电力转换装置的制作方法

文档序号:21404820发布日期:2020-07-07 14:38阅读:154来源:国知局
电力转换装置的制作方法

本发明涉及电力转换装置。



背景技术:

以往,作为电力转换装置,例如在专利文献1中公开了一种车载用电源装置。该车载用电源装置具备:初级侧的桥电路,其输出交流电力;变压器,其对从初级侧的桥电路输出后的交流电力进行变压;次级侧的桥电路,其将被变压器变压后的交流电力转换成直流电力;以及次级侧的电压调整电路,其对利用变压器进行了变压的交流电力的电压进行调整。变压器具有:初级绕组,其与初级侧的桥电路连接;第1次级绕组,其与次级侧的桥电路连接;以及第2次级绕组,其与次级侧的电压调整电路连接。

现有技术文献

专利文献

专利文献1:日本专利第5577986号公报



技术实现要素:

发明欲解决的技术问题

然而,就上述专利文献1记载的车载用电源装置而言,例如,虽然供给了电压不同的2个电力,但经由第2次级绕组向次级侧的电压调整电路供给的电力可能产生纹波,该方面存在进一步改进的余地。

因此,本发明鉴于上述情况而完成,其目的在于提供能够恰当供给电压不同的多个电力的电力转换装置。

用于解决问题的技术手段

为了解决上述课题并达成目的,本发明涉及的电力转换装置,其被搭载于车辆且其特征在于,具备:主dc/dc转换器,所述主dc/dc转换器被构成为包含:第1三相电路,所述第1三相电路能够输入输出三相交流;第2三相电路,所述第2三相电路能够输入输出三相交流;及绝缘变压器,所述绝缘变压器设置在所述第1三相电路与所述第2三相电路之间并且对经由所述第1三相电路或所述第2三相电路而供给的电力的电压进行变压;以及副dc/dc转换器,所述副dc/dc转换器从所述绝缘变压器分支并且对经由所述第1三相电路或所述第2三相电路而供给的电力的电压进行变压,所述绝缘变压器被构成为包含3个线圈单元,所述线圈单元具有:初级绕组,所述初级绕组与所述第1三相电路的各相中的一个相连接;主次级绕组,所述主次级绕组与所述初级绕组电磁结合并且与所述第2三相电路的各相中的所述一个相连接;以及副次级绕组,所述副次级绕组与所述初级绕组或所述主次级绕组电磁结合并且与所述副dc/dc转换器连接,所述线圈单元针对三相分别至少各设置一个。

优选地,在上述电力转换装置中,具备:ac/dc电路,所述ac/dc电路向所述主dc/dc转换器输出直流电力,该直流电力是对从交流电源供给的交流电力进行转换后的直流电力;以及蓄电部,所述蓄电部储蓄被所述主dc/dc转换器变压后的直流电力。

优选地,在上述电力转换装置中,具备:蓄电部,所述蓄电部储蓄直流电力并将直流电力向所述主dc/dc转换器供给;以及逆变电路,所述逆变电路向负载部输出交流电力,该交流电力是对被所述主dc/dc转换器变压后的直流电力进行转换而得到的交流电力。

优选地,在上述电力转换装置中,具备控制部,所述控制部控制所述逆变电路和所述副dc/dc转换器,所述控制部根据从所述转换电路向所述负载部输出的输出电力的最大值和所述副dc/dc转换器的输出值,来限制所述输出电力。

发明效果

本发明涉及的电力转换装置具备从能够输入输出三相交流的主dc/dc转换器的绝缘变压器分支的副dc/dc转换器,因此能够抑制向该副dc/dc转换器输入的电力的纹波,能够恰当地供给电压不同的多个电力。

附图说明

图1是示出实施方式涉及的电力转换装置的结构例的电路图。

图2是示出实施方式涉及的电力转换装置的充电例的电路图。

图3是示出实施方式涉及的电力转换装置的ac供电例的电路图。

图4是示出实施方式涉及的ac供电时的电力限制例的流程图。

图5是示出实施方式的变形例涉及的ac供电时的电力限制例的流程图。

图6是示出实施方式的变形例涉及的绝缘变压器(其1)的电路图。

图7是示出实施方式的变形例涉及的绝缘变压器(其2)的电路图。

符号说明

1:电力转换装置

2:交流电源

3:负载部

30:转换电路(ac/dc电路、逆变电路)

40:主dc/dc转换器

41:第1三相电路

42:第2三相电路

43、43a、43b:绝缘变压器

43a~43c:线圈单元

50:高压电池(蓄电部)

60:副dc/dc转换器

80:控制部

l1a、l1b、l1c:初级绕组

l2a、l2b、l2c:主次级绕组

l3a、l3b、l3c:副次级绕组

具体实施方式

参照附图详细说明用于实施本发明的方式(实施方式)。本发明并没有被以下实施方式记载的内容所限定。另外,以下记载的结构要素包含本领域技术人员能够容易想到的要素、实质相同的要素。进而,以下记载的结构能够适当组合。另外,在不脱离本发明的要旨的范围能够进行结构的各种省略、替换或变更。

[实施方式]

参照附图说明实施方式涉及的电力转换装置1。图1是示出实施方式涉及的电力转换装置1的结构例的电路图。电力转换装置1是搭载于车辆并对电力进行转换的装置。电力转换装置1例如搭载于电动车(ev)、插电式混合动力车(phv)等车辆,并向高压电池50和低压电池70充入对从交流电源2供给的交流电力进行转换后的直流电力(充电处理)。此外,电力转换装置1向负载部3供给对从高压电池50供给的直流电力进行转换后的交流电力(ac供电处理)。

如图1所示,电力转换装置1具备:滤波器10、检测部20、作为ac/dc电路和逆变电路的转换电路30、主dc/dc转换器40、作为蓄电部的高压电池50、副dc/dc转换器60、低压电池70以及控制部80。

滤波器10去除噪声。滤波器10与交流电源2(参照图2)连接,去除在充电时从该交流电源2供给的交流电力的噪声。滤波器10经由线圈l7d与转换电路30连接,向转换电路30输出去除噪声后的交流电力。另外,滤波器10去除在ac供电时从转换电路30输出的交流电力的噪声。而且,滤波器10向负载部3输出去除噪声后的交流电力。

检测部20检测电流和电压。检测部20具有电流传感器21a~21d以及电压传感器22a~22c。电流传感器21d设置在滤波器10与转换电路30的开关电路31之间,检测在滤波器10与转换电路30的开关电路31之间流动的电流。电流传感器21d与控制部80连接,向控制部80输出检测到的电流。

电流传感器21a设置在转换电路30的开关电路31与主dc/dc转换器40之间。电流传感器21a检测在转换电路30的开关电路31与主dc/dc转换器40之间流动的电流。电流传感器21a与控制部80连接,并向控制部80输出检测到的电流。

电压传感器22a设置在转换电路30的开关电路31与主dc/dc转换器40之间。电压传感器22a检测被施加在转换电路30的开关电路31与主dc/dc转换器40之间的电压。电压传感器22a与控制部80连接,向控制部80输出检测到的电压。

电流传感器21b设置在主dc/dc转换器40的第2三相电路42与高压电池50之间。电流传感器21b检测在主dc/dc转换器40的第2三相电路42与高压电池50之间流动的电流。电流传感器21b与控制部80连接,向控制部80输出检测到的电流。

电压传感器22b设置在主dc/dc转换器40的第2三相电路42与高压电池50之间。电压传感器22b检测施加在主dc/dc转换器40的第2三相电路42与高压电池50之间的电压。电压传感器22b与控制部80连接,向控制部80输出检测到的电压。

电流传感器21c设置在副dc/dc转换器60的降压电路62与低压电池70之间。电流传感器21c检测在副dc/dc转换器60的降压电路62与低压电池70之间流动的电流。电流传感器21c与控制部80连接,向控制部80输出检测到的电流。

电压传感器22c设置在副dc/dc转换器60的降压电路62与低压电池70之间。电压传感器22c检测施加在副dc/dc转换器60的降压电路62与低压电池70之间的电压。电压传感器22c与控制部80连接,向控制部80输出检测到的电压。于是,电力转换装置1由于具备电流传感器21a~21d和电压传感器22a~22c,因此能够将电流值、电压值、电力值控制在预定的范围内,能够在宽的电力范围内工作。

转换电路30在充电时作为ac/dc电路(pfc电路;powerfactorcorrection电路;功率因数校正电路)发挥功能,在ac供电时作为逆变电路发挥功能。换言之,ac/dc电路和逆变电路利用同样的转换电路30而兼用。转换电路30具有开关电路31和电容器c1a。开关电路31具有fet(fieldeffecttransistor;场效应晶体管)q1a~q4a。开关电路31形成将fetq1a和fetq2a串联连接而成的第1串联电路,并且形成将fetq3a和fetq4a串联连接而成的第2串联电路。而且,开关电路31中,第1串联电路设置在滤波器10侧,第2串联电路设置在主dc/dc转换器40侧,第1串联电路和第2串联电路并联连接。开关电路31中,在fetq1a与fetq2a之间连接有滤波器10的一侧的端子,在fetq3a与fetq4a之间连接有滤波器10的另一侧的端子。

开关电路31与控制部80连接,利用该控制部80对fetq1a~q4a进行开关控制。开关电路31在充电时将经由滤波器10供给的交流电力转换成直流电力,并将该直流电力向主dc/dc转换器40输出。另一方面,开关电路31在ac供电时将从主dc/dc转换器40输出的直流电力转换成交流电力,并向滤波器10输出该交流电力。

电容器c1a使直流电力平滑化。电容器c1a与开关电路31并联连接,在充电时使从该开关电路31输出的直流电力平滑化。另外,电容器c1a在ac供电时使向开关电路31输入的直流电力平滑化。

主dc/dc转换器40对直流电力的电压进行转换。主dc/dc转换器40具有:第1三相电路41、第2三相电路42、绝缘变压器43、共振用的电容器c1b~c6b以及共振用的线圈l1d~l6d。

第1三相电路41是能够输入输出三相交流的半桥电路。此处,三相交流是指将电流或电压的相位互错开120°的3个交流组合后的交流。第1三相电路41具有fetq1b~fetq6b。第1三相电路41形成将fetq1b和fetq2b串联连接而成的第1串联电路,形成将fetq3b和fetq4b串联连接而成的第2串联电路,并且形成将fetq5b和fetq6b串联连接而成的第3串联电路。而且,第1三相电路41中,第1串联电路设置在转换电路30侧,第3串联电路设置在绝缘变压器43侧,且第2串联电路设置在第1串联电路与第3串联电路之间,这些第1串联电路、第2串联电路以及第3串联电路并联连接。

第1三相电路41与转换电路30、绝缘变压器43以及控制部80连接。第1三相电路41中,利用控制部80对fetq1b~fetq6b进行开关控制。第1三相电路41在充电时经由转换电路30将供给的直流电力转换成交流电力,并将该交流电力向绝缘变压器43输出。另一方面,第1三相电路41在ac供电时将从绝缘变压器43输出的交流电力转换成直流电力,并将该直流电力向转换电路30输出。

第2三相电路42是能够输入输出三相交流的半桥电路。第2三相电路42具有fetq1c~fetq6c。第2三相电路42形成将fetq1c和fetq2c串联连接而成的第1串联电路,形成将fetq3c和fetq4c串联连接而成的第2串联电路,并且形成将fetq5c和fetq6c串联连接而成的第3串联电路。而且,第2三相电路42中,第1串联电路设置在绝缘变压器43侧,第3串联电路设置在高压电池50侧,且第2串联电路设置在第1串联电路与第3串联电路之间,这些第1串联电路、第2串联电路以及第3串联电路并联连接。

第2三相电路42与绝缘变压器43、高压电池50以及控制部80连接。第2三相电路42中,利用控制部80对fetq1c~fetq6c进行开关控制。第2三相电路42在充电时将经由绝缘变压器43供给的交流电力转换成直流电力,并将该直流电力向高压电池50输出。另一方面,第2三相电路42在ac供电时将从高压电池50输出的直流电力转换成交流电力,并将该交流电力向绝缘变压器43输出。

绝缘变压器43对电压进行转换。绝缘变压器43设置在第1三相电路41与第2三相电路42之间,对经由第1三相电路41或第2三相电路42供给的电力的电压进行变压。绝缘变压器43具有3个线圈单元43a~43c。线圈单元43a具有初级绕组l1a、主次级绕组l2a以及副次级绕组l3a。初级绕组l1a与第1三相电路41的各相中的一个相连接。初级绕组l1a中,例如,一端经由线圈l1d连接至第1三相电路41的fetq1b和fetq2b之间(第一相),另一端经由电容器c1d与初级绕组l1b的另一端连接并且经由电容器c3d与初级绕组l1c的另一端连接。

主次级绕组l2a与初级绕组l1a电磁结合,并且与第2三相电路42的各相中的一个相连接。主次级绕组l2a中,例如,一端经由线圈l4d连接至第2三相电路42的fetq1c与q2c之间(第一相),另一端经由电容器c4d与主次级绕组l2b的另一端连接并且经由电容器c6d与主次级绕组l2c的另一端连接。

副次级绕组l3a与初级绕组l1a和主次级绕组l2a电磁结合,并且与副dc/dc转换器60连接。副次级绕组l3a中,例如,一端连接至后述的整流电路61的二极管d1与二极管d2之间,另一端连接至二极管d3与二极管d4之间。

同样地,线圈单元43b具有初级绕组l1b、主次级绕组l2b以及副次级绕组l3b。初级绕组l1b与第1三相电路41的各相中的一个相连接。初级绕组l1b中,例如,一端经由线圈l2d连接至第1三相电路41的fetq3b与fetq4b之间(第二相),另一端经由电容器c1d与初级绕组l1a的另一端连接并且经由电容器c2d与初级绕组l1c的另一端连接。

主次级绕组l2b与初级绕组l1b电磁结合,并且与第2三相电路42的各相中的一个相连接。主次级绕组l2b中,例如,一端经由线圈l5d连接至第2三相电路42的fetq3c与q4c之间(第二相),另一端经由电容器c4d与主次级绕组l2a的另一端连接并且经由电容器c5d与主次级绕组l2c的另一端连接。

副次级绕组l3b与初级绕组l1b和主次级绕组l2b电磁结合,并且与副dc/dc转换器60连接。副次级绕组l3b中,例如,一端连接至整流电路61的二极管d3与二极管d4之间,另一端连接至二极管d5与二极管d6之间。

同样地,线圈单元43c具有初级绕组l1c、主次级绕组l2c以及副次级绕组l3c。初级绕组l1c与第1三相电路41的各相中的一个相连接。初级绕组l1c中,例如,一端经由线圈l3d连接至第1三相电路41的fetq5c与fetq6c之间(第三相),另一端经由电容器c2d与初级绕组l1b的另一端连接并且经由电容器c3d与初级绕组l1a的另一端连接。

主次级绕组l2c与初级绕组l1c电磁结合,并且与第2三相电路42的各相中的一个相连接。主次级绕组l2c中,例如,一端经由线圈l6d连接至第2三相电路42的fetq5c与q6c之间(第三相),另一端经由电容器c5d与主次级绕组l2b的另一端连接并且经由电容器c6d与主次级绕组l2a的另一端连接。

副次级绕组l3c与初级绕组l1c和主次级绕组l2c电磁结合,并且与副dc/dc转换器60连接。副次级绕组l3c中,例如,一端连接至整流电路61的二极管d5与二极管d6之间(第三相),另一端连接至二极管d1与二极管d2之间。

绝缘变压器43在充电时对从第1三相电路41输出的交流电力的电压进行升压,将升压后的交流电力向第2三相电路42输出。另一方面,绝缘变压器43在ac供电时对从第2三相电路42输出的交流电力的电压进行降压,将降压后的交流电力向第1三相电路41输出。

高压电池50是能够储蓄直流电力的蓄电池。高压电池50具有多个电池单元。各电池单元分别由能够充放电的二次电池构成,例如由锂离子电池构成。各电池单元分别排列配置,与位于相邻位置的电池单元彼此串联连接。高压电池50例如为200v~500v左右的电压。高压电池50在充电时储蓄被主dc/dc转换器40变压后的直流电力,在ac供电时向主dc/dc转换器40供给直流电力。高压电池50向包含逆变器、电动发电机等在内的高压电源系统供给电力。

副dc/dc转换器60对直流电力的电压进行转换。副dc/dc转换器60从绝缘变压器43分支,并对经由第1三相电路41或第2三相电路42供给的三相交流电力的电压进行变压。副dc/dc转换器60具有整流电路61和降压电路62。整流电路61将三相交流电力整流成直流电力。整流电路61具有二极管d1~d6。整流电路61形成将二极管d1和二极管d2沿正向串联连接而成的第1串联电路,形成二极管d3和二极管d4沿正向串联连接而成的第2串联电路,并且形成二极管d5和二极管d6沿正向串联连接的第3串联电路。而且,整流电路61中,第1串联电路设置在绝缘变压器43侧,第3串联电路设置在降压电路62侧,且第2串联电路设置在第1串联电路与第3串联电路之间,这些第1串联电路、第2串联电路以及第3串联电路并联连接。如上所述,整流电路61与绝缘变压器43的副次级绕组l3a、l3b、l3c连接。整流电路61将从该副次级绕组l3a、l3b、l3c输出的三相交流电力整流成直流电力。于是,整流电路61中,由于在内将纹波被抵消的三相交流电力进行输入,因此能够对稳定的电力进行整流处理。整流电路61与降压电路62连接,将整流后的直流电力向降压电路62输出。此外,整流电路61中,也可以代替使用二极管d1~d6的整流,而使用开关元件的同步整流。在整流电路61与降压电路62之间,设置有平滑用的电容器c1c。

降压电路62是对电压进行降压的降压斩波电路。降压电路62构成为包含:开关电路62a,该开关电路62a具有对电流进行接通或切断的3个开关元件;二极管部62b,该二极管部62b具有3个二极管;以及线圈部62c,该线圈部62c具有根据开关电路62a的工作经由二极管部62b输出电流的3个线圈。降压电路62对被整流电路61整流后的直流电力进行降压,将降压后的直流电力向低压电池70输出。此外,在降压电路62与低压电池70之间,设置有平滑用的电容器c2c。

低压电池70是能够储蓄直流电力的蓄电池。低压电池70例如由锂离子电池构成。低压电池70例如为12v~48v左右的电压。低压电池70储蓄被副dc/dc转换器60降压后的直流电力。低压电池70向电压比高压电源系统低的12v电源系统供给电力。

控制部80控制转换电路30、主dc/dc转换器40以及副dc/dc转换器60。控制部80例如与电流传感器21a、电压传感器22a以及转换电路30的开关电路31连接,并基于电流传感器21a和电压传感器22a的检测结果,来控制转换电路30的开关电路31。控制部80与电流传感器21b、电压传感器22b以及主dc/dc转换器40的第1三相电路41和第2三相电路42连接,并基于电流传感器21b和电压传感器22b的检测结果,对第1三相电路41和第2三相电路42进行交错控制。此处,交错控制是指:利用将电流或电压的相位互相错开120°的三相交流电来抵消纹波而降低噪声的控制。控制部80与电流传感器21c、电压传感器22c以及副dc/dc转换器60的降压电路62连接,并基于电流传感器21c和电压传感器22c的检测结果来控制降压电路62。

接着,说明电力转换装置1的工作例。图2是示出实施方式涉及的电力转换装置1的充电例的电路图。例如,如图2所示,电力转换装置1的转换电路30在充电时将从交流电源2供给的交流电力转换成直流电力,并将转换后的直流电力向主dc/dc转换器40输出。主dc/dc转换器40对从转换电路30输出后的直流电力进行升压,将升压后的直流电力向高压电池50输出。另外,主dc/dc转换器40在充电时向在绝缘变压器43分支后的副dc/dc转换器60输出三相交流电力。副dc/dc转换器60将从主dc/dc转换器40输出后的三相交流电力转换成直流电力,并对转换后的直流电力进行降压。而且,副dc/dc转换器60将降压后的直流电力向低压电池70输出。

图3是示出实施方式涉及的电力转换装置1的ac供电例的电路图。例如,如图3所示,电力转换装置1的主dc/dc转换器40在ac供电时对从高压电池50供给的直流电力的电压进行降压,并将降压后的直流电力向转换电路30输出。转换电路30将从主dc/dc转换器40输出后的直流电力转换成交流电力,并将转换后的交流电力经由滤波器10向负载部3输出。另外,主dc/dc转换器40在ac供电时向在绝缘变压器43分支后的副dc/dc转换器60输出三相交流电力。副dc/dc转换器60将从主dc/dc转换器40输出后的三相交流电力整流成直流电力,并对整流后的直流电力进行降压。而且,副dc/dc转换器60将降压后的直流电力向低压电池70输出。

接着,对ac供电时的输出电力限制例进行说明。图4是示出实施方式涉及的ac供电时的电力限制例的流程图。如图4所示,电力转换装置1的控制部80从电流传感器21c和电压传感器22c获取副dc/dc转换器60的输出电流和输出电压(步骤s1)。接着,控制部80判定副dc/dc转换器60是否正在工作(步骤s2)。在副dc/dc转换器60正在工作的情况下(步骤s2;是),控制部80求出副dc/dc转换器60的输出电力(步骤s3)。控制部80例如基于上述步骤s1中获取到的副dc/dc转换器60的输出电流和输出电压,求出副dc/dc转换器60的输出电力。

接着,控制部80基于预先确定的转换电路(ac逆变器)30的输出电力的最大值以及上述步骤s3中求出的副dc/dc转换器60的输出电力的值,求出转换电路30的电力限制值(步骤s4)。控制部80例如从转换电路30的输出电力的最大值减去在上述步骤s3中求出的副dc/dc转换器60的输出电力的值,求出转换电路30的电力限制值。然后,控制部80将转换电路30的电力限制值变为在上述步骤s4中求出的电力限制值(步骤s5)。控制部80在ac供电时基于变更后的电力限制值来控制转换电路30,将从该转换电路30输出的交流电力限制为电力限制值的电力。此外,在上述步骤s2中,在副dc/dc转换器60非正在工作的情况下(步骤s2;否),控制部80将转换电路(ac逆变器)30的电力限制值变更为转换电路(ac逆变器)30的输出电力的最大值(步骤s6)。

如上所述,实施方式涉及的电力转换装置1搭载于车辆,具备主dc/dc转换器40和副dc/dc转换器60。主dc/dc转换器40构成为包含:能够输入输出三相交流的第1三相电路41、能够输入输出三相交流的第2三相电路42以及绝缘变压器43。副dc/dc转换器60从绝缘变压器43分支,并对经由第1三相电路41或第2三相电路42供给的电力的电压进行变压。绝缘变压器43设置在第1三相电路41与第2三相电路42之间,对经由第1三相电路41或第2三相电路42供给的电力的电压进行变压。绝缘变压器43构成为包含3个线圈单元43a~43c。线圈单元43a(43b、43c)具有初级绕组l1a(l1b、l1c)、主次级绕组l2a(l2b、l2c)以及副次级绕组l3a(l3b、l3c)。初级绕组l1a(l1b、l1c)与第1三相电路41的各相中的一个相连接。主次级绕组l2a(l2b、l2c)与初级绕组l1a(l1b、l1c)电磁结合,并且与第2三相电路42的各相中的一个相连接。副次级绕组l3a(l3b、l3c)与初级绕组l1a(l1b、l1c)或主次级绕组l2a(l2b、l2c)电磁结合,并且与副dc/dc转换器60连接。线圈单元43a~43c分别针对三相而各设置至少一个。

根据该结构,电力转换装置1通过对主dc/dc转换器40的第1三相电路41和第2三相电路42进行交错控制,从而能够抵消三相交流的纹波而降低噪声。由此,电力转换装置1能够抑制向副dc/dc转换器60输入的纹波,能够从副dc/dc转换器60向低压电池70供给稳定的电力。另外,在电力转换装置1中,绝缘变压器43能够用作车载充电器、dc/dc转换器和ac逆变器的变压部。由此,电力转换装置1能够抑制装置的大型化,能够削减制造成本。另外,通过使电力转换装置1具备副dc/dc转换器60,从而能够在充电时和ac供电时抑制低压电池70的充电量的下降。电力转换装置1中,由于副dc/dc转换器60利用副次级绕组l3a(l3b、l3c)而从绝缘变压器43分支,因此能够不需要切换继电器等,能够削减元件数量。作为其结果,电力转换装置1能够恰当地供给电压不同的多个电力。

上述电力转换装置1具备转换电路30和高压电池50。转换电路30向主dc/dc转换器40输出对从交流电源2供给的交流电力进行转换后的直流电力。高压电池50储蓄利用主dc/dc转换器40进行了变压的直流电力。根据该结构,电力转换装置1能够利用主dc/dc转换器40对高压电池50进行充电,并且利用副dc/dc转换器60对低压电池70进行充电。

在上述电力转换装置1中,高压电池50在ac供电时向主dc/dc转换器40供给直流电力。转换电路30向负载部3输出对被主dc/dc转换器40变压后的直流电力进行转换而得到的交流电力。根据该结构,电力转换装置1能够利用主dc/dc转换器40和转换电路30向负载部3供给交流电力,并且利用副dc/dc转换器60对低压电池70进行充电。

上述电力转换装置1具备控制部80,该控制部80对转换电路30和副dc/dc转换器60进行控制。控制部80根据从转换电路30向负载部3输出的输出电力的最大值以及从副dc/dc转换器60实际输出的输出电力,来限制从转换电路30向负载部3输出的输出电力。根据该结构,电力转换装置1能够与向低压电池70充电的充电电力对应地向负载部3进行ac供电。例如,在向低压电池70充电的充电电力相对大的情况下,电力转换装置1使向负载部3进行ac供电的电力相对变小,另一方面,在向低压电池70充电的充电电力相对小的情况下,电力转换装置1使向负载部3ac供电的电力相对变大。由此,电力转换装置1能够确保向低压电池70充电的充电电力并恰当地向负载部3供给电力。

[变形例]

接着,说明实施方式的变形例。图5是示出实施方式的变形例涉及的ac供电时的电力限制例的流程图。在图5示出的例子中,在根据副dc/dc转换器60的输出电力的最大值求出电力限制值这一点上与实施方式不同。如图5所示,电力转换装置1的控制部80判定副dc/dc转换器60是否正在工作(步骤t1)。在副dc/dc转换器60正在工作的情况下(步骤t1;是),控制部80基于预先确定的转换电路(ac逆变器)30的输出电力的最大值以及预先确定的副dc/dc转换器60的输出电力的最大值,求出电力限制值(步骤t2)。控制部80例如从转换电路30的输出电力的最大值减去副dc/dc转换器60的输出电力的最大值,求出转换电路30的电力限制值。然后,将转换电路(ac逆变器)30的电力限制值变更为在上述步骤t2中求出的电力限制值(步骤t3)。控制部80在ac供电时根据变更后的电力限制值控制转换电路30,将从该转换电路30输出的交流电力限制为电力限制值的电力。此外,在上述步骤t1中,在副dc/dc转换器60非正在工作的情况下(步骤t1;否),控制部80将转换电路(ac逆变器)30的电力限制值变更为转换电路(ac逆变器)30的输出电力的最大值。

如上所述,在上述电力转换装置1中,控制部80根据从转换电路30向负载部3输出的电力即输出电力的最大值以及副dc/dc转换器60的输出电力的最大值,来限制从转换电路30向负载部3输出的输出电力。根据该结构,电力转换装置1能够在确保向低压电池70充电的充电电力的最大值的基础上向负载部3进行ac供电。由此,即使例如在向负载部3进行ac供电时向低压电池70充电的充电电力达到最大,电力转换装置1也能够向负载部3稳定地进行ac供电,并对低压电池70进行充电。

图6使示出实施方式的变形例涉及的绝缘变压器43a的电路图。绝缘变压器43a中,初级绕组l1a~l1c和共振电路的连接不同于实施方式涉及的绝缘变压器43。就绝缘变压器43a而言,在初级绕组l1a中,例如图6所示,一端经由共振用的线圈l1d连接至第1三相电路41的fetq1b与fetq2b之间,另一端经由共振用的电容器c1d接地。初级绕组l1b中,一端经由共振用的线圈l2d连接至第1三相电路41的fetq3b与fetq4b之间,另一端经由共振用的电容器c2d接地。初级绕组l1c中,一端经由共振用的线圈l3d连接至第1三相电路41的fetq5c与fetq6c之间,另一端经由共振用的电容器c3d接地。于是,绝缘变压器43a的初级绕组l1a~l1c与共振电路连接。

图7是示出实施方式的变形例涉及的绝缘变压器43b的电路图。绝缘变压器43b中,初级绕组l1a~l1c和共振电路的连接不同于实施方式涉及的绝缘变压器43。就绝缘变压器43b而言,在初级绕组l1a中,例如图7所示,一端经由共振用的线圈l1d连接至第1三相电路41的fetq1b与fetq2b之间,另一端经由共振用的电容器c1d与初级绕组l1b的另一端和初级绕组l1c的另一端连接。初级绕组l1b中,一端经由共振用的线圈l2d连接至第1三相电路41的fetq3b与fetq4b之间,另一端经由共振用的电容器c2d与初级绕组l1a的另一端和初级绕组l1c的另一端连接。初级绕组l1c中,一端经由共振用的线圈l3d连接至第1三相电路41的fetq5c与fetq6c之间,另一端经由共振用的电容器c3d与初级绕组l1a的另一端和初级绕组l1b的另一端连接。于是,绝缘变压器43b的初级绕组l1a~l1c与共振电路连接。

此外,在上述说明中,说明了电力转换装置1的ac/dc电路和逆变电路由相同的转换电路30构成的例子,但不限定于此。电力转换装置1的ac/dc电路和逆变电路也可以分别由不同的电路构成。

说明了电力转换装置1能够进行充电和ac供电这两者的例子,但不限定于此。电力转换装置1例如也可以是进行充电或ac供电中任一者的装置。

说明了电力转换装置1在充电时对高压电池50和低压电池70这两者进行充电的例子,但不限定于此。电力转换装置1例如也可以在充电时对高压电池50进行充电并且不对低压电池70进行充电。

说明了电力转换装置1在ac供电时向负载部3供给电力并且对低压电池70进行充电的例子,但不限定于此。电力转换装置1例如也可以在ac供电时向负载部3供给电力并且不对低压电池70进行充电。

电力转换装置1也可以在除充电时和ac供电时以外的时间利用从高压电池50供给的电力对低压电池70进行充电。

说明了电力转换装置1具备转换电路30和高压电池50的例子,但不限定于此,也可以不具备转换电路30和高压电池50。

说明了电力转换装置1限制从转换电路30向负载部3输出的输出电力的例子,但不限定于此,也可以不限制从转换电路30向负载部3输出的输出电力。

说明了副dc/dc转换器60具备降压电路62的例子,但不限定于此,也可以代替降压电路62而具备升压电路、升降压电路。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1