用于逆变器的负载异常检测电路的制作方法

文档序号:21109206发布日期:2020-06-16 21:36阅读:358来源:国知局
用于逆变器的负载异常检测电路的制作方法

本发明涉及一种用于逆变器的负载异常检测电路,设置该负载异常检测电路以在负载中发生异常时保护逆变器免受由于由逆变器供应电力的负载的异常所导致的影响。



背景技术:

在现有技术中,逆变器装置用作向负载供应交流电的电源装置。当向逆变器装置供给电力时,由于该电力的频率以及向负载施加的电压值和电流值均能够任意设定,所以根据负载的特性以及所需的工作量供应电力,使得在向负载的供电中没有浪费,从而能够有效地进行供电。

作为逆变器装置的实例,如图5所示,已知一种逆变器装置1,包括:整流电路10,其通过二极管11和平滑电容器12将三相交流电转换为直流电;恒压电路20,其使整流电路10的输出电压整形为预定电压;逆变电路30,其将来自恒压电路20的直流电压转换为交流电;以及相位同步回路(后文简称为“pll电路”)40,其将从逆变电路30输出的交流电的频率控制为负载2的谐振频率。逆变器装置1是电压型逆变器装置,其产生具有能够被视为高频率的高频的交流电,并且具有小的输出阻抗。

恒压电路20是斩波型恒压电路,即使在负载或输入电压中有变化,其也向输出侧稳定供应预定的直流电压。恒压电路20设置有:用于电力控制的mosfet21,其是用作斩波器本体的快速开关元件;电抗器22和电容器23,用于电压和电流平滑;以及续流二极管24,其在mosfet21断开时用作负载电流路径。恒压电路20能够通过改变施加于mosfet21的栅极的周期信号的接通时间的宽度,来调节输出电压。

逆变电路30设置有用于频率控制的mosfet31,其为以桥形连接的快速开关元件。二极管32并联连接于各个mosfet31,以在感性负载的情况下使滞后电流分量返回到直流电路,或使滞后电流分量在桥中回流。此外,逆变电路30设置有变流器33和变压器34,变流器33和变压器34连接至具有电感l和电容c的负载2,以检测流向负载2的电流i1和电压v1。

pll电路40设置有:相位比较电路41,其检测流向负载2的电流i1和电压v1的相移;模拟加法器/减法器42,其增加/减去预设的频率设定值,以匹配由相位比较电路41检测到的电流i1和电压v1的相移;压控振荡器43,其输出频率与输出自模拟加法器/减法器42的电压相对应的信号;以及栅极信号控制电路44,其根据输出自压控振荡器43的信号的频率,顺次向逆变电路30的mosfet31的栅极a至d发送信号。

根据这样的逆变器装置1,能够产生具有能被视为高频率的高频的交流电,使得其能够用于钢材的高频硬化等中。另外,由于输出频率被控制为匹配流向负载2的电流i1和电压v1的相移,所以输出电力频率与具有电感l和电容c的负载2的谐振频率一致,使得其能够有效地操作负载2。

在逆变器装置1的运行期间,当发生诸如负载2侧电路的一部分的诸如短路和开路这样的异常时,由于负载2的阻抗快速变化,所以谐振频率大幅改变。于是,由于逆变器装置1的pll电路40将输出频率控制为在负载2的谐振频率下运行,所以在瞬态下可能瞬间产生大电流或大电压,从而mosfet31可能损坏。特别地,当由于负载2的阻抗的变化而导致电流i1的相位相对于电压v1的相位提前时,产生相对大的浪涌电压,导致mosfet31容易被浪涌电压损坏的问题。

现有技术的用于逆变器的负载异常检测电路被添加至上述逆变器装置1中,其检测从逆变器装置1输出到负载2的输出电压v1和输出电流i1的相移,并且基于相移发送异常负载信号(例如见专利文献1:jp3652098)。负载异常检测电路接收分别从与pll电路40连接的变流器33和变压器34获得的电流i1和电压v1。然后,负载异常检测电路使输入电流i1和电压v1整形为预定方波,将它们中的一者(例如,电流i1)的波形反转,并且将电流i1的反转后的波形与电压v1的波形进行比较。

当在负载2中发生异常并且负载2的谐振频率2从逆变器装置1的操作频率偏移时,由于负载2的谐振电路用作电容性负载,所以电流i1的相位相对于电压v1的相位提前。在该情况下,负载异常检测电路关断逆变电路30的mosfet31的所有栅极信号,并且还关断斩波型恒压电路20中使用的mosfet21,从而防止电流从输入侧流入。以该方式,停止向负载2供电并且保护mosfet31。

专利文献1:jp3652098

通常使用硅mosfet作为逆变电路30的mosfet31;然而,近年来,使用碳化硅mosfet,这是因为与硅制成的mosfet相比,该碳化硅mosfet的每一个元件的额定电流大且切换速度快。然而与硅mosfet相比,在碳化硅mosfet中,在高速运行中关断时容易发生振铃。在现有技术的负载异常检测电路中,当在mosfet31中发生振铃时,由于高频噪声叠加在向负载异常检测电路输入的电压v1的波形上,所以可能由于噪声分量的增加而发生错误操作。

现有技术的负载异常检测电路设置有波形整形器,其将输入电压v1整形为方波,其中,波形整形器包括电阻器、电容器等,该电容器用于切断电压v1的波形中包含的不必要的谐波分量。当电容器的电容增大时,能够去除电压v1的波形中包含的噪声分量;然而,当电容器的电容过度增大时,由于包括电阻器和电容器的滤波器的时间常数变大,所以相对于输入电压v1的波形的相位,在整形的方波的相位中可能发生的延迟。负载异常检测电路基于电压v1和电流i1的相移检测负载异常,然而可能由于源自电压v1产生的方波的相位延迟而导致发生错误检测。



技术实现要素:

一个以上的实施例提供一种用于逆变器的负载异常检测电路,其能够准确且快速地检测负载的异常并且防止作为逆变器的重要元件的开关元件的损坏。

在方面(1)中,一种用于逆变器的负载异常检测电路,其检测在逆变器的操作期间负载的异常,逆变器具有作为开关元件的自熄弧元件和将输出频率控制为负载的谐振频率的相位同步回路,该负载异常检测电路包括:相移检测部,该相移检测部检测控制所述自熄弧元件的导通/关断的栅极电压信号与施加至所述负载的所述逆变器的输出电流之间的相移,并且基于所述相移发送第一异常负载信号。

所述用于逆变器的负载异常检测电路能够准确且快速地检测负载的异常并且防止作为逆变器的重要元件的开关元件的损坏。

附图说明

图1是示出根据第一实施例的逆变器装置的电路图。

图2是示出第一实施例的负载异常检测中使用的栅极信号的信号电压vg与从逆变器装置向负载输出的输出电压之间的关系的图。

图3是示出根据第一实施例的负载异常检测电路的电路图。

图4是示出根据本发明的第二实施例的负载异常检测电路的电路图。

图5是示出现有技术的电路图。

具体实施方式

后文将基于附图描述本发明的实施例。在下文的描述中,使用相同的参考标号表示前述相同的元件和电路,并且省略或简化其描述。图1示出根据本发明的第一实施例的逆变器装置3。通过将负载异常检测电路50添加至前述逆变器装置1而获得逆变器装置3。使用例如硅mosfet、碳化硅mosfet等作为逆变电路30的mosfet31。

负载异常检测电路50使用以下相移检测法:检测从pll电路40向mosfet31施加的栅极电压信号的信号电压vg与从逆变器装置3向负载2输出的输出电流i1的相移,并且基于相移发送第一异常负载信号。从pll电路40获得的栅极电压信号和从与pll电路40连接的变流器33获得的电流i1被配置为输入到负载异常检测电路50。

如图2所示,栅极电压信号的信号电压vg的周期与从逆变器装置3向负载2输出的输出电压v1的周期彼此一致。栅极电压信号的信号电压vg不包括由于mosfet31的振铃而叠加在输出电压v1上的噪声分量。结果,能够优选地使用栅极电压信号的信号电压vg,而不是输出电压v1,作为检测与输出电流i1的相移的电压。

然而,在电压vg与v1二者之间,均可能由于基于栅极电压信号而导通/关断的mosfet31的响应延迟时间δ而产生相移。所述响应延迟时间δ被定义为接通延迟时间td与上升时间tr的和,其中接通延迟时间td是从栅-源电压vgs上升10%到漏-源电压vds上升10%的时间,并且上升时间tr是从漏-源电压vds上升10%到90%的时间。mosfet31的响应延迟时间δ优选为比输出电压v1的半个周期λ/2短,并且更优选的是充分短于半个周期λ/2(例如,半个周期λ/2的1/10以下)。如上所述,由于输出电流i1相对于输出电压v1的相位的提前导致浪涌电压,所以当mosfet31的响应延迟时间δ等于或大于输出电压v1的半个周期λ/2时,难以基于输出电流i1与信号电压vg的相移的检测结果判定输出电流i1相对于输出电压v1的相移是对应于提前相位还是对应于延迟相位。

输入到负载异常检测电路50的栅极电压信号可以是从pll电路40向栅极a至d发送的栅极电压信号中的任意一个(例如,发送到栅极a或栅极b的栅极电压信号),或者是向同步导通/关断的多个mosfet31的栅极(例如,栅极a和栅极d)发送的多个栅极电压信号的平均值。

如图3所示,负载异常检测电路50设置有:波形整形器51,其用于将电压vg的波形整形为预定方波;波形整形器52,其用于将电流i1的波形整形为预定方波;数据触发器53,其用作检测电压vg与电流i1的相移的相移检测装置;触发器54,其用作保持数据触发器53的输出的锁存器;比较器55,其用于检测电流i1的大小是否达到基准值;以及反相器56,其用于将比较器55的输出信号反相。

波形整形器51包括:电阻器51a,其具有与数据触发器53的输入电压对应的直流电阻值;电容器51b,其用于切断电压vg的波形中包含的非必要谐波成分,等等。与波形整形器51相似,波形整形器52包括电阻器52a,其具有与数据触发器53的输入电压对应的直流电阻值;电容器52b,其用于切断电流i1的波形中包含的非必要谐波成分,等等。

电流i1从原始波形发生180°的相位反转,而后输入到数据触发器53。换言之,当电流i1的原始波形具有与电压vg的波形相同的相位时,输入到数据触发器53的电流i1的信号具有与电压vg的波形相反的相位。

数据触发器53具有:输入时钟信号的时钟输入端口cl;输入数据信号的数据输入端口d;输入置位信号的置位输入端口s;输入复位信号的复位输入端口r;以及用于在达到置位状态时发送置位信号的置位信号端口q,其中,当同步于时钟信号地输入数据信号时,由于达到置位状态,所以从置位信号端口q设置该置位信号。

比较器55对分别输入到其两个输入端口的交流信号的大小进行互相比较。表示流向负载2的电流i1的值的交流信号输入到比较器55的一个输入端口。通过将预定交流电压v2除以可变电阻57而获得的交流信号作为预定的基准值输入到比较器55的另一输入端口。在该情况下,当电流i1大于基准值时,从比较器55输出稳定的操作信号。稳定的操作信号通过反相器56反相并且被发送至数据触发器53的复位输入端口。通过比较器55、反相器56和可变电阻57形成掩码(mask)器58,一直向数据触发器53输出复位信号,直到电流i1的值大于基准值。

在上述本实施例中,在逆变器装置3开始运行之后,直到逆变器装置3的运行达到稳定状态,具体地,直到逆变器装置3的操作频率与负载2的谐振频率一致并且流向负载2的电流i1大于基准值为止,掩码器58都一直向数据触发器53输出复位信号,并且停止负载异常检测电路50的相移检测操作。以该方式,解决了如下问题:在该逆变器装置3启动之后,流向负载2的电流i1不稳定并且电流i1与电压vg的相位彼此不一致,逆变器装置3立即被强制停止。

然后,当逆变器装置3的运行达到稳定状态时,开始负载异常检测电路50的相移检测操作。

当在负载2中没有异常时,负载2的谐振频率与逆变器装置3的操作频率一致,并且电压vg与电流i1的相位彼此一致,分别输入到数据触发器53的时钟输入端口cl和数据输入端口d的信号的相位互相反相。因此,由于数据触发器53任然处于复位状态并且未转换到置位状态,并且未从置位信号端口q发送置位信号,所以逆变器装置3持续运行。

另一方面,当在负载2中发生异常时,负载2的谐振频率从逆变器装置3的操作频率偏移,电压vg与电流i1的相位彼此不一致。在这样的状态下,在分别输入到数据触发器53的时钟输入端口cl和数据输入端口d的信号中开始出现同时用作正极的部分。因此,数据触发器53转换到置位状态,并且从置位信号端口q发送置位信号。置位信号作为第一异常负载信号经由触发器54输入到逆变器装置3的pll电路40。

收到第一异常负载信号的pll电路40适当地关断mosfet31并且停止向负载2供电,从而防止mosfet31损坏。持续输出第一异常负载信号直到触发器54复位为止。

根据前述的本实施例,具有以下效果。

即,由于负载异常检测电路50设置为根据流向负载2的电流i1与栅极电压信号的信号电压vg的相移来检测负载2的异常,所以当负载2的阻抗由于意外事故等原因而改变时,能够根据由于负载2的谐振频率的变化而产生的电流i1与电压vg的相移而快速检测出负载2的异常,并且能够在pll电路40完成以负载2的谐振频率运行的操作之前可靠地检测负载2的异常。

当负载异常检测电路50检测到负载异常时,负载异常检测电路50适当地关断逆变器装置3的mosfet31并且停止向负载2供电,使得能够防止由于负载的异常导致的mosfet31的损坏。

而且,使用不包含导致mosfet31振铃的噪声分量的栅极电压信号的信号电压vg,而不是由于mosfet31振铃而导致的噪声分量叠加在其上的负载2的电压v1,作为用于检测与电流i1的相移的电压,使得能够防止负载异常检测电路50由于噪声分量的增加而错误操作并且能够准确地检测负载2的异常。

此外,使用数据触发器53配置负载异常检测电路50,该数据触发器53通过与时钟信号同步输入的数据信号进入置位状态,并且发送作为置位状态下的信号的置位输出,流过负载2的电流i1的反相信号被允许输入到时钟输入端口cl,并且栅极电压信号的信号电压vg被允许输入到数据输入端口d,使得仅当电流i1与电压vg的相位彼此偏移时才从数据触发器53输出置位信号。以该方式,能够使用简单的电路配置检测流向负载2的电流i1与栅极电压信号的信号电压vg的相移,并且能够大幅简化负载异常检测电路50。

而且,负载异常检测电路50设置有掩码器58,其将施加到负载2的电流i1的电流值与预定的基准值进行比较,并且一直向数据触发器53输出复位信号,直到电流i1的值大于基准值,使得能够防止发生如下问题:负载异常检测电路50的相移检测操作在逆变器启动时暂时停止并且逆变器装置3在启动之后立即被强制停止,其中在逆变器启动时流向负载2的电流i1不稳定并且电流i1与电压vg的相位彼此不一致。

图4示出本发明的第二实施例的主要部分。在本实施例中,电流减小检测器60添加至使用前述第一实施例中的相移检测方法的负载异常检测电路50。在下面的描述中,由于除了电流减小检测器60之外的部分与第一实施例中的相似,所以仅描述电流减小检测器60。

电流减小检测器60基于流过负载2的电流i1的值发送第二异常负载信号,并且该电流减小检测器60包括比较器61,该比较器61将施加于负载2的电流i1的值与预定的基准值进行比较,并且当电流i1的值小于基准值时发送第二异常负载信号,如图4所示。

电流减小检测器60设置有:用作计时装置的计时器62,其接收来自比较器61的第二异常负载信号,并且仅当第二异常负载信号持续预定时间以上时才输出第二异常负载信号;用作掩码器的与电路63,其接收来自逆变器装置3的操作信号,并且仅当输入操作信号时才输出第二异常负载信号;以及触发器64,其用作保持与电路63的输出的锁存器。

在本实施例中,由于负载2的谐振频率与逆变器装置3的操作频率一致,所以当负载2的阻抗由于意外事故等改变并且其谐振频率从流过负载2的电流最大的状态变化时,即使在逆变器装置3侧的输出电压中没有变化,谐振频率也从操作频率偏移,使得流过负载2的电流i1减小。当比较器61检测到负载2的电流减小时,能够在pll电路40完成以负载2的谐振频率运行的操作之前可靠地检测到负载2的异常。当检测到负载异常时,如果整个电路被配置为停止逆变器的操作,即,适当地关断开关元件以停止向负载供电,则能够更可靠地预先防止开关元件由于负载异常而损坏。

此外,即使电流i1由于噪声等瞬间降低,计时器62也认为流向负载2的电流i1没有降低,使得逆变器装置3稳定地工作。

而且,在流向负载2的电流i1未达到额定值的逆变器装置3的启动时,通过与电路63暂时阻断来自比较器61的第二异常负载信号,从而解决逆变器装置3在启动之后立即被强制停止的问题。

至此已经使用优选实施例描述了本发明;然而本发明不限于实施例,并且在不脱离本发明的范围的情况下可以进行各种改进和设计改变。

例如,整流电路的整流方法不限于采用二极管作为整流元件的无源方法;可以使用诸如scr这样的有源整流元件,并且可以采用对有源整流元件进行相位控制的有源方法。

此外,恒压电路的斩波方法不限于采用mosfet的方法;可以采用诸如另一个双极晶体管这样的开关元件,并且当二极管整流电路和脉冲宽度调制型逆变电路彼此组合时,可以省略斩波型恒压电路。

此外,逆变电路不限于采用mosfet的电路;可以采用诸如另一双极晶体管这样的开关元件,并且简言之,在实施本发明时,可以适当地选择本发明的逆变器装置的主体侧的电气元件、电子元件和电路配置。

另外,前述第一实施例的掩码器和第二实施例的掩码器可以彼此替换,并且第二实施例的计时装置也可以添加至前述第一实施例。

本申请基于2017年11月1日提交的日本专利申请no.2017-212183,其全部内容通过引用并入本文。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1