发电系统的制作方法

文档序号:12372943阅读:193来源:国知局
发电系统的制作方法与工艺

本发明有关一种发电系统,尤其涉及一种具有多个储能单元和多个发电单元的发电系统。



背景技术:

如今利用可再生能源来发电已经成为一种趋势被越来越广泛地应用。例如风力发电,风电已经成为我国第三大电源。一般风电场设有多个风机,分别接收风能并将风能转换成电能提供给电网。每一个风机具有风力涡轮机、AC发电机和整流器等形成发电单元,将风能转换成电能。每一个风机还具有储能单元,可以在产生的电能较多时储存一部分电能,还可以在产生的电能较少时释放一部分电能给电网。在某些时候风电场中的部分风机会停止工作,例如风机的发电单元出现故障或需要维护而停止工作、风力不佳的时候风机停止工作、或其他一些风机的发电单元停止工作的情况。因为每一个风机都是独立运行,所以此时储能单元处于闲置的状态,如此造成资源的浪费。

因此,有必要提供一种系统来解决上面提及的至少一个技术问题。



技术实现要素:

本发明的一个方面在于提供一种发电系统。该发电系统包括:若干发电单元;若干储能单元;若干开关单元,用来连通或断开所述发电单元和所述储能单元;及控制器,用来当一个或多个发电单元不工作时控制所述开关单元,来断开不工作的发电单元和所对应的储能单元,且根据所述储能单元的充电状态来连通断开的储能单元至其中一个运行的发电单元。

附图说明

通过结合附图对于本发明的实施方式进行描述,可以更好地理解本发明,在附图中:

图1所示为本发明的发电系统的一个实施例的示意框图;

图2所示为本发明的发电系统的一个实施例的部分结构示意图;

图3所示为图1所示的发电系统的所有发电单元都正常工作时的示意框图;

图4所示为图1所示的发电系统的其中一个发电单元不工作时的一个实施例的示意框图;

图5所示为图1所示的发电系统的其中两个发电单元不工作时的一个实施例的示意框图。

具体实施方式

除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。本发明专利申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。

图1所示为一个实施例的发电系统100的示意框图。本实施例中,发电系统100为风力发电系统,但不限于此。发电系统100包括若干发电单元11-13、若干储能单元15-17、若干开关单元K1-K3、M1-M3和控制器19。本实施例中,每一个发电单元11-13包括风力涡轮机(未图示)、AC发电机(未图示)和整流器(未图示)。发电单元11-13可将风能转换成电能。在其他实施例中,发电单元11-13可以是其他形式的发电单元,例如太阳能发电单元。仅为了图示说明的作用,图中仅示出了三个发电单元11-13及其所对应的储能单元15-17,但发电单元和储能单元的个数可以根据实际应用和实际风电场的规模确定。

储能单元15-17分别对应于发电单元11-13。储能单元15-17可以用来存储发电单元11-13产生的过剩的电能,也可以当发电单元11-13产生的电能不足的时候释放一部分电能给电网。每一个储能单元15-17可以具有一个或多个储能装置,例如电池、超级电容或者两者的组合。本实施例中,储能单元15-17通过DC-DC变换器20-22连接至发电单元11-13。DC-DC变换器20-22可以调节来自直流母线的直流电压的电压水平,输出直流电压给储能单元 15-17,也可以调节储能单元15-17输出的直流电压的电压水平,输出直流电压给直流母线。

开关单元K1-K3、M1-M3用来连通或断开发电单元11-13和储能单元15-17。开关单元K1-K3、M1-M3包括若干第一开关单元K1-K3和若干第二开关单元M1-M3。每一个发电单元11-13可通过第一开关单元K1-K3连接至对应的储能单元15-17且可通过第二开关单元M1-M3连接至其他的储能单元15-17。例如,图示的实施例中,发电单元11可通过第一开关单元K1电连接至对应的储能单元15,也可通过第二开关单元M1和M2电连接至储能单元16和储能单元17。类似地,发电单元12可电连接储能单元15-17,发电单元13可电连接储能单元15-17。然而在同一时刻,一个储能单元15-17仅电连接至一个发电单元12-13。如果一个储能单元同时电连接至多个发电单元,发电单元产生的电能不一样的时候,各自的DC电压总线的电压不相等,从而会损坏连接至DC电压总线的储能单元。

控制器19可用来控制开关单元K1-K3、M1-M3的断开和闭合。开关单元K1-K3、M1-M3物理连接在发电单元11-13和储能单元15-17之间,开关单元K1-K3、M1-M3的断开和闭合决定发电单元11-13和储能单元15-17之间的电性连接关系。在一个实施例中,控制器19还可以控制发电单元11-13、DC-DC变换器20-22等。在一个实施例中,控制器19可以包括风电场控制器、风力涡轮机控制器、功率变换器控制器、放电-充电控制器,该些控制器可以作为单独的元件,也可整合成一个元件。图中以模块框图的形式仅示出了发电系统100的部分元件,发电系统100还包括若干其他元件,例如AC-DC变换器、DC-AC变换器等。

图2所示为发电系统100的一个实施例的部分结构示意图。发电单元11包括风力涡轮机24和AC发电机26。风力涡轮机24用来响应接触风力涡轮机的风而旋转,以驱动AC发电机26,从而使得AC发电机26输出AC电压。转子侧变流器28(或称作整流器)用来接收来自AC发电机26的AC电压,且对AC电压进行整流,以获得DC电压。转子侧变流器28将DC电压输出在DC电压总线32上。DC电压总线32将DC电压传送到网侧变流器30(或称作换流器)和DC-DC变换器20上。

网侧变流器30用来接收来自DC电压总线32的DC电压,且将DC电压转换成AC电压。变压器34设置在网侧变流器30和AC电网36之间。该变 压器34被配置成给网侧变流器30和AC电网36之间提供隔离,并将网侧变流器30的输出电压升高成适合AC电网36输送的电压。可以理解的是,在其他实施方式中,通过一个直流-交流变流器或者网侧变流器直接将直流母线32的直流电压转换成具有适当频率和幅值的交流电压,以供AC电网36输送。在一些实施例中,发电系统100还包括转子侧控制器(未图示)和网侧控制器(未图示),分别控制转子侧变流器28和网侧变流器30。

在本实施例中,第一开关单元K1包括开关元件40和42。开关元件40设置在转子侧变流器28和AC发电机26之间,开关元件42设置在网侧变流器30和AC电网36之间。开关元件40和42可以用来连通或断开发电单元11和变流器28和30,从而可以连通或断开储能单元15与发电单元11。在另一个实施例中,转子侧变流器28和网侧变流器30可以作为第一开关单元K1,开关元件40和42可以省略。变流器28和30分别为开关元件组,包括若干相互连接的开关元件。可以通过控制器19控制变流器28和30的开关的开断来控制电流的通过或禁止电流通过,从而控制储能单元15和发电单元11的连通或断开。本实施例中,发电系统100还包括开关44,设置于发电单元11和AC电网36之间,可以用来连通或断开发电单元11和AC电网36。当发电单元11不工作时,可以断开开关44,从而从AC电网36上断开发电单元11。发电单元11正常工作时,开关44闭合。

本实施例中,储能单元15通过第二开关单元M1连接至与发电单元12连接的DC电压总线46,第二开关单元M1来连通或断开储能单元15与发电单元12。发电单元12和13的具体结构和运行等类似于发电单元11,开关单元K2和K3类似于开关单元K1,开关单元M2和M3类似于开关单元M1,储能单元16和17类似于储能单元15,此处仅以发电单元11和其对应的开关单元K1、M1及储能单元15作为示例进行详细地说明。

图3所示为发电系统100的所有发电单元11-13都正常工作时的示意框图。发电单元11-13均正常工作,发电单元11-13可以产生预期的电功率。此时第一开关单元K1-K3均闭合,第二开关单元M1-M3断开,从而发电单元11-13分别与储能单元15-17一一对应电连接。

图4所示为发电系统100的其中一个发电单元11不工作时的示意框图。作为一个示例,图4中的发电单元11不工作,发电单元12和13正常工作。控制器19用来控制开关单元K1-K3、M1-M3,来断开不工作的发电单元11和 所对应的储能单元15,且根据储能单元15-17的充电状态(State-of-Charge,SoC)来连通断开的储能单元15至其中一个运行的发电单元12或13。充电状态指储能单元的电荷量(即剩余的能量)与其可存储的最大电荷量的比例,一般表示为百分比。充电状态可以表示为储能单元的电压的平方与其最大额定电压的平方的百分比。本实施例中,控制器19控制第一开关单元K1断开,从而将储能单元15从发电单元11断开,且发电单元11从电网(未图示)上断开。而且控制器19至少根据储能单元15-17的充电状态来选择一个发电单元12或13,将断开的储能单元15连接至所选择的发电单元12或13上。本实施例中,控制器19控制第二开关M1闭合,将储能单元15电连接至发电单元12,从而储能单元15和16共同电连接至发电单元12来接收过剩的能量或释放部分能量。为了图示说明的目的,图4示出了一个具体的实施方式,但并不限于此。在其他实施例中,可能其他的发电单元不工作,或者多个发电单元不工作。

在一个实施例中,当断开的储能单元15的充电状态小于低门限值时,控制器19控制第二开关M1-M3来将储能单元15连通至具有最高充电状态的储能单元16和其对应的发电单元12。断开的储能单元15的充电状态小于低门限值,表明储能单元15的充电状态较低,将具有较低充电状态的储能单元15连通至具有较高充电状态的储能单元16,储能单元15和16共同电连接至发电单元12来接收或释放电能,储能单元15和16的结合使得储能单元具有较大的空间准备接收过剩的电能也具有足够的储备的电能释放给电网,如此较优地且更合理地利用储能单元。

当储能单元15的充电状态大于高门限值时,将储能单元15连通至具有最低充电状态的储能单元16和其对应的发电单元12。断开的储能单元15的充电状态大于高门限值,表明储能单元15的充电状态较高,将具有较高充电状态的储能单元15连接至具有较低充电状态的储能单元12,同样也可以较优且更合理地利用储能单元。

当储能单元15的充电状态处于低门限值和高门限值之间时,比较储能单元16和17的充电状态以及充电状态的倒数,获得该些储能单元16和17的充电状态和其倒数的一个最大值,将储能单元15连接至具有该最大值的储能单元16和其对应的发电单元12。

低门限值和高门限值可以根据实际应用和储能单元的特性设定。例如, 低门限值可以根据电池的特性设定,电池的充电状态太低(即电池的电量太低)时,继续放电会对电池的寿命有影响。低门限值可以设置为50%以下,例如20%或10%,但不限于此。高门限值可以设置为50%以上,例如2/3,但不限于此。

在另一个实施例中,控制器19根据储能单元15-17的充电状态以及断开的储能单元15至运行的发电单元12、13的距离来选择一个发电单元12或13。在一个实施例中,断开的储能单元15至运行的发电单元12、13的距离为储能单元15连接至发电单元12、13的电缆的长度。

当断开的储能单元15的充电状态小于低门限值时,控制器19用来根据运行的发电单元12、13的第一指标CL控制开关单元M1-M3来连通断开的储能单元15至一个运行的发电单元12。第一指标CL与充电状态的关系和第一指标CL与距离的关系相反。在一个实施例中,第一指标CL与充电状态正相关,第一指标CL与距离负相关。“正相关”指因变量值随着自变量值的增大而增大、减小而减小。此处第一指标CL随着充电状态的增大而增大、减小而减小。“负相关”指因变量值随着自变量值的增大而减小、减小而增大。此处第一指标CL随着充电状态的增大而减小、减小而增大。第一指标CL与充电状态、距离的关系如表达式(1)所示:

<mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>

其中,i为运行的发电单元及储能单元的代号,为了区分多个发电单元,区分多个储能单元。Si表示第i个储能单元的充电状态。li表示断开的储能单元15至第i个发电单元的距离。f1(·)为单调递增函数。控制器19控制开关单元M1-M3来连通断开的储能单元15至具有最大值的第一指标CL的运行的发电单元,如此储能单元15电连接至具有较高充电状态且距离较近的一个发电单元。储能单元15电连接至距离较近的发电单元,如此两者之间的传输电缆的长度较短,可以降低传输电缆上的能量损耗。

当断开的储能单元15的充电状态大于高门限值时,控制器19用来根据运行的发电单元12、13的第二指标CH控制开关单元M1-M3来连通断开的储能单元15至一个运行的发电单元12。在一个实施例中,第二指标CH与充电状态负相关,且第二指标CH与距离负相关。第二指标CH与充电状态、距离的关系如表达式(2)所示:

<mrow> <msub> <mi>C</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>

断开的储能单元15电连接至具有最大值的第二指标CH的运行的发电单元,如此储能单元15电连接至具有较低充电状态且距离较近的一个发电单元。在考虑充电状态的同时衡量断开的储能单元15至运行的发电单元的距离的因素,通过第一指标CL及第二指标CH来获得平衡充电状态和距离的一个值,从而选择一个发电单元,使得储能单元15可以被合理充分地利用。

当断开的储能单元15的充电状态在高门限值和低门限值之间时,控制器19用来根据运行的发电单元的第一指标CL和第二指标CH控制开关单元M1-M3来连通断开的储能单元15至一个运行的发电单元12。在一个实施例中,第一指标CL如表达式(1)所示,第二指标CH如表达式(2)所示。比较出多个运行的发电单元12和13的第一指标CL和第二指标CH中的一个最大值,断开的储能单元15连接至具有该最大值的发电单元。

在另一个实施例中,第一指标CL与充电状态负相关,第一指标CL与距离正相关。第一指标CL与充电状态、距离的关系如表达式(3)所示:

<mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>

当断开的储能单元15的充电状态小于低门限值时,断开的储能单元15电连接至具有最小值的第一指标CL的运行的发电单元。

第二指标CH与充电状态正相关,且第二指标CH与距离正相关。第二指标CH与充电状态、距离的关系如表达式(4)所示:

CH(i)=Sif1(li) (4)当断开的储能单元15的充电状态大于高门限值时,断开的储能单元15电连接至具有最小值的第二指标CH的运行的发电单元。

当断开的储能单元15的充电状态在高门限值和低门限值之间时,比较出多个运行的发电单元12和13的第一指标CL和第二指标CH中的一个最小值,断开的储能单元15电连接至具有该最小值的发电单元。第一指标CL如表达式(3)所示,第二指标CH如表达式(4)所示。

在另一个实施例中,控制器19根据储能单元15-17的充电状态以及储能单元16、17的剩余寿命来选择一个发电单元12或13。储能单元15-17的寿命指储能单元的总的充放电次数,例如一般电池的充放电次数为2000次或3000次左右,剩余寿命指剩余的充放电次数。储能单元放电放得比较深,例 如放电放到剩余的电量低于储能单元的总容量的50%时,可计作一次充放电;储能单元充电充得比较多,例如充电充到接近储能单元的总容量时,可计作一次充放电。

第一指标CL与充电状态正相关,且第一指标CL与储能单元的剩余寿命负相关。第一指标CL与充电状态、剩余寿命的关系如表达式(5)所示:

<mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>

其中,ri是第i个储能单元的剩余寿命。f2(·)为单调递增函数。当断开的储能单元15的充电状态小于低门限值时,断开的储能单元15电连接至具有最大值的第一指标CL的运行的发电单元,如此储能单元15连接至具有较高充电状态的一个发电单元且该发电单元所对应的储能单元具有较短的寿命。断开的储能单元15可以分担运行的发电单元12所对应的储能单元16的输出和输入的电能,如此可以减少储能单元16深度充电或放电的次数,从而减缓储能单元16的寿命的消耗,延长发电系统100的整体寿命。

第二指标CH与充电状态负相关,且第二指标CH与剩余寿命负相关。第二指标CH与充电状态、剩余寿命的关系如表达式(6)所示:

<mrow> <msub> <mi>C</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>

当断开的储能单元15的充电状态大于高门限值时,断开的储能单元15电连接至具有最大值的第二指标CH的运行的发电单元,如此储能单元15电连接至具有较低充电状态的一个发电单元且该发电单元所对应的储能单元具有较短的寿命。在考虑充电状态的同时衡量储能单元的剩余寿命的因素,通过第一指标CL及第二指标CH来获得平衡充电状态和剩余寿命的一个值。

当断开的储能单元15的充电状态在高门限值和低门限值之间时,比较出多个运行的发电单元12和13的第一指标CL和第二指标CH中的一个最大值,断开的储能单元15电连接至具有该最大值的发电单元。第一指标CL如表达式(5)所示,第二指标CH如表达式(6)所示。

在另一个实施例中,第一指标CL与充电状态负相关,且第一指标CL与储能单元的剩余寿命正相关。第一指标CL与充电状态、剩余寿命的关系如表达式(7)所示:

<mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>

当断开的储能单元15的充电状态小于低门限值时,断开的储能单元15连接至具有最小值的第一指标CL的运行的发电单元。

第二指标CH与充电状态正相关,且第二指标CH与剩余寿命正相关。第二指标CH与充电状态、剩余寿命的关系如表达式(8)所示:

CH(i)=Si·f2(ri) (8)当断开的储能单元15的充电状态大于高门限值时,断开的储能单元15电连接至具有最小值的第二指标CH的运行的发电单元。

当断开的储能单元15的充电状态在高门限值和低门限值之间时,比较出多个运行的发电单元12和13的第一指标CL和第二指标CH中的一个最小值,断开的储能单元15电连接至具有该最小值的发电单元。第一指标CL如表达式(7)所示,第二指标CH如表达式(8)所示。

在另一个实施例中,控制器19根据储能单元15-17的充电状态、断开的储能单元15至运行的发电单元12、13的距离及储能单元16、17的剩余寿命来选择一个发电单元12或13。

第一指标CL与充电状态正相关,第一指标CL与距离负相关,且第一指标CL与储能单元的剩余寿命负相关。第一指标CL与充电状态、距离和剩余寿命的关系如表达式(9)所示:

<mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>

当断开的储能单元15的充电状态小于低门限值时,断开的储能单元15电连接至具有最大值的第一指标CL的运行的发电单元,如此储能单元15连接至具有较高充电状态且距离较短的一个发电单元且该发电单元所对应的储能单元具有较短的寿命。

第二指标CH与充电状态负相关,第二指标CH与距离负相关,且第二指标CH与剩余寿命负相关。第二指标CH与充电状态、距离和剩余寿命的关系如表达式(10)所示:

<mrow> <msub> <mi>C</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>

当断开的储能单元15的充电状态大于高门限值时,断开的储能单元15电连接至具有最大值的第二指标CH的运行的发电单元,如此储能单元15连接至具有较低充电状态且距离较短的一个发电单元且该发电单元所对应的储能单元具有较短的寿命。在考虑充电状态的同时衡量断开的储能单元至运行的发 电单元的距离和储能单元的剩余寿命的因素,通过第一指标CL及第二指标CH来获得平衡充电状态、距离和剩余寿命的一个值。

当断开的储能单元15的充电状态在高门限值和低门限值之间时,比较出多个运行的发电单元12和13的第一指标CL和第二指标CH中的一个最大值,断开的储能单元15电连接至具有该最大值的发电单元。第一指标CL如表达式(9)所示,第二指标CH如表达式(10)所示。

在另一个实施例中,第一指标CL与充电状态负相关,第一指标CL与距离正相关,且第一指标CL与储能单元的剩余寿命正相关。第一指标CL与充电状态、距离和剩余寿命的关系如表达式(11)所示:

<mrow> <msub> <mi>C</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>

当断开的储能单元15的充电状态小于低门限值时,断开的储能单元15电连接至具有最小值的第一指标CL的运行的发电单元。

第二指标CH与充电状态正相关,第二指标CH与距离正相关,且第二指标CH与剩余寿命正相关。第二指标CH与充电状态、距离和剩余寿命的关系如表达式(12)所示:

CH(i)=Si·f1(li)·f2(ri) (12)当断开的储能单元15的充电状态大于高门限值时,断开的储能单元15电连接至具有最小值的第二指标CH的运行的发电单元。

当断开的储能单元15的充电状态在高门限值和低门限值之间时,比较出多个运行的发电单元12和13的第一指标CL和第二指标CH中的一个最小值,断开的储能单元15电连接至具有该最小值的运行的发电单元。第一指标CL如表达式(11)所示,第二指标CH如表达式(12)所示。

图5所示为发电系统100的两个发电单元11和13不工作时的示意框图。此时,第一开关单元K1和K3断开,且发电单元11和13从电网上断开,第二开关单元M1和M3闭合,使得储能单元15和17电连接至发电单元12。在一些实施例中,更多个发电单元被使用,多个断开的储能单元选择连接的发电单元的原则类似于上文中所述的实施例。

当断开的储能单元电连接至运行的一个发电单元时,两个或多个储能单元共同接收或释放电能。控制器19用来根据多个电连接至一个发电单元的储能单元的充电状态在该些储能单元之间分配总功率。

储能单元接收发电单元产生的电能进行充电时,给每个储能单元充电的功率和储能单元的充电状态负相关。因此,如果储能单元的充电状态较高时,充的电量较低。储能单元充电的功率Pchg,i如表达式(13)所示:

<mrow> <msub> <mi>P</mi> <mrow> <mi>chg</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>/</mo> <msub> <mi>S</mi> <mi>i</mi> </msub> <mn></mn> </mrow> <mrow> <msubsup> <mo>&Sum;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>S</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>P</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>

其中,i为储能单元的代号,为了区分电连接到一个发电单元上的多个储能单元。Si表示第i个储能单元的充电状态。n为一个发电单元上电连接的储能单元的总数。P为总功率。如此,该些储能单元接收的功率之和等于总功率。

储能单元放电给电网时,每个储能单元放电的功率和储能单元的充电状态正相关。因此,如果储能单元的充电状态较高时,释放的电量较高。储能单元放电的功率Pdisc,i如表达式(14)所示:

<mrow> <msub> <mi>P</mi> <mrow> <mi>disc</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <msubsup> <mo>&Sum;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>S</mi> <mi>j</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>P</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>

如此,该些储能单元释放的功率之和等于总功率。

虽然结合特定的实施方式对本发明进行了说明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。因此,要认识到,权利要求书的意图在于涵盖在本发明真正构思和范围内的所有这些修改和变型。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1