包括具有谐振隔离级的AC/DC转换器的车辆电池外部装载装置的制作方法

文档序号:14453227阅读:233来源:国知局
包括具有谐振隔离级的AC/DC转换器的车辆电池外部装载装置的制作方法

本发明涉及一种包括隔离的AC-DC转换器的充电装置,该充电装置尤其适合于用作电动车辆的车载装置或者用作电动车辆外部的装置。



背景技术:

众多可移动载具(craft)使用电能并配备有电池,例如电动车辆、工作平台、托盘车等。这些载具通常包括直接安装在可移动载具上的车载充电器(即,电池充电器)。它们也可与外部电池充电装置一起使用。

这些充电器的主要功能是从配电网络上可用的电力对电池再充。因此,它们将交流电转换为直流电。

充电器(更具体地讲,车载充电器)的所需标准是高输出、低空间要求、电流隔离、良好的可靠性、操作安全性、电磁干扰辐射低以及输入电流上的低谐波率。

为了利用电流隔离实现AC-DC转换功能,使用具有两个转换器的结构是已知的:

-第一AC-DC转换器,被称作预调节器,其包括功率因数校正电路以便限制输入电流谐波;

-第二DC-DC换器,其用于调节充电。该DC-DC转换器还为了操作安全而提供电流隔离功能。

第一转换器通常输送恒定输出电压,第二转换器调节供应电池的电压和输出电流。

这种系统对于某些应用(例如,用于低功率装置(例如,等离子屏幕或LCD屏幕电视机)的电源)而言是令人满意的。在输送的功率显著较高的用于电动车辆型机动化装置的电池的电源的范围内,充电装置必须适应供应电池的电压和输出电流的显著变化。

由于输出条件的这种变化,DC-DC转换器在宽范围的条件下使用,尤其是在系统性能劣化的次优条件下使用。考虑到所使用的高功率,这种劣化尤其有害。

因此,仍需要改进被设计为向机动化装置(尤其是电动车辆)的电池供电的充电装置的性能。



技术实现要素:

本发明首先涉及一种用于机动化装置的电池的充电装置,所述充电装置包括:

-第一转换模块;

-第二转换模块;

-用于控制第一转换模块的装置;

所述第一转换模块适于将输入交流电流转换为中间电流并向第二转换模块供应中间电流;

所述第二转换模块适于将中间电流转换为输出电流并向电池供应所述输出电流;

所述中间电流是直流电流,所述输出电流也是直流电流;

所述控制装置适于根据所述第二转换模块的操作参数调节中间电流的电压。

根据一个实施方式,所述控制装置适于根据输出电流的电压和/或功率和/或强度调节中间电流的电压。

根据一个实施方式,所述第二转换模块是以优选为可变的开关频率操作的包括电流隔离的开关转换模块,并且优选地,所述控制装置适于根据所述开关频率调节中间电流的电压。

根据一个实施方式,所述第二转换模块包括具有至少一个谐振频率的谐振电路。

根据一个实施方式,所述第二转换模块包括:开关子模块,其与所述谐振电路相关联,适于将中间电流转换为具有开关频率的第一交流电流;变换子模块,其适于将第一交流电流转换为第二交流电流;整流子模块,其适于将第二交流电流转换为输出电流。

根据一个实施方式,所述谐振电路是包括至少一个电容器和至少一个电感器的LC型或LLC型电路。

根据一个实施方式,所述控制装置适于调节中间电流的电压,以使得开关频率可被调节为设定点值。

根据一个实施方式,所述开关频率的设定点值等于谐振频率或者大于谐振频率,优选等于谐振频率的1.05至1.80倍,更优选地,等于谐振频率的1.10至1.50倍。

根据一个实施方式,所述第一转换模块包括功率因数校正电路。

根据一个实施方式,所述第一转换模块包括用于测量中间电流的电压的装置以及用于将所述电压调节为设定点电压的装置;所述控制装置适于调整(modulate)用于测量中间电流的电压的所述装置。

根据一个实施方式,所述控制装置包括第一转换模块的数字控制器。

根据一个实施方式,所述装置适于按照以下条件操作:中间电流的电压介于270V到440V之间,优选介于290V到430V之间;和/或输出电流的电压介于20V到550V之间,优选介于24V到500V之间;和/或输出电流的功率介于500W到6000W之间,优选介于500W到3600W之间。

根据一个实施方式,所述装置适于安装在机动化装置上。

根据一个实施方式,所述装置适于在所述装置的外部连接到所述机动化装置。

根据一个实施方式,所述机动化装置是车辆,优选是电动的机动车。

本发明的另一目的是一种给机动化装置的电池充电的方法,该方法包括以下步骤:

-交流供应电流向中间电流的第一转换;

-所述中间电流向输出电流的第二转换;

-向所述电池供应所述输出电流;

所述中间电流是直流电流,所述输出电流也是直流电流;

所述方法还包括以下步骤:

-根据所述第二转换的参数调节所述中间电流的电压。

根据一个实施方式,根据输出电流的电压和/或功率和/或强度的值调节中间电流的电压。

根据一个实施方式,所述第二转换利用包括具有谐振频率的谐振电路的转换模块来执行,并且优选地,根据谐振频率调节中间电流的电压。

根据一个实施方式,所述第二转换包括直流电流向具有开关频率的交流电流的中间转换。

根据一个实施方式,将所述开关频率调节为设定点值。

根据一个实施方式,所述开关频率的设定点值等于谐振频率或者大于谐振频率,优选等于谐振频率的1.05至1.80倍,更优选地,等于谐振频率的1.10至1.50倍。

根据一个实施方式,所述中间电流的电压介于270V到440V之间,优选介于290V到430V之间,和/或其中,所述输出电流的电压介于20V到550V之间,优选介于24V到500V之间,和/或其中,所述输出电流的功率介于500W到6000W之间,优选介于500W到3600W之间。

根据一个实施方式,所述机动化装置是车辆,优选是电动的机动车。

本发明还涉及一种包括上述充电装置以及电池的机动化装置。

根据一个实施方式,此机动化装置是车辆,优选是电动的机动车。

本发明能够克服现有技术的缺点。更具体地讲,它提供一种用于机动化装置(尤其是用于车辆)的充电装置,所述充电装置的性能得以改进。

这通过在充电期间根据第二DC-DC转换器的(有效)操作参数调节由第一AC-DC转换器输送的直流电压来实现。实际上,无论所使用的DC-DC转换器的类型如何,它有对其操作而言最优并提供最佳特性的使用条件(例如,输出、产生的电磁干扰级别或者本申请中期望的任何其它性能条件)。这些条件取决于各种参数(例如,输入电压、输出电压、这两个电压之比、传输的功率)。

根据转换器的输出电压或功率或内部参数(例如,开关频率或占空比或任何其它操作参数)来实现调节。

例如,根据输送给电池的输出电流的电压和强度,并且可选地,根据此电流的功率,来调节由第一AC-DC转换器输送的直流电流的电压。这样,第二DC-DC转换器总是在接近预定义的最佳操作条件的条件下操作。

当第二DC-DC转换器是谐振转换器(例如,包括LC或LLC串联谐振电路的转换器)时本发明所提供的优点尤其显著,因为在这种情况下,转换器的输出和效率高度取决于所述第二转换器的操作参数。

附图说明

图1示意性地示出根据本发明的在电池充电模式下操作的充电装置。

图2是根据一个实施方式的在本发明的范围内使用的DC-DC转换器的电路的功能图。

图3是根据一个实施方式的在本发明的范围内使用的AC-DC转换器的电路的功能图。

图4示意性地示出根据本发明的在电池充电模式下操作的充电装置的实施方式。

图5示意性地示出根据本发明的一个实施方式的允许控制中间电流的电压的电路。

图6是示出对于图2所示的DC-DC转换器,针对不同的质量系数(标号为Q),根据开关频率与谐振频率之比(横坐标)而变化的增益(纵坐标)的曲线。

具体实施方式

现在将在以下描述中以非限制性方式更详细地描述本发明。

参照图1,充电装置2被设计为给机动化装置的电池5充电。该装置可以被集成在机动化装置的内部或者机动化装置外部的充电系统中,或者还可以是独立的。电池5适于输送直流电流(称作输出电流,具有电压(标号为Us)),以及电池5适于由直流电流充电。

根据优选实施方式,所述机动化装置是电动车辆,尤其是机动车。在其它实施方式中,机动化装置可以是诸如叉车、高空作业平台或托盘车的装卸设备。

电池5表示车辆(或载具)的牵引电池(traction battery),即,负责向车辆(或载具)的电机供电的电池。将理解,此电池5可表示单个电池或一组电池。

电压Us通常介于20到550V之间,优选介于24到500V之间。

在对电池5充电时,例如,电压US可在300V和500V的极值之间变化。

充电装置2包括第一转换模块3和第二转换模块4。根据一个实施方式,本发明的充电装置包括壳体,第一转换模块3和第二转换模块4(以及可能的下述控制装置6)布置在该壳体中。该壳体可被集成或装载在机动化装置或者车辆上,或者也可设置在外部系统(例如,车辆充电终端)中。

第一转换模块3适于将交流供电电流(输入电流)转换为直流电流(称作中间电流,并具有电压(标号为Ui)。在充电模式下,供电电源1(例如,电网)向第一转换模块3供应交流电流。

输入电流可为单相(例如,电压为85V至265V)、或两相(例如,电压为200V至250V)、或多相(尤其是三相)(例如,电压为380V至420V)。

第一转换模块3向第二转换模块4供应电压Ui的直流电流。

第二转换模块4适于将电压Ui的中间直流电流转换为电压Us的直流输出电流,该直流输出电流供应给电池。

第一转换模块3优选包括功率校正电路以便限制输入电流谐波。这种电路还具有在宽范围的输入电压上操作的优点。

参照图3,图3示出(例如)单相正弦吸收升压转换器(PFC)的功能图,转换器3接受通用交流输入电压(例如,介于80V到265V之间),并输送直流输出电压(例如,400V)。

在所示示例中,供电电源31连接到功率因数校正电路,该功率因数校正电路在此示例中为单相,由二极管桥32、电感器33、控制和调节电路34、受控开关39(在这种情况下,由绝缘栅场效应晶体管(MOSFET)表示)、整流二极管35和滤波电容器36组成。在先前描述中被称作中间电流的电流在电路的端子37、38处获得。此电路用作预调节器,其输入电流的波形与输入电流的电压的波形相同。在正弦电源的情况下,吸收的电流为正弦,输出为直流电压电流。

参照图2,第二转换模块4包括输入端子11a、11b,其被设计为接收来自第一转换模块3的电压电流Ui。电压Us的直流电流被输送至输出端子17a、17b。

第二转换模块4优选为包括电流隔离的开关转换模块,即,它包括:开关子模块12,其将中间直流电流转换为交流电流,所述交流电流的频率被称作开关频率;变换子模块14,其接收所述交流电流,包括两个电路的磁耦合,并提供电流隔离;整流子模块15,其将来自变换子模块的交流电流转换为直流输出电流。

另外优选地,第二转换模块4是谐振转换器。谐振转换器是存在至少一个给定谐振频率的转换器,当开关频率等于谐振频率时,开关电路的开关条件为最佳。

此谐振电路(应使开关频率接近谐振频率)允许高输出操作。

在所示示例中,第二转换模块4既是具有包括电流隔离的开关的转换模块,也是谐振转换器。

更具体地讲,开关子模块12连接到输入端子11a、11b。由开关子模块12生成的交流电流通常具有方波波形。它可利用开关元件来生成。例如,可使用经由开关子模块12的半桥或全桥。

谐振电路13连接到开关子模块12。在这种情况下,这涉及LLC型电路(即,包括串联的电容器18、第一电感器19和第二电感器20)。然而,还可使用(例如)包括电容器和单个电感器的LC型电路。

变换子模块14连接到谐振电路13,在所示示例中,它连接到第二电感器20的端子。

谐振电路13包括至少一个谐振频率。例如,LLC电路包括两个谐振频率,本发明的要求所关注的谐振频率是这两个谐振频率中较高的一个。此频率通过存在于该电路中的电容器的电容值和电感器的电感值来确定。

在所示示例中,如果Lr表示第一电感器19的电感值,Cr表示电容器18的电容值,则此谐振频率等于:

整流子模块15连接到变换子模块14的端子。整流子模块15在同步整流的情况下通常包括一组二极管或绝缘栅场效应晶体管(MOSFET),或者具有等同功能的任何其它组件。

滤波子模块16可设置在整流子模块15的输出处。例如,此滤波子模块16可包括具有电容器的低通滤波器。

第二转换模块4的输出端子17a、17b连接到滤波子模块16。

作为变型,上述谐振电路13可由任何类型的电流隔离电路代替(例如,带有包括占空比调制(“前向”,“推挽”、“串联斩波”等)的直接转移或带有相移调制的转换器)。

可针对各个给定的第二转换模块4定义最佳操作条件。

因此,本发明以用于控制第一转换模块3的装置6的形式提供控制,所述装置适于根据电池5充电的演变来调节中间电流的电压Ui,以使得第二转换模块4贯穿充电周期实际在预定义的最佳条件下操作。

此闭环控制可按照多种方式来执行(或者通过作为测量的电压和电流条件的函数建立的变化规律,或者基于所述测量或转换器4的操作的直接控制)。

在谐振型转换器的示例中,这通常主要涉及维持开关频率接近转换器的谐振频率。

更具体地讲,在输出电流的电压Us和/或功率由于充电(电池5)而变化的情况下,控制允许修改第二转换模块4的频率和/或开关占空比以使DC-DC转换适应充电所强加的新条件。

这种控制往往会有损于第二转换模块4的最佳操作条件。所以,在第一转换模块3上提供第二闭环控制以修改中间电流的电压Ui的值。因此,可使开关频率返回其设定点值,以使得第二转换模块4返回其预定义的最佳操作条件。

在谐振型转换器4的情况下,开关频率的设定点值尤其可等于谐振频率。实际上,当开关频率等于谐振频率时,输出最大,并且电磁干扰最小。

另选地,可选择将开关频率调节为与谐振频率不同的频率值(尤其是高于谐振频率,但接近所述频率)。

在参照图6(该图示出根据相对于谐振频率Fr正规化的开关频率Fs的电压增益)的示例示出的LLC谐振电路13的情况下,可以看出当质量系数Q等于3时,当Fs/Fr=1时增益最大。因此,有利的是在增益根据开关频率以单调方式变化的区域中,将开关频率的设定点设定为比谐振频率的值高大约15%至20%的值。

图4示出如上面参照图1大致描述的充电装置的特定实施方式。根据此特定实施方式,充电装置102还包括第一转换模块103和第二转换模块104,它被设计为从供电电源101对电池105充电(如上所述)。它还包括用于控制第一转换模块103的装置106、107,根据此特定实施方式,所述装置包括测量模块106和控制模块107。

例如,测量模块106包括能够接收与第二转换模块104的开关频率有关的信息的输入108以及能够接收与输出电流(由第二转换模块104输送的电流)有关的至少一个信息项的输入109。例如,输入109能够接收与输出电流的电压、强度和/或功率有关的信息。

测量模块106与控制模块107之间还设置有传输线110。控制模块107还包括能够接收与中间电流的电压(电压Ui)有关的信息项的输入111。最后,控制模块107包括能够修改第一转换模块103的操作的控制输出112。

上述特定实施方式允许根据选自(例如)输出电流的电压值、输出电流的强度、输出电流的功率、第二转换模块的开关频率和中间电流的电压的一个或更多个信息项来调整供应给第二转换模块104的中间电流的电压。

参照图5,现在将描述用于调节中间电流的电压的装置的示例。

在此示出的示例中,第一转换模块103包括用于测量由所述模块输送的电流的电压(电压参考Ui以上)的装置。此装置包括(例如)分压电路,该分压电路包括两个电阻器113、114。第一转换模块103的控制装置106、107继而包括电流设定点生成器115,该电流设定点生成器115连接到电阻器113、114之一的端子。这样,控制装置106、107经由设定点电流生成器115通过第一转换模块13调整中间电流的电压的测量。

例如,数字控制器可用于开关频率、输出电流的强度、输出电流的电压、中间电流的电压的相应测量,以生成由第一转换模块103输送给用于测量电流的电压的装置的设定点电流,因此生成期望的最优化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1