一种基于光电池的激光供能装置的制作方法

文档序号:25608686发布日期:2021-06-25 14:27阅读:201来源:国知局
一种基于光电池的激光供能装置的制作方法

1.本发明涉及激光供能领域,具体涉及一种基于光电池的激光供能装置。


背景技术:

2.激光无线能量传输技术是将激光束作为能量传输的载体,采用光电池实现光电转换,其可以应用于高电压、强电磁干扰等极端恶劣环境下的以安全可靠供电为最终目的的光电能量传输系统,也可以应用于远距离传输的场景中。由于激光送能系统具有绝缘简单、抗电磁干扰能力强等特点,在高电压、强磁场等应用场景得到了广泛的应用,逐渐成为一种可靠的供能手段。
3.目前,由于gaas基光电池发展较为成熟,在激光供能系统中,大多采用gaas基光电池作为光电能量转换结构,同时,采用gaas基光电池的激光供能系统在808nm波段的光电转换效率达到了40%。然而,在该激光供能系统中,为了使光电池在相应波段的转换效率达到最佳,需要采用特殊定制的传输光纤,并且该传输光纤难以实现长距离的能量输送。


技术实现要素:

4.有鉴于此,本发明实施例提供一种基于光电池的激光供能装置,以解决现有技术中激光供能系统采用的传输光纤无法实现长距离能量输送的技术问题。
5.本发明实施例提供的技术方案如下:
6.本发明实施例提供一种基于光电池的激光供能装置,该装置包括:激光模块、传输光纤、耦合模块以及光电转换模块,所述激光模块输出的光信号通过所述传输光纤传输至所述耦合模块;所述耦合模块用于将接收的光信号分为多路光信号输入至所述光电转换模块中;所述光电转换模块包括多个inp光电池单元,每个inp光电池单元用于接收输入的一路光信号,将接收的光信号转换为电信号。
7.可选地,所述传输光纤为通信用单模光纤,所述传输光纤在1310nm和1550nm具有低损耗窗口。
8.可选地,所述耦合模块包括:1
×
n耦合器,n为大于1的整数。
9.可选地,所述激光模块包括:放大自发辅助光源、光纤激光器、半导体激光器中的任意一种。
10.可选地,所述激光模块的线宽大于等于1mhz。
11.可选地,所述inp光电池单元包括:光纤耦合单元、准直单元、芯片以及引出电极,所述光纤耦合单元和准直单元用于将接收的光信号整形后输入至所述芯片中,所述芯片将整形后的光信号转换为电信号通过所述引出电极输出。
12.可选地,所述inp光电池单元包括:pin探测器或inp多结探测器。
13.可选地,该基于光电池的激光供能装置还包括:能量管理模块,所述能量管理模块连接所述光电耦合模块,所述能量管理模块用于将多个inp光电池单元输出的电信号收集并输出。
14.可选地,所述能量管理模块还用于改变多个inp光电池单元之间的连接关系为串联连接、并联连接或串并联连接。
15.本发明技术方案,具有如下优点:
16.本发明实施例提供的基于光电池的激光供能装置,在光电转换模块中设置多个inp光电池单元,同时采用耦合模块将传输光纤传输的光分为多路,分别输入至多个inp光电池单元中,由于每个inp光电池单元存在光输入上限,光功率过大会导致光电池饱和影响光电转换效率,因此耦合模块分光的方法可以有效降低到达每个光电池上的光强,避免造成光电池接收的光强过大造成光电池饱和,从而提升整体效率。同时,该激光供能装置采用inp光电池单元作为光电转换模块,无需采用现有的大芯径送能光纤,即该激光供能装置中采用可以普通通信光纤作为传输光纤,可以实现长距离的能量输送,并且能够兼顾双向通信的需求。
17.本发明实施例提供的基于光电池的激光供能装置,通过设置激光模块的线宽,从而可以抑制单模光纤非线性效应,降低散射引起的能量损耗;采用普通通信光纤作为传输光纤,该单模传输光纤可以在1310nm/1550nm的低损耗窗口进行能量传输,同时又满足双向通信的需求;在光电转换模块之前采用1
×
n耦合器将光均匀的分为n路,再辅以带光纤耦合单元以及准直器的inp光电池单元,既降低了单只光电池的输入光功率提升效率,又通过光束整形匹配光电池光敏面,避免了光电池局部光强过大饱和导致的效率降低。
18.本发明实施例提供的基于光电池的激光供能装置,通过设置耦合模块以及对inp光电池单元结构的设计,实现了光的分路和整形,从而大大提升了光电池的面积利用率,从而提升了长距离送能效率,经试验测得该装置10km送能效率可以达到20%以上。
附图说明
19.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
20.图1为本发明实施例中基于光电池的激光供能装置的结构框图;
21.图2为本发明实施例中inp光电池单元封装结构示意图;
22.图3为本发明另一实施例中基于光电池的激光供能装置的结构框图。
具体实施方式
23.下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
24.在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
25.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
26.此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
27.本发明实施例提供一种基于光电池的激光供能装置,如图1所示,该装置包括:激光模块10、传输光纤20、耦合模块30以及光电转换模块40,激光模块10输出的光信号通过传输光纤20传输至耦合模块30;耦合模块30用于将接收的光信号分为多路光信号输入至光电转换模块40中;光电转换模块40包括多个inp光电池单元41,每个inp光电池单元41用于接收输入的一路光信号,将接收的光信号转换为电信号。在一实施例中,传输光纤20为通信用单模光纤,传输光纤20在1310nm和1550nm具有低损耗窗口。
28.本发明实施例提供的基于光电池的激光供能装置,在光电转换模块40中设置多个inp光电池单元41,同时采用耦合模块30将传输光纤20传输的光分为多路,分别输入至多个inp光电池单元41中,由于每个inp光电池单元41存在光输入上限,光功率过大会导致光电池饱和影响光电转换效率,因此耦合模块30分光的方法可以有效降低到达每个光电池上的光强,避免造成光电池接收的光强过大造成光电池饱和,从而提升整体效率。同时,该激光供能装置采用inp光电池单元41作为光电转换模块40,无需采用现有的大芯径送能光纤,即该激光供能装置中采用可以普通通信光纤作为传输光纤,可以实现长距离的能量输送,并且能够兼顾双向通信的需求。
29.在一实施例中,如图2所示,inp光电池单元41包括:光纤耦合单元42、准直单元43、芯片44以及引出电极45,光纤耦合单元42和准直单元43用于将接收的光信号整形后输入至芯片44中,芯片44将整形后的光信号转换为电信号通过引出电极45输出。其中,采用透镜作为光纤耦合单元42,可以将输入至inp光电池单元41的光束进行光斑的扩大和整形。准直单元43中可以设置准直器,用于将扩束整形后的光束垂直射入芯片44的光敏面上,可以避免光电池局部饱和导致的效率降低。芯片44可以to封装的方式将管壳封装在芯片44的外部,同时在芯片44的外部设置引出电极45,便于电信号的输出。在一具体实施方式中,inp光电池单元41包括:pin探测器或inp多结探测器。
30.在一实施例中,采用pin探测器或inp多结探测器作为inp光电池,可以使得inp光电池单元41具有较高的光电转换效率,响应度在90%以上,但存在饱和功率,当光功率超过10mw时,光电转换效率会明显下降。为避免inp光电池饱和,可以采用1
×
n耦合器作为耦合模块30,把光平均或非平均分为n路使得光电池保持在非饱和状态从而提高整体光电转换效率,其中,n为大于1的整数。在一具体实施方式中,还可以采用多个耦合器连接构成耦合模块30,实现将一路光信号分为多路光信号的目的。
31.具体地,当多个inp光电池单元41采用相同的pin探测器或inp多结探测器构成,即多个inp光电池单元41之间的饱和功率相同时,可以将一路光信号进行均匀分配;当多个inp光电池单元41采用不同的pin探测器或inp多结探测器构成,即多个inp光电池单元41之间的饱和功率不同时,可以使得分配的多路光信号之间存在一定比例,具体比例的确定可
以基于多个inp光电池单元41之间饱和功率的差异决定。
32.在一实施例中,激光模块10可以采用宽谱光源,也可以采用窄线宽光源。在一具体实施方式方式中,激光模块10可以采用大功率放大自发辅助(amplified spontaneous emission,ase)宽谱光源,也可以采用光纤激光器、半导体激光器等窄线宽光源。
33.在一实施例中,随着光纤长度的增加,受激布里渊散射和拉曼散射强度也随之加强,导致光纤损耗增大,激光供能装置的供能效率降低,因此以输送的光功率阈值为1w时,激光模块10中采用的光源的线宽要大于等于1mhz,从而保证低损耗能量传输,提高阈值功率降低背向散射损耗。
34.在一实施例中,如图3所示,该激光供能装置还包括:能量管理模块50,能量管理模块50连接光电耦合模块30,能量管理模块50用于将多个inp光电池单元41输出的电信号收集并输出。在一具体实施方式中,能量管理模块50还用于改变多个inp光电池单元41之间的连接关系为串联连接、并联连接或串并联连接。具体地,为了满足不同的输电电压和电流需求,可以采用能量管理模块50改变多个inp光电池单元41之间的连接关系,例如,将并联连接的多个inp光电池单元41改为串联连接,或者将串联连接的多个inp光电池单元41改为并联连接,或者将未连接的多个inp光电池单元41之间进行串联或并联连接,从而得到所需的电压或电流。
35.本发明实施例提供的基于光电池的激光供能装置,通过设置激光模块10的线宽,从而可以抑制传输光纤20非线性效应,降低散射引起的能量损耗;采用普通通信光纤作为传输光纤,该单模传输光纤可以在1310nm/1550nm的低损耗窗口进行能量传输,同时又满足双向通信的需求;在光电转换模块40之前采用1
×
n耦合器将光均匀的分为n路,再辅以带光纤耦合单元以及准直器的inp光电池单元41,既降低了单只光电池的输入光功率提升效率,又通过光束整形匹配光电池光敏面,避免了光电池局部光强过大饱和导致的效率降低。
36.本发明实施例提供的基于光电池的激光供能装置,通过设置耦合模块30以及对inp光电池单元41结构的设计,实现了光的分路和整形,从而大大提升了光电池的面积利用率,从而提升了长距离送能效率,经试验测得该装置10km送能效率可以达到20%以上。
37.虽然关于示例实施例及其优点已经详细说明,但是本领域技术人员可以在不脱离本发明的精神和所附权利要求限定的保护范围的情况下对这些实施例进行各种变化、替换和修改,这样的修改和变型均落入由所附权利要求所限定的范围之内。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。
38.此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1