用于无接触地传输能量的传输系统的制作方法

文档序号:16809993发布日期:2019-02-10 13:31阅读:147来源:国知局
用于无接触地传输能量的传输系统的制作方法

本发明涉及一种根据权利要求1前序部分的、用于无接触地将能量传输给负载的传输系统,一种根据权利要求7前序部分的、用于无接触地将能量传输给负载的方法,以及一种根据权利要求15前序部分所述的车辆系统。



背景技术:

电的能量存储器在多个应用中被使用。特别地,在移动的应用中例如将电池用作能量存储器。例如电池在电动车或者混合动力车中被用作能量存储器,以便给电动车的或者混合动力车的电的驱动马达提供能量。为了能够将电池作为能量存储器在车辆中使用,必须附加地提供用于给电池充电的可能性。

在这种情况下普遍的是,车辆中的高压电池例如通过到公共电网上的电流连接来进行充电。为此可以例如在房屋的车库中安装充电适配器,各个车辆能够通过电线连接到该充电适配器上。备选地,所述充电适配器位于车辆侧面,并且能够连接到传统的插座上。

ep2623363示出了传统的用于能量存储器的充电装置。

此外,如今已知感应的充电系统作为传输系统,在该充电系统中,能量从充电适配器通过两个线圈的感应耦联无线地传输给车辆。

由de102014207854已知用于无接触地传输能量的传输系统。

在电动车的所谓感应充电中,对于车辆电池充电所必需的能量不是通过充电电线传输到车辆(传导地充电),而是通过具有大的空气缝隙的变压器无接触地传输。在这种情况下,典型地,变压器的初级线圈要么被放入在地板中,或者成型为放到地板上的充电盘,并且借助于合适的电子部件与电网相连接。变压器的次级线圈典型地固定地安装在车辆的底板中,并且在它那方面借助于合适的电子部件与车辆电池相连接。为了能量传输,初级线圈产生了高频的磁的交变场,所述磁的交变场穿过次级线圈,并且在那里感应了相应的交流电。初级整流器、初级功率修正滤波器、初级阻抗转换器、初级逆变器以及具有初级线圈的初级振荡回路形成了所述传输系统的初级部分。具有次级线圈的次级振荡回路、次级整流器、次级阻抗转换器以及作为待充电的电池的负载形成了所述传输系统的次级部分。在初级阻抗转换器的输入端处的电压等于由可变的初级改变因数和在初级阻抗转换器的输出端处的电压所得出的乘积。由负载吸收的电功率借助于初级部分的部件的初级参数的改变来调节,例如在初级阻抗转换器处,初级改变因数作为初级参数改变,并且初级阻抗转换器是所述传输系统的第一部分的部件。与此不同地,初级逆变器的脉冲模式调制的控制信号也可以作为初级参数改变。以不利的方式没有实现对于传输系统的优化,以便获得最大的效率。



技术实现要素:

发明的优点

根据本发明的用于无接触地将电能传输给负载的传输系统包括:初级整流器,用于将来自交流电源的交流电转换成直流电;初级逆变器,用于从由初级整流器所产生的直流电来产生交流电;传输装置,用于从初级逆变器利用初级线圈和次级线圈无接触地传输交流电的电能;次级整流器,用于将来自次级线圈的交流电转换成直流电,其中初级整流器、初级逆变器以及初级线圈形成了传输系统的初级部分,并且次级线圈以及次级整流器形成了传输系统的次级部分;优选地,负载;控制-和/或调节单元,用于控制和/或调节传输系统,其中利用该传输系统能够实施在本专利权申请文件中所说明的方法。传输系统的效率可以因此甚至在使用来自不同的生产商的初级部分和次级部分的情况下也能够简单地最大化。

在另一设计方案中,所述传输系统包括初级功率探测装置,用于探测在初级部分处的、特别是在初级整流器的输入端处的初级电功率。

在附加的变型方案中,所述传输系统包括次级功率探测装置,用于探测在次级部分处的、特别是在负载的输入端处的次级电功率。

在另一实施方式中,利用控制-和/或调节单元由次级电功率除以初级电动率能够求得传输系统的效率。当前的效率对于求得具有更高的效率的次级参数是必需的。

在补充的设计方案中,所述传输系统包括与初级整流器电连接的初级阻抗转换器,用于改变在初级阻抗转换器的输出端处的电压,所述初级阻抗转换器作为传输系统的初级部分的组成部分,和/或所述传输系统包括与次级整流器电连接的次级阻抗转换器,用于改变在次级阻抗转换器的输出端处的电压,所述次级阻抗转换器作为传输系统的次级部分的组成部分,和/或所述控制-和/或调节单元被装入到传输系统的次级部分中,和/或所述传输系统包括一种用于优选无线地从传输系统的初级部分到次级部分以及优选地反向地传输数据的装置,特别是关于在初级部分处的电的初级功率的数据。通过改变作为初级部分的部件的初级阻抗转换器的初级改变因数可以改变初级参数。通过改变作为次级部分的部件的次级阻抗转换器的次级改变因数可以改变次级参数。由初级功率探测装置所探测到的关于初级功率的数据可以从所述装置、优选是无线连接地传输到或者能够传输到第二部分中(也就是说在机动车上)的控制-和/或调节单元。

在补充的设计方案中,利用所述传输系统、特别地利用在控制-和/或调节单元中的软件能够实施在本专利权申请文件中所说明的方法,和/或给所述初级线圈分配了至少一个初级电容器,以至于所述初级线圈以及所述至少一个初级电容器形成了初级电振荡回路,和/或给所述次级线圈分配了至少一个次级电容器,以至于所述次级线圈以及所述至少一个次级电容器形成了次级电振荡回路。

根据本发明的用于利用传输系统无接触地将电能传输给负载的方法具有下述步骤:利用初级整流器将来自交流电源的交流电转换成直流电;利用初级逆变器将由初级整流器所产生的直流电转换成交流电;改变在传输系统的初级部分的部件处的初级参数,以至于作为结果由此改变了由负载吸收的电功率;无接触地将由初级逆变器所产生的交流电的电能从初级线圈传输到次级线圈上;利用次级整流器将在次级线圈中产生的交流电转换成直流电;改变在传输系统的次级部分的部件处的次级参数,以使得优选地作为结果由此改变了由负载所吸收的电功率;将电能作为直流电输送给负载,其中初级整流器、初级逆变器以及初级线圈形成了传输系统的初级部分,并且次级线圈以及次级整流器形成了传输系统的次级部分,其中次级参数如下地改变,在次级参数改变之后的效率大于在次级参数改变之前的效率,并且优选地这种迭代步骤多次地实施,和/或将所述无接触地传输能量的a-效率确定为次级a-参数,接着次级参数从次级a-参数改变成至少一个次级b参数,并且对于所述至少一个次级b-参数分别确定b-效率,并且从a-效率以及从至少一个b-效率选择具有最大效率的那一个,并且该被选择的最大效率被称为c-效率,并且接着利用对应于c-效率的次级c-参数无接触地传输能量,作为用于确定次级c-参数的迭代步骤。关于效率的次级参数是在出现该效率的期间的次级参数,并且优选地在传输系统上的计算期间没有出现改变。关于次级参数的效率是在出现该次级参数期间的效率,并且优选地在传输系统上的计算期间没有出现改变。优选地一种不是最小的效率被视作选择的最大的效率。在例如三个不同的效率中,第二-或者第三大的效率、但是不是最小的效率被选择作为最大的效率。优选地也可以将关于全部的效率最大的效率选择作为被选择的最大的效率,以至于在例如三个不同的效率中,第三大的效率、但是不是第二大的或者最小的效率被选择作为最大的效率。

在补充的实施方式中,将无接触地传输能量的a-效率确定为次级a-参数,接着次级参数从次级a-参数改变成至少两个次级b-参数,并且各有至少一个次级b-参数小于次级a-参数,并且各有至少一个次级b-参数大于次级a-参数,并且对于所述至少两个次级b-参数分别确定b-效率,并且从所述a-效率以及从所述至少两个b-效率中选择具有最大的效率的那一个,并且该被选择的最大的效率被称作c-效率,并且接着利用对应于所述c-效率的次级c-参数无接触地传输能量,作为用于确定次级c-参数的迭代步骤。

在另一设计方案中,在另一迭代步骤中,通过对于次级a-参数由之前的迭代步骤估算次级c-参数,再次实施迭代步骤所利用的方法步骤。

在附加的变型方案中,在至少一个另外的迭代步骤中多次地实施迭代步骤所利用的方法步骤,直到之前的迭代步骤的c-效率与当前的迭代步骤的c-效率的差值小于阈值。

符合目的地,预先规定了待由负载吸收的电的额定-吸收功率,并且确定了由负载吸收的电的实际-吸收功率与待由负载吸收的电的额定-吸收功率之间的差值,并且在每一个迭代步骤之后在初级部分处改变初级参数,以使得由负载吸收的电的实际-吸收功率与待由负载吸收的电的额定-吸收功率之间的差值的数值减小,和/或所述方法利用一种在本专利权申请文件中所描述的传输系统来实施,和/或在用于确定次级c-参数的迭代步骤的执行期间,初级参数保持恒定,特别地,所述初级参数具有小于30%、20%、10%、5%或者2%的改变。

在附加的设计方案中,初级参数被改变,以至于由负载吸收的电的实际-吸收功率与待由负载吸收的电的额定-吸收功率之间的差值的数值基本上等于零,特别地,电的实际-吸收功率除以电的额定-吸收功率的数值小于20%、10%、5%、3%或者1%。

在补充的设计方案中,初级参数借助于在初级阻抗转换器的输出端上的电压的借助于初级阻抗转换器的改变而改变,或者借助于初级逆变器的控制信号的脉冲模式调制的改变而改变。在初级阻抗转换器中,在初级阻抗转换器的输入端处的电压等于由可变的初级改变因数与在初级阻抗转换器的输出端处的电压所得出的乘积,以至于可变的初级改变因数是初级参数。

在另一设计方案中,次级参数借助于在次级阻抗转换器的输入端处的电压的借助于次级阻抗转换器的改变而改变,或者借助于次级整流器的控制信号的脉冲模式调制的改变而改变。在次级阻抗转换器中,在次级阻抗转换器的输入端处的电压等于由可变的次级改变因数与在次级阻抗转换器的输出端处的电压所得出的乘积,以至于可变的次级改变因数是次级参数。在这种情况下,“脉冲模式调制”被理解为,逆变器和/或整流器这样地被操控,以至于所述传输系统利用正的和负的脉冲式的信号、例如矩形信号进行操控。所述脉冲模式调制存在于,控制该脉冲式的信号的频率、数量或者排列。这可以在逆变器的情况下意味着,所述传输系统代替利用单频率的矩形信号地利用具有被遗漏的半波或者全波的基频的矩形信号来操控。在整流器的情况下,这意味着,不是所有由传输装置所传输的电流信号的半波或者全波都被整流并且因此被传送给负载,而是通过被控制的短路在整流器的输入端处遗漏一些半波或者全波,并且在传输装置的次级振荡回路中再循环。

本发明此外包括一种计算机程序,具有程序编码工具,所述程序编码工具存储在计算机可读的数据载体上,以便当所述计算机程序在计算机或相应的计算单元或者控制-和/或调节单元上执行时,执行在本专利权申请文件中说明的方法。

本发明的组成部分此外是具有程序编码工具的计算机程序产品,所述程序编码工具存储在计算机可读的数据载体上,以便当所述计算机程序在计算机或相应的计算单元或者控制-和/或调节单元上执行时,执行在本专利权申请文件中说明的方法。

根据本发明的车辆系统,包括机动车、具有初级部分以及次级部分的、用于将能量无接触地传输给负载的传输系统,其中所述初级部分至少部分地、特别地全部地布置在机动车的外部,并且所述次级部分至少部分地、特别是全部地装入到机动车中,其中所述传输系统构造成一种在本专利权申请文件中说明的传输系统和/或所述控制-和/或调节单元被装入到机动车中。

附图说明

以下参考附加的附图进一步地说明本发明的一种实施例。附图示出了:

图1根据本发明的传输系统的框图,

图2效率η与时间t相关的示图,

图3次级参数d2与时间t相关的示图,

图4充电功率pl与时间t相关的示图,

图5初级参数d1与时间t相关的示图,

图6具有机动车的车辆系统的侧视图。

具体实施方式

图1示出了根据本发明的传输系统1的框图。能量供给公司的电网以在50hz的频率时具有220v的电压的交流电源4用作能量源。作为桥式整流器5的初级整流器5的输入端20利用两个电导线与交流电源4电连接。传输系统1的部件的输入端20和输出端21对于所有的部件统一地标记。初级整流器5将在输入端20处的交流电转换成在初级整流器5的输出端21处的脉冲的直流电。初级整流器5不是不受控制的单向整流器,以至于对于全体的半振荡进行整流。在初级整流器5的输出端21处因此出现具有100hz的频率的脉冲的直流电。

由初级整流器5提供的脉冲的直流电被输送给作为pfc(powerfactorcorrection(功率因数校正))的具有附加的电容器的功率修正滤波器6,用于平整由初级整流器5产生的直流电。在初级阻抗转换器38的或者dc/dc-转换器38的输入端20处因此出现了基本上恒定的电压u。在初级阻抗转换器38的输出端21处提供的直流电或者电在初级逆变器7或者dc/ac-转换器7中转换成具有例如120khz的高频率交流电,该交流电在逆变器7的输出端21处被提供,并且被导入到具有初级线圈9以及两个初级电容器10的初级电振荡回路11中。由于由逆变器7所产生的交流电的高频率,初级线圈9产生了高频的磁的交变场,该磁的交变场在次级线圈12中感应了高频的交流电。初级和次级电振荡回路11、14具有共同的谐振频率。所述初级逆变器7优选地如下接通,接通时刻发生在初级电振荡回路11中具有少的电流或者没有电流的时刻(zerocurrentswitching(零电流转换),zcs),以至于在初级逆变器7的半导体元件中仅仅出现少量的接通损失。能够无接触地从初级线圈9传输到次级线圈12上的功率与逆变器7所产生的交流电的频率线性相关,以至于用于无接触地传输足够的电功率的高频的磁的交变场是有意义的,但是更高的频率也导致了在传输时的更高的损失,并且此外存在对于所产生的磁的交变场的频率的法定的极限值。

次级线圈12是具有次级线圈12和两个次级电容器13的次级振荡回路14的组成部分。在次级振荡回路14中感应的高频交流电在次级整流器15或者次级ac/dc-转换器15中被转换成直流电。次级阻抗转换器16或者次级dc/dc-转换器16改变了在次级阻抗转换器16的输入端20和输出端21之间的电压,如果电压升高,所述次级阻抗转换器作为升压转换器16,或者如果电压降低,所述次级阻抗转换器作为降压转换器16。次级阻抗转换器16的输出端21与作为电池18的负载17电连接。初级振荡回路11以及次级振荡回路14形成了传输装置8。

初级整流器5、功率修正滤波器6、初级逆变器7、初级阻抗转换器38以及初级振荡回路11形成了传输系统1的初级部分2。次级振荡回路14、次级整流器15、次级阻抗转换器16以及负载17形成了传输系统1的次级部分3。

在次级部分3上的电压u、也就是说作用在次级阻抗转换器16的输出端21上的电压利用传感器23进行探测。在次级部分3处的电流i、也就是说在次级阻抗转换器16的输出端21处流动的电流i利用传感器25定量地探测。为了给电池18充电,预先规定了确定的充电电流功率pl作为调节量,以便能够将电池18例如在预先规定的时间之内完全地充电。由传感器23所探测到的电压u以及由传感器25所探测到的电流i利用没有示出的数据线传输到控制-和/或调节单元19,并且接着借助于所述控制-和/或调节单元19探测次级电功率ps,作为由所探测到的电压u以及所探测到的电流i产生的充电电流功率pl,也就是说ps=pl。传感器23、25因此形成了次级功率探测装置24。

在初级部分2处的电压u、也就是说作用在初级整流器5的输入端20上的电压利用传感器27进行探测。在初级部分2处的电流i、也就是说在初级整流器5的输入端20处流动的电流i利用传感器26定量地探测。由传感器23所探测到的电压u以及由传感器25定量地探测到的电流i利用没有示出的数据线传输到用于无线地传输数据的装置35。所述装置35包括发送器36以及接收器37。接收器37利用数据线与控制-和/或调节单元19相连接。由传输到控制-和/或调节单元19的数据借助于控制-和/或调节单元19探测初级电功率pp,该初级电功率由在初级整流器5的输入端20处所探测到的电压u以及所探测到的电流i所产生。传感器26,27因此形成了初级功率探测装置22。

所述传输系统的效率η利用以下的公式由控制-和/或调节单元19从初级电功率pp以及次级电功率ps算出:

η=ps/pp

次级电功率ps作为电的充电电流功率pl的调节利用初级阻抗转换器38进行,通过在初级阻抗转换器38的输出端21处的电压u以及电流i的改变29来实施,例如额定充电电流功率为pl=3kw。在初级阻抗转换器38的输入端20处的电压u,等于由可变的初级改变因数以及在初级阻抗转换器38的输出端21处的电压u所得出的乘积。所述初级改变因数因此是更初级参数。

在次级阻抗转换器16的输入端20处的电压u等于由可变的次级改变因数以及在次级阻抗转换器16的输出端21处的电压u所得出的乘积。次级改变因数因此是更次级参数。在次级阻抗转换器16的输入端20处的电压u的改变28或者次级改变因数的改变因此是次级参数d2的改变28。如果电功率基本上保持恒定,那么改变在次级阻抗转换器16的输入端20处的电压u引起了在次级阻抗转换器16的输入端20处的电流i的改变。

为了优化或者最大化传输系统1的效率,由控制-和/或调节单元19在恒定的次级a-参数d2或者次级起始参数d2期间算出所属的直到时间t1的a-效率(a-η)或者起始-效率(a-η)。接着,次级参数d2改变成一个或者多个次级b-参数d2或者后续-参数d2以及改变成一个或者多个次级b-参数d2,所述一个或者多个次级b-参数d2或者后续-参数d2大于次级a-参数d2,所述一个或者多个次级b-参数d2小于次级a-参数d2。

这示例性地在图3中示出次级参数d2的两种改变。在图3中,次级参数d2在时刻t1改变成次级b-参数d2,所述次级b-参数d2小于次级a-参数d2并且直到时间t2保持恒定。在时刻t2,次级参数d2改变成次级b-参数d2,所述次级b-参数d2大于次级a-参数d2,并且直到时间t3保持恒定。次级参数d2的改变也引起了充电功率pl的改变。

对应于次级b-参数d2的b-效率(b-η)通过以下方式被求得,在短时间恒定的次级b-参数d2期间算出效率作为b-效率(b-η)。在控制-和/或调节单元19的数据存储器中,存储了具有分别对应的b-效率(b-η)的次级b-参数d2,并且也存储了具有对应的a-效率(a-η)的次级a-参数d2。根据图2至5,在时刻t4从所述a-效率(a-η)以及b-效率(b-η)选择出具有最大的值的那个效率、也就是说最大的效率。最大的a-或者b-效率(a-η,b-η)被称为c-效率(c-η)或者选择-效率(c-η),并且对应于在数据存储器中存储的c-效率(c-η)的次级参数d2是次级c-参数d2。上述的方法步骤在恒定的初级参数d1期间实施,因为对于初级参数d1的控制和/或调节在时间上与次级参数d2的控制和/或调节或者改变相协调,或者对于初级参数d1的控制和/或调节比次级参数d2的控制和/或调节或者改变在时间上更缓慢地实施。初级和次级阻抗转换器16,38可以由控制-和/或调节单元19进行控制和/或调节,或者初级阻抗转换器38被附加的另外的计算单元(未示出)所控制和/或调节,并且次级阻抗转换器16被控制-和/或调节单元19所控制和/或调节。接着,传输系统1从时刻t4起以次级c-参数d2运行,以至于传输系统1以更高的效率运行。

通过对于次级a-参数d2从之前的迭代步骤估算c-参数d2,上面所描述的用于确定c-参数d2的迭代步骤可以任意多次地重复。

由于传输系统1利用上面所描述的迭代步骤的效率的升高,传输系统1从时刻t3起以更高的实际-充电功率pist运行(图4),所述实际-充电功率比希望的额定-充电功率psoll大。由于这个原因,利用初级参数d1从时刻t5起的改变对于充电功率pl的调节是必要的,以使得从时刻t5起,充电功率pl又相应于额定-充电功率psoll。接着可以可选地再次实施所述迭代步骤。

在另一种没有示出的实施例中,所述传输系统1不具有初级阻抗转换器38,并且不具有次级阻抗转换器15。用于改变由负载17吸收的电功率的初级参数d1的改变,是改变初级逆变器7的控制信号的脉冲模式调制,所述初级逆变器作为传输系统1的初级部分2的部件7。次级参数d2的改变28是次级整流器15的控制信号的脉冲模式调制的改变28,所述次级整流器15作为传输系统1的次级部分3的部件15,所述次级参数d2的改变用于改变由负载17吸收的电功率或者用于优化效率到最大的效率。初级以及次级参数d1、d2的这些改变在de102014207854中被说明并且该专利申请的公开内容被记录在该专利权申请文件中。

在图6中示出的车辆系统30示出了具有作为电动马达34的驱动马达33的机动车31。所述机动车31具有电池18,并且所述电池18供给了作为驱动马达33的电动马达34,用于驱动机动车31。传输系统1的初级部分2被装入到地面32中,并且所述次级部分3被装入到机动车31中。电池19的充电因此可以在机动车31的停放期间无接触地实施。

总得来看,根据本发明的传输系统1以及用于无接触地传输能量到负载17的方法以及根据本发明的车辆系统30具有很大的优点。传输系统1的最优的以及最大的效率迭代地通过次级参数d2的改变28来确定。当来自不同的生产商的初级部分2与次级部分3组合到所述传输系统1,以至于能够实施对于传输系统1的效率的分别的最大化时,这特别地有利。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1