变。仍参考图3的方法200,在206处进行PWM控制值是否落在预定值范围内的查询。在一个实施例中,所述预定值范围被选择为例如通过避免在95-99%范围内的占空因数来排除调节器的低效操作模式。如果PWM控制值未落在该范围内(在206处,否),则在208处用第一映射函数来映射PWM控制值。在一个示例中,第一映射函数是单位函数,其中,PWM控制值保持相同,其中,40的值例如被映射到40的所映射PWM控制值,或者-30的值被映射到-30的所映射PWM控制值。返回参考查询206,如果PWM控制值确实落在预定值范围内(在206处是),则方法200前进至210,其中,用不同于第一映射函数的第二映射函数来映射PWM控制值。在一个示例中,第二映射函数采取在-10<X<10之间的值,并且如下对其进行映射:-10<PIDOUT<-5,PIDOUT被迫使为–10,-5<PIDOUT<5,PIDOUT被迫使为0,以及5<PIDOUT<10,PIDOUT被迫使为10。在这种情况下,可以看到第二映射函数迫使PWM控制值为零或者在范围边缘处的值。在这种情况下,发生量化误差,并且在212处计算此类误差。例如,如果PWM控制值为-8,则第二映射函数将值映射到-10,并且在212处计算2的量化误差。量化误差被反馈到步骤204,使得正在生成的下一个PWM控制值将所计算的量化误差考虑在内。例如,如果下一个PWM控制值是-6,则可以使用2的量化误差来将值调整为-4,并且因此在210处第二映射函数然后将迫使此值为零,在212处导致-4的新的量化误差。因此,此值可以添加到下一个生成的PWM控制值,并且被以某种方式用来在204处修改下一个生成的PWM控制值,以此类推。方法200在214处通过采取所映射PWM控制值(无论是来自208处的第一映射函数还是210处的第二映射函数)并基于所映射PWM控制值来计算占空因数而继续。在一个实施例中,所映射PWM控制值可以是来自如图1中所示的量化器/映射器112的映射PIDOUT值,并且可以将占空因数计算为:D=(100-PIDOUT)/100,对于降压模式而言,PIDOUT>0,,以及D=1-((100+PIDOUT)/100),对于升压模式而言,PIDOUT<0。另外,方法200在216处确定在调节器中是将采用降压还是升压模式。在一个实施例中,使用所映射PWM控制值的符号(例如,正或负)来进行确定。在一个示例中,如以上突出强调的,针对所映射PWM控制值的负值,进行将在升压模式下切换的确定,而如果映射值为正,则在216处进行将使用降压模式切换的确定。图3的方法200然后在218处结束,其中,用所选占空因数且用所确定降压或升压模式切换方案来驱动H桥驱动电路。如果需要的话,方法200还可以通过馈送从所计算占空因数得到的合成输出电压VOUT并在H桥驱动电路处切换方案返回到202且重复而继续。虽然本文中的图1图示出采用利用量化器/映射器112的至少两个不同类型的映射的数字DC-DC转化器解决方案,但在另一个实施例中,可以消除量化器/映射器112,在这种情况下,控制器108生成PWM控制值110,并且直接将控制值提供给数字PWM118,其然后基于PWM控制值110而生成适当占空因数的开关信号。在这种情况下,由于未执行映射,所以未采用模式信号120,并且因此不再需要块122。因此,数字PWM118直接向DC-DC转换器诸如H桥电路102提供开关信号。此外,由于未执行映射,所以数字PWM118将生成开关信号,其中,所有模式都是可用的;亦即,降压模式、升压模式以及降压/升压模式,其中,全部的四个开关被动态地开关。以上述方式,实现了数控转换器电路,特别是数控降压-升压式调节器。图4图示出其中在高级系统中采用调节器的系统级图。在此非限制性示例中,例如移动电话、个人数字助理、平板或膝上型计算机设备的便携式设备300具有电池310,其提供能够随时间而变的电池电压320。诸如在本文中的图1中所图示的数控调节器330接收电池电压320,并且在其输出端处提供已调节电压340。已调节电压340然后被提供给便携式设备300内的一个或多个子电路350。特别关于由上述部件或结构(组件、器件、电路、系统等)执行的各种功能,除非另外指明,用来描述此类部件的术语(包括对“装置”的参考)意图对应于执行所描述部件的指定功能的任何部件或结构(例如,在功能上等价),即使在结构上并不等价于执行本发明的本文中所图示的示例性实施方式中的功能的公开结构。另外,虽然可能已相对于多个实施方式中的仅一个公开了本发明的特定特征,但可以将此类特征与其他实施方式的一个或多个其他特征组合,如对于任何给定或特定应用而言可能是期望的和有利的。此外,在在详细描述和权利要求中使用术语“包括”、“具有”、“带有”或其变体的程度上,此类术语意图以与术语“包含”类似的方式是包括性的。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1