DC-DC转换器装置的制作方法

文档序号:21996977发布日期:2020-08-25 19:38阅读:120来源:国知局
DC-DC转换器装置的制作方法

本发明涉及一种藉由对多个进行直流-直流转换的转换器单元进行并联而构成的dc-dc转换器装置。



背景技术:

图5示出了这种dc-dc转换器装置的第1现有技术。

图5中,100、200是进行直流-直流转换的电流共振型转换器单元。这些转换器单元100、200的构成相同,输入端子a、b和输出端子c、d之间相互并联。

11、21是将直流输入电压(电容器c1、c4的两端的电压)vin转换为交流电压的直流-交流转换部,分别由半导体开关元件q1~q4、q5~q8的全桥电路构成。

直流-交流转换部11的交流输出端子经由共振用电抗器l1、共振用电容器c2、及绝缘用变压器tr1与由二极管d1~d4构成的整流电路12的交流输入侧连接,直流-交流转换部21的交流输出端子经由共振用电抗器l3、共振用电容器c5、及绝缘用变压器tr2与由二极管d5~d8构成的整流电路22的交流输入侧连接。

整流电路12、22的直流输出端子之间分别连接有电容器c3、c6,电容器c3、c6各自的一端和直流输出端子c之间分别连接有电抗器l2、l4。

众所周知,电流共振型的dc-dc转换器中,藉由利用基于共振用电抗器和共振用电容器的共振现象可将直流-交流转换部11、21的输出电流控制成正弦波。

此外,对转换器单元100、200进行控制的控制装置的构成如下所述。

输出电压检测电路31对输出端子c、d之间的电压vo进行检测,输出电流检测电路32对流经输出端子d的电流进行检测,并且这些电压和电流检测值都被输入控制电路40。控制电路40生成用于使电压和电流检测值与各指令值一致的调制率指令,门脉冲发生电路50藉由对上述调制率指令和载波进行比较的pwm控制来生成相对于直流-交流转换部11、21的开关元件q1~q4、q5~q8为共同(common)的门脉冲,并将其输出。具体而言,藉由相同的脉冲使开关元件q1和q5进行导通·切断,并藉由相同的脉冲分别使q2和q6、q3和q7、以及q4和q8进行导通·切断。

然而,即使将相对于直流-交流转换部11、21的开关元件q1~q4、q5~q8的门脉冲设为共用(common),并藉由相同的开关频率进行了工作,但由于存在构成各单元100、200的部件的特性上的偏差,输出电压vo1、vo2一般也不相等,装置整体的输出电压vo会发生波动。

另外,图6是表示第2现有技术的框图,其构成与专利文献1记载的dc-dc转换器大致相同。

该现有技术中,与直流-交流转换部11、21分别对应地设置了门脉冲发生电路51、52,如图7所示,相对于直流-交流转换部11的开关元件q1~q4的门脉冲和相对于直流-交流转换部21的开关元件q5~q8的门脉冲之间设置有相位差。需要说明的是,图6和图7中,vac1、vac2分别是直流-交流转换部11、21的交流电压,t为开关周期。

根据该现有技术可知,尽管转换器单元100、200的构成部件的特性上多少存在一些偏差,但藉由针对门脉冲设置相位差,可对输出电流io的脉动进行一定程度的吸收,从而可对输出电压vo的波动进行抑制。

然而,在转换器单元100、200的开关频率-输出电压特性例如为图8那样的情况下,如果假定输出电压的目标值为vo1,则根据转换器单元100的特性将开关频率设为fs1后,转换器单元200的输出电压变为vo3,与转换器单元100的输出电压vo1之间会产生误差。此外,根据转换器单元200的特性将开关频率设为fs2后,转换器单元100的输出电压变为vo2,与转换器单元200的输出电压vo1之间也还是会产生误差。

即,不管怎样,都存在转换器单元100、200的输出电压的误差会导致输出电流io1、io2变得不均衡,输出电压vo的波动变大的问题。

另外,图9是表示第3现有技术的框图,其构成与专利文献2记载的电源装置大致相同。

该现有技术中,与一个转换器单元100对应地设置了输出电压检测电路31、输出电流检测电路32、控制电路41、及门脉冲发生电路51,并且与另一个转换器单元200对应地设置了输出电压检测电路33、输出电流检测电路34、控制电路42、及门脉冲发生电路52,各控制电路41、42藉由使相对于所对应的单元100、200的开关频率不同,可将各单元100、200的输出电压vo1、vo2控制为相等。

也就是说,在上述图8中输出电压的目标值为vo1的情况下,将一个转换器单元100的开关频率设为fs1,并将另一个转换器单元200的开关频率设为fs2,藉此进行了控制。

根据该现有技术可知,由于转换器单元100、200的输出电压vo1、vo2一致,所以从各单元输出的平均电力较为均衡,但由于各单元的开关频率不同,所以存在输出电压和输出电流藉由低于开关频率的频率进行脉动的问题。

此外,图10是第4现有技术,示出了专利文献3记载的dc-dc转换器的并行工作电路。

图10中,300a、300b是并联的具有相同构成的转换器单元,310是电源部,311是变压器,312是fet,313是整流电路,320是误差电压检测部,321是稳压二极管,322是误差放大器,323是光耦合器,330是电压检测部,331是误差放大器,341是晶体管,342是恒定电压控制部,343是辅助电源部,350是两个单元300a、300b之间的信号线,400是负荷。

该现有技术中,通过信号线350使向两个单元300a、300b的恒定电压控制部342赋予比较误差信号的光耦合器323的输出侧进行了相互连接,据此正常工作时可对两个单元300a、300b的输出电压的误差进行均衡化。此外,例如在单元300a的误差电压检测部320的电阻等发生了异常的情况下,被构成为,误差放大器331的输出使晶体管341断开,从而对单元300a、300b之间的信号线350进行电气隔离,由此可从健全的单元300b向负荷400提供预定的电压。

[现有技术文献]

[专利文献]

[专利文献1](日本)特开2010-41855号公报([0015]~[0054]、图1、图2等)

[专利文献2](日本)特开2016-167905号公报([0028]~[0069]、图1、图3等)

[专利文献3](日本)专利第2823896号公报(第2页右栏第3行~第45行、第2图等)



技术实现要素:

[发明要解决的课题]

这里,图11是基于第1现有技术的输出电压的波形图,图12是基于第2现有技术的输出电压和输出电流的波形图,图13是基于第3现有技术的输出电压和输出电流的波形图。

第1现有技术中,从单一的控制电路40和门脉冲发生电路50向转换器单元100、200赋予了共同的门脉冲,各单元100、200的输出电流io1、io2具有相同的相位,所以如图11所示输出电压vo的波动量δvo较大。

第2现有技术中,从单一的控制电路40使用门脉冲发生电路51、52并藉由具有相位差的门脉冲对各单元100、200进行了驱动。图12是使门脉冲的相位差为180度的情况下的波形图,由于从各单元100、200输出错开了180度相位的电流io1、io2,所以在构成部件不存在特性上的偏差的情况下,输出电流io1、io2的平均值较为均衡,输出电压vo的波动较小(图12(a))。

然而,在构成部件存在特性上的偏差的情况下,各单元100、200的输出电流io1、io2的平均值大不相同,所以输出电压vo的波动也较大(图12(b))。

图13所示的第3现有技术中,因为是从控制电路41、42分别经由门脉冲发生电路51、52并藉由不同的开关频率对各单元100、200进行了驱动,所以输出电流io1、io2的相位例如错开了180度,其平均值也较为均衡。然而,如果构成部件存在特性上的偏差,则如图13所示,存在输出电压vo和输出电流io1、io2藉有低于开关频率的频率进行脉动的问题。

如上所述,第1~第3现有技术中,难以解决输出电压vo的波动、各转换器单元100、200的输出电流io1、io2的不均衡、以及输出电压vo和输出电流io1、io2的脉动这样的问题。

此外,第4现有技术的发明为,用于使并行工作的两个转换器单元的输出电压误差进行均衡化的信号当一个单元发生故障时被切断,之后,从另一个单元向负荷进行给电以维持工作。该发明在两个单元并行工作的状态下对输出电压的波动进行抑制,并不是解决“消除各单元的输出电流的不均衡等”这样的课题。

因此,本发明欲解决的课题在于,提供一种dc-dc转换器装置,据此可消除多个转换器单元并行工作时的输出电压的波动、各转换器单元的输出电流的不均衡、以及输出电压和输出电流的脉动。

[用于解决课题的手段]

为了解决上述课题,权利要求1的发明为一种dc-dc转换器装置,其中,多个转换器单元并联连接,所述转换器单元由直流-交流转换部和整流电路构成,所述直流-交流转换部藉由半导体开关元件的动作将直流电力转换为交流电力,所述整流电路经由共振电路和绝缘用变压器连接于所述直流-交流转换部的交流输出侧,

按照每个所述转换器单元具备控制装置(即,与每个所述转换器单元对应地具备控制装置),所述控制装置由控制电路和脉冲发生电路构成,所述控制电路根据所述转换器单元的输出电压和输出电流生成调制率指令,所述脉冲发生电路基于所述调制率指令生成所述半导体开关元件的驱动脉冲,

所述dc-dc转换器装置的特征在于,考虑到表示各转换器单元的开关频率和输出电压之间的关系的特性,使与相同的输出电压对应的开关频率中的最低者为共同开关频率,并使该共同开关频率在多个所述控制电路之间共享,并且,藉由具有所述共同开关频率的所述驱动脉冲使所有的所述转换器单元进行工作。

权利要求2的发明的特征在于,在权利要求1记载的dc-dc转换器装置中,藉由在各转换器单元之间使所述驱动脉冲的相位错开,使所述共同开关频率下的各转换器单元的输出电压相等。

权利要求3的发明的特征在于,在权利要求2记载的dc-dc转换器装置中,基于调制率指令对各转换器单元进行相位调制控制,藉此使所述驱动脉冲的相位错开。

权利要求4的发明的特征在于,在权利要求1~3中的任一项记载的dc-dc转换器装置中,所述直流-交流转换部由所述半导体开关元件的全桥电路或半桥电路构成,所述整流电路由全波整流电路或半波整流电路构成。

[发明效果]

根据本发明,可对输出电压的波动进行抑制,也可使多个转换器单元的输出电流均衡,此外还可防止输出电压和/或输出电流的脉动。

附图说明

[图1]表示本发明的实施方式的电路图。

[图2]表示本发明的实施方式中的控制电路的主要部分的一例的电路图。

[图3]表示本发明的实施方式中的正规化频率和输入输出电压比之间的关系的波形图。

[图4]基于本发明的实施方式的输出电压和输出电流的波形图。

[图5]表示第1现有技术的电路图。

[图6]表示第2现有技术的电路图。

[图7]表示第2现有技术的动作的时序图。

[图8]表示第2现有技术中的各转换器单元的开关频率和输出电压之间的关系的波形图。

[图9]表示第3现有技术的电路图。

[图10]表示第4现有技术的电路图。

[图11]基于第1现有技术的输出电压和输出电流的波形图。

[图12]基于第2现有技术的输出电压和输出电流的波形图。

[图13]基于第3现有技术的输出电压和输出电流的波形图。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。

图1是该实施方式的dc-dc转换器装置的框图。转换器单元100、200在直流输入端子a、b和直流输出端子c、d之间相互并联,各单元100、200的构成分别与图5、图6、及图9的现有技术相同。

转换器单元100的控制装置具备该单元100的输出电压检测电路31、输出电流检测电路32、控制电路41、及门脉冲发生电路51,转换器单元200的控制装置具备该单元200的输出电压检测电路33、输出电流检测电路34、控制电路42、及门脉冲发生电路52。

这里,本实施方式中,转换器单元100的控制电路41和转换器单元200的控制电路42被构成为,经由有线或无线通信路径43可在两者之间交换频率、相位等的信息。

这里,假定转换器单元100、200的构成部件的特性上的偏差导致两者的开关频率和输出电压之间的关系与上述图8相同。此情况下,如果假设dc-dc转换器装置的输出电压的目标值为vo1,则如上所述转换器单元100的开关频率变为fs1,转换器单元200的开关频率变为fs2。在这样地藉由不同开关频率使两个单元100、200进行动作的情况下,与第3现有技术同样地,输出电压vo和输出电流io1、io2会进行脉动。

为此,本实施方式中,藉由使与输出电压的目标值vo1对应的转换器单元100、200的开关频率fs1、fs2中的较低的频率fs1作为共同开关频率,并对两个单元100、200的开关元件q1~q4、q5~q8进行开关操作。也就是说,使开关频率较低的转换器单元100作为主转换器单元,使另一个转换器单元200作为从转换器单元,并藉由主转换器单元侧的开关频率对两个单元100、200进行控制。需要说明的是,如果藉由控制电路41、42经由通信路径43对两个单元100、200的开关频率fs1、fs2进行对照来确定主转换器单元侧的开关频率即共同开关频率,则两个单元100、200就可容易地对其进行共享。

由于通过上述处理可使两个单元100、200的开关频率一致,所以可防止如图13所示的输出电压vo和输出电流io1、io2的脉动。

另一方面,如果藉由共同开关频率fs1使转换器单元100、200的开关频率统一,则根据上述图8可知,各单元100、200的输出电压分别变为vo1、vo3,这样就会招致输出电流io1、io2的不均衡和/或输出电压vo的波动。

为了解决该问题,本实施方式中,例如藉由本申请人的(日本)专利5928913号公报中记载的相位调制控制(相移控制)等,使对转换器单元200的开关元件进行驱动的门脉冲的相位错开,可减小输出电压vo3以使其与vo1一致。据此,藉由使各单元100、200的输出电压与目标值一致,不仅可防止输出电压vo的波动,而且还可使电流io1、io2均衡。

需要说明的是,权利要求2中「使驱动脉冲的相位错开」是指,除了上述的基于相位调制控制的方法之外,还包括如图7所示的在各单元之间使驱动脉冲(门脉冲)的相位一律错开的情况。

图2是作为对上述门脉冲的相位进行调整的一个手段的、在图1的控制电路42和门脉冲发生电路52中可对频率调制控制和相位调制控制进行切换的电路图,其为上述专利第5928913号公报中记载的电路图。这里,假定了通过对转换器单元200的开关元件q5~q8进行驱动以调整该单元200的输出电压的情况,并在此基础上进行说明。

图2中,频率调制电路421根据基于转换器单元200的输出电压vo2和输出电流io2而设定的调制率指令λ(0≤λ≤1)生成频率调制信号vpfm,并具备限制器lim1(下限值:1-λc;上限值:λlim)、积分器int、比较器cmp1、及t触发器(flip-flop)t-ff。需要说明的是,0<λc<λlim<1,λc=v1(比较器cmp1的参考电压)。

此外,相位调制电路422根据调制率指令λ、载波信号vtr、及t触发器t-ff的输出信号生成相位调制信号vps,并具备限制器lim2(下限值:0;上限值:λc)、比较器cmp2、及逻辑异或门xor。

另外,门脉冲发生电路52根据频率调制信号vpfm和相位调制信号vps并经由逻辑非门not1、not2、及接通延时(on-delay)电路dt1~dt4生成相对于转换器单元200的直流-交流转换部21的开关元件q5~q8的门脉冲。

需要说明的是,上述电路也内置于转换器单元100的控制电路41。

图2中,采用如下方式进行动作,即,基于调制率指令λ的大小对频率调制控制和相位调制控制进行切换,在调制率指令λ大于λc的区域内进行频率调制控制,并藉由使λ小于λc而过渡至相位调制控制。

因此,如图8所示,在转换器单元200的输出电压vo3大于转换器单元100的输出电压vo1的情况下,藉由在转换器单元200的控制电路42内将图2中的调制率指令λ调整为小于λc以对开关元件q5~q8进行驱动,可进行减小输出电压vo3以使其与vo1一致的控制。

本实施方式中,如上所述假定了如下情况,即,例如当使开关频率较低的转换器单元100作为主转换器单元,并使另一个转换器单元200作为从转换器单元时,就主转换器单元侧的转换器单元100而言,执行专利第5928913号公报中记载的频率调制控制或相位调制控制,就从转换器单元侧的转换器单元200而言,进行如上所述的相位调制控制,藉此使两个单元100、200的输出电压一致。

需要说明的是,图3是表示基于负荷的轻重的转换器单元(例如,转换器单元200)的正规化频率f(fs/fr)和输入输出电压比之间的关系的特性图。这里,fs是开关频率,fr是共振频率。此外,纵轴的输入输出电压比中,e1是藉由本实施方式可进行控制的区域,e2是藉由第3现有技术可进行控制的区域,e3是藉由相位调制控制可进行控制的区域,e4是藉由频率调制控制可进行控制的区域。

图3中,在正规化频率f为1.0、即、使开关频率等于共振频率而进行控制的情况下,如果在输入输出电压比为1.0的点(区域e3和e4边界点)处从频率调制控制过渡至相位调制控制,则可进行不会使输出电压vo剧烈变化的无缝切换。

图4是藉由本实施方式而控制的输出电压vo和输出电流io1、io2、io的波形图。

与图12(b)所示的第2现有技术相比,各单元100、200的输出电流io1、io2的不均衡被进行了改善,此外,输出电压vo的波动也变少了。

另外,如果与图13所示的第3现有技术相比,则可知输出电流io1、io2和输出电压vo的脉动都降低了。

需要说明的是,本发明的实施方式中,就转换器单元100、200的一次侧的直流-交流转换部而言,除了开关元件的全桥电路之外,还可为半桥电路,就转换器单元100、200的二次侧的整流电路而言,可为全波整流电路(桥式全波整流电路或中心抽头式全波整流电路)或半波整流电路。即,通过根据dc-dc转换器装置的输入电压、输出电压、输出电流等的条件对最佳的电路方式进行选择,可实现装置整体的小型化、低损失化、及低成本化。

[符号说明]

11、21:直流-交流转换部

12、22:整流电路

31、33:输出电压检测电路

32、34:输出电流检测电路

41、42:控制电路

43:通信路径

51、52:门脉冲发生电路

100、200:转换器单元

421:频率调制电路

422:相位调制电路

a、b:直流输入端子

c、d:直流输出端子

tr1、tr2:变压器

l1~l4:电抗器(reactor)

c1~c6:电容器

q1~q8:半导体开关元件

d1~d8:二极管

lim1、lim2:限制器

cmp1、cmp2:比较器

int:积分器

t-ff:t触发器

xor:逻辑异或门

not1、not2:逻辑非门

dt1~dt4:接通延时电路

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1