一种基于电力弹簧的微电网电压分布式控制方法与流程

文档序号:17533073发布日期:2019-04-29 13:41阅读:177来源:国知局
一种基于电力弹簧的微电网电压分布式控制方法与流程
本发明属于电力电子在电力系统中的应用领域,更具体地,涉及一种基于多电力弹簧的微电网电压分布式控制方法。
背景技术
:当前,电力系统的运行方式是发电量根据用户的需求而定。风能等可再生能源发电并网容量正逐年增大,新能源的间隙性和不稳定性使得其总的发电量难以准确预测,可能造成用户用电需求与电网提供电能的不匹配,同时,对电力系统的影响也越来越明显,比如谐波污染、电压的波动及频率闪变等。针对电网电压的波动,目前的技术手段主要是基于下垂控制的母线电压控制以及集中通信与控制;其中理论分析表明下垂控制主要面临稳态电压偏差和多源均流问题:由于受系统线路阻抗因素的影响,通常需要选择较大的下垂系数保证各主控制单元输出功率按照理想的下垂设定曲线进行分配,但下垂系数过大时母线电压稳态偏差受运行点变化较大,进而影响系统稳定性;另一方面集中通信与控制需要一个相当复杂的通信网络,使得部署成本高昂且困难,而不可避免的随着微电网规模的增大,通信网络的压力也会增大,同时该方法对通信网络的可靠性要求较高。技术实现要素:针对现有技术的缺陷,本发明的目的在于提供一种基于多电力弹簧的微电网电压分布式控制方法,旨在解决现有下垂控制方法存在的交流母线电压稳态偏差较大的问题。为实现上述目的,本发明提供了一种基于多电力弹簧的微电网电压分布式控制方法,包括:s1:假设每个es控制器均为代理,初始化各代理信息状态,且相邻代理根据本地信息以分布式模式进行信息状态的交换,最终所有代理信息状态收敛为同一状态,计算系统的共识值作为参考电压;优选地,具体信息状态在离散时间内的交互可以表示为:其中,n是微电网的代理数量,aij是节点i到节点j数据出散户传输的通信权重;指代理i在k次迭代过程中的信息状态,相应地,指节点j处代理在k次迭代过程中的信息状态;对于离散状态,aij值越大代表节点i处代理与节点j处代理间的通信度越高,若aij=1表示节点i与节点j相邻,若aij=0则表示节点i与节点j间未链接;在实际状态交互时,信息状态会根据其当前状态的加权平均值与相邻信息状态进行驱动调节自身状态,若代理与其他代理未进行信息状态的交换,则说明此代理在当前迭代过程中保持当前信息状态。优选地,整个微电网的全局信息发现过程可以用矩阵形式表示为:xk+1=dxk其中,d为通信网络的权重矩阵,xk与xk+1分别表示第k次和第(k+1)次迭代时信息状态的向量,且引入恒定边缘权重ε,则d可表示为d=i-εl,如(1)所示;其中,l表示通信网络的拉普拉斯矩阵;在数学上,代理的通信系统通过通信矩阵d来表示,通常设计为对称的,因此,被称为双随机矩阵,并且d的所有特征值均小于或等于1;其中,矩阵d是被设计为对称矩阵,ni为j的取值集合,ni=(n1,...,nk,...,nn);矩阵d满足以下条件:1.行和列的元素总和为同一数值;2.特征值|λi|<1,i=2,…,n;为保证该方法的稳定性,需满足以下条件:其中,ni与nj分别代表节点i处和节点j处相邻的代理数量,最终的共识平衡可以表示为:其中,n是微电网的代理数量;x(0)表示每个代理初始值的向量,1代表元素全为1的矩阵;上述xeq代表节点电压,趋于统一固定数值为该数值作为参考电压,对比es控制器实际输出电压形成反馈调节,使es控制器实际输出电压与参考电压接近。优选地,为了适应由es的即插即用引起的网络拓扑变化,自适应权重更新规则为:通过用局部测量电压初始化xi,搜索微电网信息的平均电压值,然后根据参考电压和es控制器实际输出电压,不断计算并更新所需的电压电平。s2:es控制器实际输出电压与参考电压间的差值经增益放大输出控制信号,实现实时跟踪es控制器实际输出电压;优选地,该过程es控制器实际输出电压与控制电压存在如下关系:vvc=g1(s)·εε=vsref-vs其中,vvc为控制信号的电压;vsref为参考电压;vs为es控制器实际输出电压;g1(s)为电压控制过程中的传输函数;kp和kr分别为比例增益和谐振增益;ωc为主要带宽控制的截止频率,ω0为共振频率且ω0=100πrad/s;s为拉普拉斯算子;s3:将es控制器中逆变器侧的电感电流转换为下垂电压,与控制信号的差值信号传输至pwm调制器,经过调制增益后将电压信号返回逆变器,形成下垂电压对逆变器输出信号的反馈调节,进而实现对es电压的控制;优选地,控制信号的电压、pwm调制器输入信号以及下垂电压之间存在如下关系:vpc=vvc-vlvl=ilkl其中,vpc为pwm调制器接收的输入电压;kl为电感电流转换为电感电压的下垂增益,相当于电感阻抗;il为电感电流;vl为电感电压;优选地,发送到pwm调制器的输入信号与逆变器的输出电压之间的关系描述为:vac=kpwmvpc其中,vac为逆变器的输出电压;vpc为pwm调制器的输入电压,kpwm为pwm调制器对应的调制增益;其中,kpwm可由以下公式得出:其中,vdc和vtri分别表示直流链路电压和pwm载波电压;进一步可得:vac=kpwm(vvc-ilkl)从上述等式可以看出,电感电流的变化会对逆变器的输出电压起到控制调节作用,kl近似为虚拟电感的虚拟电阻,可以导致多个并联es的电压下降;多个并联es控制器系统存在下面的关系:vac=slil+ves=kpwm(vvc-ilkl)ves=kpwmvvc-il(kpwmkl+sl)其中,l为介于es控制器中逆变器与lc滤波器之间的电感,ves为lc滤波器的输入电压;则es控制器中lc滤波器输入电压可表示为:ves=kpwmvvc-ilz*从上述公式可以看出,如果kl增益大于电感,则可忽略电感效应,输出阻抗呈现纯电阻特性,逆变器可视为与电阻输出阻抗级联的电压源;进一步可知,步骤s3提出的方法具备类似下垂控制的原理,随着电感电流il的增加逆变器输出电压vac下降;s4:重复步骤s2~s3,直至es控制器实际输出电压为参考电压。通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:(1)本发明实时监测各es控制器的输出电压,同时相邻es控制器根据本地信息以分布式模式进行信息状态的交换,最终所有es控制器的信息状态收敛为同一状态,计算系统的共识值作为参考电压,而并不是直接修改参考电压,确保了微电网输出电压的稳定性,避免交流母线的电压波动较大发生过冲。(2)本发明es控制采用双环控制,外环电压控制主要用于连接点的es电压控制;内环控制器采用电感电流作为反馈变量修改电压控制信号;双环控制使整个微电网可以实时获取并跟踪参考电压,进一步避免了微电网因故障引起的电压较大波动。附图说明图1是本发明提供的共识控制流程图;图2是本发明提供的es控制器电压控制方法框图;图3是本实施例提供的es控制器电压控制的具体流程图表;图4是本发明提供的仿真模型流程图;图5是本发明提供的仿真模型系统图;图6是本发明提供的共识算法迭代计算平均电压发现过程;图7是本发明共识控制与下垂控制的方案对比图。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明提供了一种基于电力弹簧的微电网电压分布式控制方法,包括:s1:如图1所示,假设每个电力弹簧(es:electricspring)控制器均为代理,初始化各代理信息状态,且相邻代理根据本地信息以分布式模式进行信息状态的交换,最终所有代理信息状态收敛为同一状态,计算系统的共识值作为参考电压;如图1所示,具体各代理间信息状态在离散时间内的交互可以表示为:其中,n是微电网的代理数量,aij是节点i到节点j数据传输的通信权重;指代理i在k次迭代过程中的信息状态,相应地,指节点j处代理在k次迭代过程中的信息状态;对于离散状态,aij值越大代表节点i处代理与节点j处代理间的通信度越高;若aij=1表示节点i与节点j相邻;若aij=0则表示节点i与节点j间未链接;在实际信息状态交互时,信息状态会根据其当前状态的加权平均值与相邻信息状态进行驱动调节自身状态,若代理与其他代理未进行信息状态的交换,则说明此代理在本次迭代过程中保持当前信息状态。整个微电网的全局信息发现过程可以用矩阵形式表示为:xk+1=dxk其中,d为通信网络的权重矩阵,xk与xk+1分别表示第k次和第(k+1)次迭代时信息状态的向量,且引入恒定边缘权重ε,则d可表示为d=i-εl,如(1)所示;其中,l表示通信网络的拉普拉斯矩阵;在数学上,代理的通信系统通过通信矩阵d来表示,通常设计为对称的,因此,被称为双随机矩阵,并且d的所有特征值均小于或等于1;矩阵d是被设计为对称矩阵,ni为j的取值集合,ni=(n1,...,nk,...,nn);矩阵d满足以下条件:1、行和列的元素总和为同一数值;2、特征值|λi|<1,i=2,…,n;为了确保该方法的稳定性,需满足以下条件,才能保证该方法的稳定性,因此:其中,ni与nj分别代表节点i处和节点j处附近的代理数量,最终的共识平衡可以表示为:其中,n是微电网的代理数量;x(0)表示每个代理初始值的向量,1代表元素全为1的矩阵;上述xeq代表节点电压,趋于统一固定数值为该数值作为参考电压,对比es控制器实际输出电压反馈调节,最终使得es控制器实际输出电压与参考电压接近。优选地,为了适应由es的即插即用引起的网络拓扑变化,自适应权重更新规则为:通过用局部测量电压初始化xi,搜索微电网信息的平均电压值,然后根据参考电压和es控制器实际输出电压,不断计算并更新所需的电压电平。s2:如图2所示,对es控制器实际输出电压与参考电压间的差值信号进行电压控制输出控制信号,实现实时跟踪es控制器实际输出电压;优选地,该过程es控制器实际输出电压与控制电压存在如下关系:vvc=g1(s)·εε=vsref-vs其中,vvc为控制信号的电压;vsref为参考电压;vs为es控制器实际输出电压;g1(s)为电压控制过程中的传输函数;kp和kr分别为比例增益和谐振增益;ωc为主要带宽控制的截止频率,ω0为共振频率且ω0=100πrad/s;s为拉普拉斯算子;s3:如图3所示,将es控制器中逆变器侧电感电流转换为下垂电压,与控制信号的差值信号传输至pwm调制器,经过调制增益后将电压信号返回逆变器,形成下垂电压对逆变器输出信号的反馈调节,进而实现对es控制器实际输出电压的控制;优选地,控制信号的电压、pwm调制器输入信号以及下垂电压之间的关系为:vpc=vvc-vlvl=ilkl其中,vpc为pwm调制器接收的输入电压;kl为电感电流转换为电感电压的下垂增益,相当于电感阻抗;il为电感电流;vl为电感电压;优选地,发送到pwm调制器的输入信号与逆变器的输出电压之间的关系描述为:vac=kpwmvpc其中,vac为逆变器的输出电压;vpc为pwm调制器的输入电压,kpwm为pwm调制器对应的调制增益;其中,kpwm可由以下公式得出:其中,vdc和vtri分别表示直流链路电压和pwm载波电压。进一步可得:vac=kpwm(vvc-ilkl)从上述等式可以看出,电感电流的变化会对逆变器的输出电压起到控制调节作用,kl近似为虚拟电感的虚拟电阻,可以导致多个并联es的电压下降;多个并联es控制器系统存在下面的关系:vac=slil+ves=kpwm(vvc-ilkl)ves=kpwmvvc-il(kpwmkl+sl)其中,l为介于es控制器中逆变器与lc滤波器之间的电感,ves为lc滤波器的输入电压;则es控制器中lc滤波器输入电压可表示为:ves=kpwmvvc-ilz*从上述公式可以看出,如果kl增益大于电感,则可忽略电感效应,输出阻抗呈现纯电阻特性,逆变器可视为与电阻输出阻抗级联的电压源。进一步可知,步骤s3提出的方法具备类似下垂控制的原理,随着电感电流il的增加逆变器输出电压vac下降。s4:重复步骤s2~s3,直至es控制器实际输出电压为参考电压。结合步骤s1~s4,各es控制器整体系统的信息状态x发现过程可建模为离散时间线性系统。具体的流程图为图1所示:构建了两级控制方法用于微电网中的多个es控制器的控制,一方面,上级控制检测es控制器的电压参考,首先测量和初始化es控制器的本地信息,其次利用es控制器本地信息分布式模式进行相邻es控制器信息状态的迭代交换,计算共识值作为参考电压,对应于本发明中的步骤s1;另一方面,采用下级控制来跟踪es的参考电压,图2和图3为本发明涉及的控制策略,对应于本发明中的步骤s2~s3,核心方法为:步骤s2相当于es控制器设置的外环控制器,主要用于监控es控制器实际输出电压,步骤s3相当于es控制器设置的内环控制器,通过采用电感电流作为反馈变量,与电压控制信号共同调制脉冲宽度调制器上的信号(pwm),进而实现对es控制器输出电压的反馈调节。为了实现上述目的,本发明进行了如下的仿真:d1,建立具有多个es测试系统模型;如图4所示,在matlab中建立具有共识算法和通信网络的代理模型,其中共识算法旨在确保基于代理的本地信息以分布式模式进行信息交换,时间步长为100ms;如图4所示,pscad中的用户自定义界面(udi)模型实现代理与微电网之间的交互,matlab进行收集和处理pscad中的数据,例如,相邻代理数,代理搜索和电压,通过与邻近代理交换数据,使用一致性发现全局信息,最后将参考电压值通过接口发送回pscad,以在本地实现每个es的分布式控制,这里忽略通信时间的延迟。具体建立的系统模型如图5所示,模型为九条母线构成的系统配置,微电网由三个分布式电源(dg)组成,其中g1由基于双馈感应发电机(dfig)的风力涡轮机代替,系统的电压等级为35kv,g1,g2和g3的额定功率分别为8mva,6mva和4mva。有功功率的基准值为1mw。三个es分别安装在总线8,总线6和总线5上,其中总线5上的负载为4.167+j1.667mva,总线6上的负载是3+j1mva,总线8上的负载是3.333+j1.167mva,es控制器的控制参数在表i中给出,负载用恒定阻抗建模;表1参数kpkrkvkpwmkles0.261600.020.850.016d2,基于es的地理位置设计简单的通信拓扑,如图5中的虚线箭头所示;通信网络的拉普拉斯矩阵可以写成:恒定边缘权重影响离散算法的动态,拉普拉斯矩阵的特征值是[033]t;因此,选择最佳ε=1/3以实现快速收敛速度,获得相应的d矩阵:同时,对本发明采取的电感电流与电感电压间的下垂增益进行了从0到0.01的测试,当系统电压发生瞬间变化时,系统交流母线的电压并未出现较大的波动,发生过冲现象,并随着增益的增大,电压恢复稳定的时间和振荡逐渐减小,在重复调整增益之后,最终确定实现期望的系统动态。d3,将d1系统模型中总线6上的电压骤降到0.94p.u.,此时三个es的开关激活2s,按照d2设计的控制参数实施控制;传统下垂控制参数为0.021,下垂系数的选择与es额定功率成反比;对于本发明提供的控制方案,es的参考电压根据共识算法计算,平均电压发现过程如图6所示,它可以在该系统中完成约0.2s的电压参考更新。由于电压参考的频繁更新会引起系统稳定性问题,es的快速响应使得系统的0.2s间隔值如图7所示。表2控制方法母线电压稳态时间通讯要求下垂控制1.02p.u.3.5s无共识控制1.0p.u.2.8s普通网络将传统的下垂控制与表2中提出的分布式电压控制方法进行比较,下垂控制导致没有通信的稳态电压偏差,此外,电压需要更长的时间才能达到稳态值。下垂控制在电压调整时产生误差,并在扰动的初始阶段产生过电压。相反,本发明所提出的控制方案确保电压在1p.u处快速良好调节。通过具有简单通信网络的共识算法实现最佳电压1.0p.u.。因此,如果采用改进的控制,则可实现更精确的电压控制并且在瞬态期间避免过电压。本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1