一种家用式能量路由器的制作方法

文档序号:14679446发布日期:2018-06-12 22:00阅读:154来源:国知局
一种家用式能量路由器的制作方法

本实用新型涉及电力电子变换器以及信息技术领域,特别涉及一种面向家用负载的能量路由器。



背景技术:

近年来,为了缓解能源危机和环境污染,分布式可再生能源在电网中的运用越来越广泛,但这些可再生能源往往具有地理分散性、间歇性。这就需要在电网中加入大量的储能设备用于缓冲这些波动的能量。另一方面,传统的单一集中式发电网逐渐装变为集中式和分布式共存的发电模式,电能的单向流动也开始转变为多向流动。

为了满足未来电网对电能控制的复杂性和多样性要求,有学者提出未来电网将在局部消纳的基础上,以微网、智能小区为自治单元,形成自下而上的能量单元的互联。美国北卡罗来纳州州立大学FREEDM中心提出以能量路由器为核心的能量互联网。由此看出,集成了成熟的信息技术,基于电力电子变换的能量路由器能够实现能量的高效接入和利用,将成为未来电网的核心部件,正受到越来越多的学者的重视。

能量路由器是一种集成融合了信息技术与电力电子变换技术、实现分布式能量的高效利用和传输的电力装备。电力电子变换技术使电能路由器为各种类型的分布式电源、储能设备和新型负载提供所需的电能接口形式。信息技术使能量路由器实现智能化,配电网在其控制下实行自律运行,上层电力调度中心只需向网内发送较长时间尺度的优化运行参数,以实现全网的优化运行。

CN2723723Y公开了一种风、光、柴互补系统控制逆变一体机,优先使用太阳能和风能等清洁能源,并能够控制蓄电池充放电。但该系统是一个离网系统,只能给本地负载供电,不能够并网运行。CN102780267A公开了一种采用开关阵列组成能量通道的电能路由器,控制复杂,如果单一开关出现故障,将对全局造成影响。CN104682430A公开了一种应用于能源互联网的能源路由器装置,属于中压范围。现有的能量路由器主要集中在交流网、混合交流网,且大多集中在局域网和主干网,对低压直流微网的关注较少,而在未来智能电网规划中所有用户不仅是需求方,加上风光储系统后,用户也可以生产并存储电力,能够与电网和其余用户自由交易电力。因此,面向家用负载并能够利用低压直流微网主动控制调度能量流的能量路由器是未来智能电网的重要组成部分。



技术实现要素:

本实用新型的目的是,针对现有技术存在的不足,本实用新型提出一种面向家用负载的能量路由器及其控制方法。

为解决上述技术问题,本实用新型采用如下的技术方案:

一种家用式能量路由器,包括直流母线、路由器第一端口~路由器第五端口、控制芯片、端口传感器采集处理电路、直流母线传感器采集处理电路、端口开关驱动电路和通讯电路。

所述直流母线由正、负母线组成;路由器第一端口~路由器第五端口并联在直流正、负母线上;端口传感器采集处理电路采集并处理端口的电压、电流信号,然后将其传输给控制芯片;直流母线传感器采集处理电路采集直流母线的电压、电流信号,然后传输给控制芯片;控制芯片将采样数据汇总并处理发出控制信号,通过端口开关驱动电路控制路由器第一端口~路由器第五端口中端口开关的闭合与断开以及电力电子变换器的工作状态,主控制器中的控制芯片通过通讯电路和每一个路由端口保持通信,整个能量路由器通过直流母线实现能量的双向流动,通过控制芯片实现信息的双向流动。

所述交流电网无故障时,通过路由器第一端口连接至直流母线上,能量路由器工作在并网模式;交流电网故障,断开路由器第一端口中的三相变流器,能量路由器进入孤岛模式。

所述路由器第一端口~路由器第五端口分别接入交流电网、光伏电池、蓄电池、柴油发电机和家用电交流负载。

路由器第一端口内部包含一个三相AC/DC变流器和四个端口开关将交流电网连接在直流母线上,其中三个端口开关采用交流断路器,一个端口开关采用直流断路器;路由器第二端口内部包含一个隔离DC-DC电路和二个端口开关将光伏电池连接在直流母线上,其中端口开关选用直流断路器;路由器第三端口内部包含一个双向Buck/Boost电路和一个端口开关将蓄电池连接在直流母线上,其中端口开关选用直流断路器;路由器第四端口内部包含一个Boost-PFC电路和二个端口开关将柴油发电机连接在直流母线上,其中一端口开关采用直流断路器,另一个端口开关采用交流断路器;路由器第五端口内部包含一个单相DC-AC逆变器和二个端口开关将家用电交流负载连接在直流母线上,其中一个端口开关采用直流断路器,另一个端口开关采用交流断路器。

所述的路由器第一端口~路由器第五端口经过电力电子变换器变换后的电压为Udcin,直流母线电压为Udc-bus,当发电设备发电、交流电网以及储能设备向直流母线输电时,电压经过变换后必须满足Udcin=Udc-bus才能实现正常接入支路母线。

通过每个路由器第一端口~路由器第五端口,直流母线与交流电网、发电设备(光伏电池、柴油机)、储能设备、用电负载之间的能量流动方式有4种,即能量从发电设备流入直流母线,能量从储能设备流向直流母线,能量从交流电网流向直流母线,能量从直流母线流出向负载供电、向储能设备充电、向交流电网回馈。

所述路由器第一端口~路由器第五端口都含有控制器,其控制芯片是一个信息运算处理中心,选用FPGA与ARM两种微处理控制芯片,FPGA接收来自端口传感器采集电路采集到的端口电压、电流信号,接收直流母线传感器采集处理电路采集到的直流母线电压、电流信号,进行汇总后传送给ARM进行数据比较及运算,并接收ARM给出的运算结果产生控制信号,输出给端口开关驱动电路,控制路由端口中电力电子变换器的导通状态以及端口开关的闭合与断开,在FPGA微处理控制芯片与ARM微处理控制芯片之间存在交互信息流;控制芯片通过通讯电路,即是控制器局域网总线CAN可实现各端口的实时信息互通,实时监测各路由端口的电压电流是否正常,路由器第一端口中的控制器为主控制器,其控制芯片可通过总线CAN完成对路由器第二端口~路由器第五端口的子控制器的控制,实现信息的双向流动。

通过控制芯片进行能量控制,并网设备、发电设备(光伏电池、柴油机)、储能设备和家用电交流负载五大模块接入能量路由端口,控制各个模块通过直流母线实现能量的多向流动。

所述路由器第一端口连接交流电网时,能量路由器工作在并网模式下,此时柴油机发电机不接入直流母线,仅当交流电网故障,能量路由器处于孤岛模式下并且光伏电池发出的总功率及蓄电池能够提供的功率的总合无法满足用电总负载时,柴油发电机接入直流母线;

并网模式下又分为两种情况:

1)光伏电池所发功率足够为用电负载提供能量,如果功率有剩余,则能量路由器将剩下能量存储在蓄电池中,若还有盈余,则回馈给交流电网;

2)光伏电池所发功率不足为用电负载供能,且蓄电池也无法补充差额功率,则交流电网向直流母线供电,将能量送往用电负载。

并网模式下的工作流程为:

通过数据采集,控制芯片对路由器第二端口、路由器第三端口、路由器第五端口的电压与直流母线电压进行匹配判断;当满足接入直流母线条件Udcin=Udc-bus时,控制芯片向端口开关驱动电路发出控制信号,使得路由端口开关闭合,将光伏电池、蓄电池和家用交流电负载接入直流母线,通过端口传感器采集处理电路采集各路由端口的电压、电流信号,控制芯片对接入直流母线的光伏电池所发总功率Ppv与家用电总负载PL进行功率计算,然后比较Ppv与家用电负载PL的大小,当PL≦Ppv时,光伏电池向用电负载供能;同时,若有盈余的能量,则向蓄电池充电,继续检测光伏电池所接入的路由器第二端口的输出功率是否还有盈余,若仍有盈余,则将剩余能量回馈通过路由器第一端口回馈至交流电网。当PL>Ppv时,首先检测路由第三端口所接的蓄电池的储能Pbat能否足够补充功率缺额,若Pbat≥∣PL-Ppv∣,则能够补充,向用电负载补充剩余的能量缺额;若Pbat<∣PL-Ppv∣,则不能补充,则向交流微网索取能量来补充功率缺额,交流微网通过路由器第一端口给家用电负载供能。

所述路由器第一端口连接交流电网故障时,交流电网不接入能量路由器,能量路由器工作在孤岛模式下。

孤岛模式下的工作流程为:

通过数据采集,控制芯片对路由器第二端口、路由器第三端口、路由器第五端口的电压与直流母线电压进行匹配判断;当满足接入直流母线条件Udcin=Udc-bus时,控制芯片向端口开关驱动电路发出控制信号,使得路由端口开关闭合,将光伏电池、蓄电池和家用交流电负载接入直流母线,通过端口传感器采集处理电路采集各路由端口的电压、电流信号,控制芯片对接入直流母线的光伏电池所发总功率Ppv与家用电总负载PL进行功率计算,然后比较Ppv与家用电负载PL的大小,当PL≦Ppv时,光伏电池向用电负载供能;同时,若有盈余的能量,则向蓄电池充电,当PL>Ppv时,首先检测路由器第三端口所接的蓄电池的储能Pbat能否足够补充功率缺额,若Pbat≥∣PL-Ppv∣,则能够补充,向用电负载补充剩余的能量缺额;若Pbat<∣PL-Ppv∣,则蓄电池无法补充,则通过数据采集,控制芯片对路由器第四端口的电压与直流母线电压进行匹配判断,满足接入条件Udcin=Udc-bus时,通过路由器第四端口将柴油发电机连接至直流母线,由柴油发电机补足能量缺额,向家用负载供能。

与现有技术相比,本实用新型具有以下优点和有益效果:本实用新型提出的能量路由器具有多个路由端口,能够同时接入不同发电设备、储能设备、用电负载进行统一管理和控制;本实用新型通过有效的能量管理,在孤岛模式下实现不同设备之间的能量流动以维持功率平衡,及并网模式下盈余能量能够主动回馈给交流电网,提高能量利用率;本实用新型的优点是面向家用负载,安装光储的家庭可通过本实用新型实现主动控制调度能量流,用户不再只是电能需求方,同时可以生产并存储电力,能够与电网和其余用户自由交易电力,获得更高的经济效益。

本实用新型提出的能量路由器通讯结构简单,各控制芯片之间相互连接,完成信息互通,控制芯片实现下层物理信息和上层数字信息的相互转换以及信息的双向流动。

附图说明

图1为家用能量路由器结构图;

图2为各路由端口中控制器通讯电路图。

具体实施方式

下面结合附图和具体实施对本实用新型做进一步阐述。

图1为一种家用式能量路由器结构图,该路由器包括直流母线、路由器第一端口~路由器第五端口、控制芯片、端口传感器采集处理电路、直流母线传感器采集处理电路、端口开关驱动电路和通讯电路。

所述直流母线由正、负母线组成;路由器第一端口~路由器第五端口并联在直流正、负母线上;端口传感器采集处理电路采集并处理端口的电压、电流信号,然后将其传输给控制芯片;直流母线传感器采集处理电路采集直流母线的电压、电流信号,然后传输给控制芯片;控制芯片将采样数据汇总并处理发出控制信号,通过端口开关驱动电路控制路由器第一端口~路由器第五端口中端口开关的闭合与断开以及电力电子变换器的工作状态,主控制器中的控制芯片通过通讯电路和每一个路由端口保持通信,整个能量路由器通过直流母线实现能量的双向流动,通过控制芯片实现信息的双向流动;

所述交流电网无故障时,通过路由器第一端口联接至直流母线上,能量路由器工作在并网模式;交流电网故障,断开路由器第一端口中的三相变流器,能量路由器进入孤岛模式。

所述路由器第一端口~路由器第五端口分别接入交流电网、光伏电池、蓄电池、柴油发电机和家用电交流负载。

如图1所示,路由器第一端口内部包含1个三相AC/DC变流器和4个端口开关将交流电网连接在直流母线上,其中3个端口开关采用交流断路器,其余1个采用直流断路器;路由器第二端口内部包含1个隔离DC-DC电路和2个端口开关将光伏电池连接在直流母线上,其中端口开关选用直流断路器;路由器第三端口内部包含1个双向Buck/Boost电路和1个端口开关将蓄电池连接在直流母线上,其中端口开关选用直流断路器;路由器第三端口内部包含1个Boost-PFC电路和2个端口开关将柴油发电机连接在直流母线上,其中1端口开关采用直流断路器,剩余1个采用交流断路器;路由器第五端口内部包含1个单相DC-AC逆变器和2个端口开关将家用电交流负载连接在直流母线上,其中1端口开关采用直流断路器,剩余1个采用交流断路器。

所述的路由器第一端口~路由器第五端口经过电力电子变换器变换后的电压为Udcin,直流母线电压为Udc-bus,当发电设备发电、交流电网以及储能设备向直流母线输电时,电压经过变换后必须满足Udcin=Udc-bus才能实现正常接入支路母线。

通过每个路由器第一端口~路由器第五端口,直流母线与交流电网、发电设备(光伏电池、柴油机)、储能设备、用电负载之间的能量流动方式有4种,即能量从发电设备流入直流母线,能量从储能设备流向直流母线,能量从交流电网流向直流母线,能量从直流母线流出向负载供电、向储能设备充电、向交流电网回馈。

所述的路由器第一端口1~路由器第五端口都含有控制器,其控制芯片是一个信息运算处理中心,选用FPGA与ARM两种微处理控制芯片,FPGA接收来自端口传感器采集电路采集到的端口电压、电流信号,接收直流母线传感器采集处理电路采集到的直流母线电压、电流信号,进行汇总后传送给ARM进行数据比较及运算,并接收ARM给出的运算结果产生控制信号,输出给端口开关驱动电路,控制路由端口中电力电子变换器的导通状态以及端口开关的闭合与断开,在FPGA微处理控制芯片与ARM微处理控制芯片之间存在交互信息流。

如图2所示,控制芯片通过通讯电路,即是控制器局域网总线CAN可实现各端口的实时信息互通,实时监测各路由端口的电压电流是否正常,路由器第一端口中的控制器为主控制器,其控制芯片可通过总线CAN完成对路由器第二端口~路由器第五端口的子控制器1-4的控制,实现信息的双向流动。

通过控制芯片进行能量控制,并网设备、发电设备(光伏电池、柴油机)、储能设备和家用电交流负载五大模块接入能量路由端口,控制各个模块通过直流母线实现能量的多向流动。

所述路由器第一端口连接交流电网时,能量路由器工作在并网模式下,此时柴油机发电机不接入直流母线,仅当交流电网故障,能量路由器处于孤岛模式下并且光伏电池发出的总功率及蓄电池能够提供的功率的总合无法满足用电总负载时,柴油发电机接入直流母线;

并网模式下又分为两种情况:

1)光伏电池所发功率足够为用电负载提供能量,如果功率有剩余,则能量路由器将剩下能量存储在蓄电池中,若还有盈余,则回馈给交流电网;

2)光伏电池所发功率不足为用电负载供能,且蓄电池也无法补充差额功率,则交流电网向直流母线供电,将能量送往用电负载。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1