一种对称式双模光伏逆变器装置

文档序号:25594796发布日期:2021-06-22 17:13阅读:85来源:国知局
一种对称式双模光伏逆变器装置

本发明设计光伏发电逆变器,具体涉及一种并离网双模式的逆变器。



背景技术:

光伏逆变器作为太阳能发电的重要组成部分,将太阳能组件产生的低压直流电能转换为适合用电器使用的电能,逆变器的优劣直接影响了太阳能发电能量利用的效率。光伏逆变器的工作模式主要包括两种,离网模式和并网模式,孤岛模式下由于三相负载的不对称会引起三相电压的不对称,从而导致用电器工作不正常;在并网模式下不会出现电压不平衡的情况。目前常用的并网逆变器大多采用三相三桥臂的拓扑结构;而离网模式下的逆变器通常是使用三相三桥臂配合△/y变压器,这种结构由于变压器的加入使得逆变器的体积变大,功率密度变低。光伏发电组件直接输出的电压比较低,达不到逆变所需的最低电压,在逆变之前需要对电压进行升压,常见的单boost升压,会产生较大的输入电流波动,同时输出的电压不够稳定。光伏组件在阴雨天气的时候发电功率比较低,在离网模式下,由于天气的变化会导致光伏组件输出功率大范围波动,影响用电器正常使用,为解决上述问题,因此发明了一种具有低功率下电池补功、高功率下为储能电池充电功能的对称式双模光伏逆变器装置。

现有的光伏逆变器大多只适应并网或者离网中的一种模式,不存在双向dc/dc充放电的功能,并且升压电路为交错并联的双igbt,避免了单boost升压输入电流波动大,输出电压不够稳定的不足;控制模块的供电可以在储能电池与光伏板发电之间转换,充分利用了光伏发电的效率。



技术实现要素:

本发明的目的为针对当前技术存在的不足,提供一种对称式双模光伏逆变器装置。该装置在离网条件下采用三相四桥臂,在并网条件下舍弃其中一桥,采用传统的三相三桥臂对电能进行逆变;设计出一种利用继电器对电源进行选择的电路结构;设计出两组交错并联的igbt模块组成buck、boost电路,构成储能电池与直流母线进行双向dc/dc充放电功能电路;在控制部分通过单arm芯片完成整个装置的所有控制功能,通过合理分配引脚资源,配置了一种基于双定时器的互差180°pwm,实现了低性能mcu的高效率控制;采用了一种加权自适应的双模过度算法,用于二维矢量控制与三维矢量控制切换。本发明实现了将光伏产生的低压直流电能转化为用电器所需的高压交流电能,并且有两种工作模式分别适用于并网和离网两种工作条件;设计出双向dc/dc充放电电路,解决了光伏板发电功率低时供电能力不足,发电功率高时资源浪费的问题。

本发明解决其技术问题是采用以下技术方案实现的:

一种对称式双模光伏逆变器装置,包括控制模块、boost升压模块、电源切换模块、信息采集模块、蓄电池、igbt逆变模块和储能双向dc/dc充放电模块;

其连接关系为:控制模块分别和电源切换模块、信息采集模块相连,还分别通过boost驱动板和boost升压电路相连、通过逆变igbt驱动板和逆变igbt电路相连;信息采集模块分别和boost升压模块、igbt逆变模块相连,boost升压模块还和igbt逆变模块相连;蓄电池分别和储能双向dc/dc充放电模块、电源切换模块相连;电源切换模块、boost升压模块、储能双向dc/dc充放电模块分别和光伏板相连;

所述的控制模块包括电源、adc采样部分、控制信号发送部分、mcu、风扇、指示灯、通讯部分,其连接关系为:mcu分别与电源、adc采样、dc/dc功率驱动部分、控制信号发送部分、通讯部分、散热风扇、显示部分相连接;

所述的电源切换模块包括二级直流母线、dc-dc模块,外部24v蓄电池,内部24v蓄电池和单刀双掷继电器;其连接为:外部24v蓄电池连接单刀双掷继电器的常闭触点,负极与dc-dc模块负极相连接,dc-dc模块输出端正极与负极分别与继电器线圈连接,dc-dc模块输出端正极还与继电器控制触电连接,继电器的输出点与控制模块相连;

所述的boost升压模块包括:emc滤波器,三个电容,两个电感,两组交错并联的igbt,三个电阻;具体连接为:升压电路使用两组igbt组成h桥,直流电的正负端分别和emc滤波器的正负端相连,emc滤波器的正负两端分别与第一电容两端相连;其中,emc滤波器的正极还与两个相互并联的电感的一端相连,两个电感的另一端分别与两组igbt的中点相连接,igbt的一端与带开关的电阻串联,最后再与两个相互串联的电容和两个相互串联的电阻相并联组成boost升压电路;

所述的双向dc/dc充放电模块包括:两组igbt,两个电感,四个电容,三个电阻,三个开关,一个bms板;具体连接为:bms板正极连接开关然后连接一个与开关并联的电阻,并联一个为稳定电压的电容,电容两端分别与bms输出端正负极并联,正极再连接两个并联的电感,电感的另一端分别连接到两组igbt的两个中点,igbt的正极与开关并联的电阻相串联,之后再与两个相互串联的电容和相互串联的电感进行并联;

所述的igbt逆变模块包括:逆变igbt驱动电路,四组igbt,四个电感,三个电容,emc滤波和断路器;具体连接为:经boost电路升压后的的直流电接入四组并联的igbt正负极,四组igbt的中点a、b、c、n分别连接四个电感,abc三相分别串联电感之后并联三个电容三个电容的另一端连接到n相上,abc三相接入emc滤波器中,经滤波后作为逆变器的输出。

所述的mcu型号为gd32f407。

本发明的实质性特点为:

本专利采用交错并联的igbt对电能进行升压逆变,与目前类似装置相比可以进行并离网模式两种工作条件的切换,在离网条件下利用三相四桥臂的拓扑结构有效解决了负载不平衡影响负载正常工作的问题。

装置中交错并联的igbt组成的储能电池双向dc/dc充放电模块、由四组igbt构成的三相四桥臂的逆变模块与控制模块的控制方法最为关键。

本发明的主要针对设计适应光伏逆变器在并离网两个模式下的三相四桥臂逆变电路,控制电路使用单arm芯片配置设计出一种可以实现电源自动切换的控制电路;通过一种基于abc坐标系下的在线预测控制算法使三相四桥臂适用于离网模式,在并网模式舍弃三相四桥臂的一桥,采用传统的三相三桥臂逆变方法,设计出一种加权自适应的双模过度算法用于使二维矢量控制切换到三维矢量控制。

本发明的有益效果:

本装置利用四组igbt构成三相四桥臂的拓扑结构,在离网条件下采用三相四桥臂的拓扑结构,结合三维矢量算法解决对负载不平衡引起的三相电压不平衡问题,增加对用电器供电的可靠性与安全性。

装置功能上实现了在并网模式下舍弃三相四桥臂的第四桥,采用传统的三相三桥臂结构的二维矢量控制方法进行控制逆变,增加装置并网的友好性和操作性。

装置上实现了在并离网模式切换的情况下采用双控制器加权过渡算法使逆变器两种工作模式平滑过渡,避免工作模式的切换影响装置正常工作,提高了装置在切换工作模式时的可靠性。

本装置控制部分需要24v供电,在电池组件启动时,升压电路无法工作,需要外部蓄电池为控制电路供电,当光伏板输出直流电压通过boost升压后达到给定值后,通过一个变压器由直流母线上800v的电压转换为控制模块所需供电电压,此时由一个单刀双掷继电器进行电源切换,其中,继电器的控制由变压器输出的24v直接控制,实现两路电源的自动切换,同时在控制电路的24v直流端并联大容量电容,保证控制部分在电源切换过程中的连续工作,保证控制部分在电源切换过程中的连续工作。。

本装置信息采集模块用于采集环境温度、系统中各个节点电压、电流等信息,由信息采集模块采集信息并整理信息后发送至控制模块,信息采集模块与控制模块构成反馈机制,由控制模块实时决策控制系统各部分工作状态。

本装置使用两个交错并联的igbt实现电池的双向dc/dc。在光伏组件发电功率充足时,由buck电路利用光伏组件产生电能为储能电池充电;当光伏组件发电功率不足时,由boost电路利用储能电池所储存能量为二级直流母线补偿功率。

本装置逆变模块由四个igbt构成三相四桥臂的逆变电路,在离网条件下,采用三相四桥臂的拓扑结构,将光伏组件产生的直流电转化为用电器所需的交流电;在并网条件下,逆变模块舍弃三相四桥臂的第四桥,采用传统的三相三桥拓扑结构对光伏组件产生的直流电进行逆变。

本装置二维矢量控制切换到三维矢量控制使用了一种加权自适应的双模过渡算法,两种控制模式乘以权重再相加,作为pwm的输出占空比,以三相不平衡度作为两种控制算法加权值的分配依据,在并网模式切换到离网模式时,根据三相不平衡程度,逐渐提高三维矢量控制算法的占比,直至权重为1。离网模式切换到并网模式,二维矢量算法的权重比逐渐增加到1。

装置上实现了控制部分包括用于dc/dc功率管驱动的pwm部分、用于dc/ac功率管驱动的pwm部分,adc采集部分、数字信号输入输出部分、散热风扇控制部分、显示与通信部分。控制电路以一个arm芯片为核心,通过单arm芯片完成整个装置的所有控制功能,通过合理分配引脚资源,配置了一种基于双定时器的互差180°pwm控制方法,实现了低性能mcu对系统装置的高效率控制。

本装置的机箱装配采用三层结构,底层为升降压所用的电感、交流滤波电感和电容等大功率器件。中间层两个铝制散热片为对称安装,每块散热片安装4组igbt模块,散热片中间为直流侧的支撑电容。顶层为两块结构完全相同,对称安装的电压电流采集电路板,中间为以arm为核心的控制板,整个装置受arm芯片控制,结构简单且工整,便于安装与维修,三层式的结构增强了电路的抗干扰能力。

本装置增加了24v急停开关,保证在紧急情况下可随时停止装置工作,保证工作的安全稳定性。

本装置输出端增加了emc滤波器,将输出电能的谐波进行过滤,对输出电压波形进行稳定,巩固输出电能质量。

附图说明:

下面结合附图和实例对本发明进一步说明。

图1为本发明装置系统功能图。

图2为控制模块功能示意图。

图3是电源切换模块示意图。

图4是boost升压模块示意图。

图5是双向dc/dc模块示意图。

图6是逆变igbt模块示意图。

图7是装置总体连接示意图;

图8为装置正常工作电压波形图;

图9为装置正常工作电压矢量图;

具体实施方法:

本发明参照附图详细说明如下,但仅作说明而不是限制本发明。

本发明为一种对称式双模光伏逆变器装置,通过利用四组igbt构成三相四桥臂的拓扑结构,利用三相四桥臂拓扑结构与三维矢量控制方法应对离网条件下三相不平衡负载,在并网条件下舍弃三相四桥臂中的一桥,采用传统的三相三桥臂与二维矢量控制方法对光伏板的电能进行逆变,利用加权自适应的双模过渡算法,实现对逆变器在并离网两种工作模式下的平滑过渡切换;通过利用两个交错并联的igbt组成buck、boost电路,实现当光伏发电功率不足时对直流母线进行功率补偿,当光伏发电功率充足时对储能电池进行充电,完成光伏发电双向dc/dc充放电功能。单向boost升压模块利用两组交错并联的igbt构成boost升压电路,实现将光伏发出的低压直流电转化为可以供逆变模块进行逆变的高压直流电。

本发明所述的对称式双模光伏逆变器装置如图1所示,包括控制模块、boost升压模块、电源切换模块、信息采集模块、蓄电池、igbt逆变模块和储能双向dc/dc充放电模块;

其连接关系为:控制模块分别和电源切换模块、信息采集模块相连,还分别通过boost驱动板和boost升压电路相连、通过逆变igbt驱动板和逆变igbt电路相连;信息采集模块分别和boost升压模块、igbt逆变模块相连,boost升压模块还和igbt逆变模块相连;蓄电池分别和储能双向dc/dc充放电模块、电源切换模块相连;电源切换模块、boost升压模块、储能双向dc/dc充放电模块分别和光伏板相连;

所述的信息采集模块为公知器件,具体为利用森社chv-25p电压传感器、森社chb-25np的电流传感器、热敏电阻hstl-ttc温度传感器对装置进行状态检测。采集模块为采集装置各个部分的电压、电流、各个igbt的温度等信息,是根据所需功能利用电压、电流、温度传感器,对电路进行拼凑构成采集模块。

所述的控制模块组成如图2所示,包括电源、adc采样部分、控制信号发送部分、mcu、风扇、显示部分、通讯部分,其连接关系为:mcu分别与电源、adc采样、dc/dc功率驱动部分、控制信号发送部分、通讯部分、散热风扇、显示部分相连接;

其中电源分别为mcu供3.3v的电压和为adc采样中的运放提供15v电压,;adc采样采集系统中各个部分的信息使mcu进行分析处理;mcu处理后由控制信号控制外围设备,发出pwm控制igbt与boost升压电路;风扇用于对装置进行散热;通讯用于远程控制。

本装置使用的mcu是为国产芯片gd32f407。

控制模块用作对各个模块所传来的信息进行计算决策,对各个模块发送指令进行控制。boost升压模块对光伏发出的低压直流电进行升压至igbt逆变模块所需电压。igbt逆变模块对boost升压后的电能进行逆变,输出高压直流电,为用电器供电。信息采集模块用作采集信息与控制模块构成反馈结构。储能双向dc/dc充放电模块可以利用蓄电池对光伏发电进行补偿功率和储存能量。

所述的电源切换模块组成如图3所示,电源切换模块包括二级直流母线、dc-dc模块,外部24v蓄电池,内部24v蓄电池和单刀双掷继电器;其连接为:外部24v蓄电池连接单刀双掷继电器的常闭触点,负极与dc-dc模块负极相连接,dc-dc模块输出端正极与负极分别与继电器线圈连接,dc-dc模块输出端正极还与继电器控制触电连接,构成优先二级直流母线为控制模块供电的电路结构,继电器的输出点与控制模块相连,为控制模块供电,构成可选择供电单元的结构。

所述的boost升压模块组成如图4所示包括:emc滤波器,三个电容,两个电感,两组交错并联的igbt,三个电阻;具体连接为:升压电路使用两组igbt组成h桥(两两串联为一组),pwm只控制下桥,上桥关闭组成交错并联式boost结构;直流电的正负端分别和emc滤波器的正负端相连,emc滤波器的正负两端分别与第一电容两端相连;其中,emc滤波器的正极还与两个相互并联的电感的一端相连,两个电感的另一端分别与两组igbt的中点相连接,igbt的一端与带开关的电阻串联,最后再与两个相互串联的电容和两个相互串联的电阻相并联组成boost升压电路;将光伏组件产生的电能电压提升到逆变模块可进行逆变的数量级。boost升压模块分别和光伏板、信息采集模块、igbt逆变模块,并通过驱动板和控制模块相连。

传统的单向boost升压电路会产生较大的输入电流波动,同时输出电压不够稳定,在本发明专利中利用两组igbt相互交错并联,设计出交错并联的单向boost升压模块,减少输入电流波动,稳定输出电压。

本装置双向dc/dc充放电模块组成如图5所示包括:两组igbt,两个电感,三个电容,四个电阻,三个开关,一个bms板;具体连接为:bms板正极连接开关然后连接一个与开关并联的电阻,并联一个为稳定电压的电容,电容两端分别与bms输出端正负极并联,正极再连接两个并联的电感,电感的另一端分别连接到两组igbt的两个中点,igbt的正极与开关并联的电阻相串联,之后再与两个相互串联的电容和相互串联的电感进行并联,构成buck、boost电路,组成储能电池双向dc/dc充放电模块双向dc/dc充放电模块分别与蓄电池与光伏板相连接。组成储能电池双向充放电电路结构,放电模式可为直流母线进行功率补偿,充电模式可节省光伏组件多产生的能量。

双向dc/dc充放电模块利用两组igbt交错并联,当用作充电功能时只采用其中一桥的igbt,利用另一桥的二极管;构成boost升压电路;当用作放电功能时利用一桥的igbt,利用另一桥的二极管,构成buck电路;buck、boost电路分时复用,对储能电池进行充放电,放电模式可为直流母线进行功率补偿,充电模式可节省光伏组件多产生的能量,还减少了对元器件的使用,缩小了装置的体积。

本装置igbt逆变模块组成如图6所示包括:逆变igbt驱动电路,四组igbt,四个电感,三个电容,emc滤波和断路器;具体连接为:经boost电路升压后的的直流电接入四组并联的igbt正负极,四组igbt的中点a、b、c、n分别连接四个电感,abc三相分别串联电感之后并联三个电容,三个电容的另一端连接到n相上,abc三相接入emc滤波器中,经滤波后作为逆变器的输出。

逆变模块采用四组igbt构成三相四桥臂的拓扑结构,在离网模式下采用三相四桥臂的拓扑结构对电能进行逆变,三相四桥臂的拓扑结构可以解决三相负载不平衡的问题,增加电能质量的稳定性;在并网模式下舍弃三相四桥臂中的一桥,采用传统的三相三桥臂结构,增加装置进行并网的友好性。

本发明涉及的软件或协议均为公知技术。

本发明提供了一种对称式双模光伏逆变器装置。该装置能够对光伏组件产生出的直流电进行升压后逆变出用电器所需要的交流电;能够根据并离网两种工作条件通过控制模块转换切换装置工作模式;装置自身可以在光伏组件发出功率不足时对直流母线进行功率补偿,光伏组件发出功率充足时可以对储能电池进行充电储能;可以通过上位机显示检测装置的运行状态又通过通讯部分对逆变器工作进行远程控制。本发明增强了逆变器在并网工作条件和离网工作条件的友好性,解决了光伏组件因天气影响出力不均的问题。

本发明采用国产芯片gd32f407作为装置的mcu,本装置采用的所有元器件均为国产产品,将光伏发出电能通过mcu进行计算,mcu对升压模块、逆变模块进行控制,产生出符合需求的电能;内部采用双电源模式,保证光伏发电充分利用与装置工作稳定性;设计储能电池双向dc/dc电路,提高光伏发电能量的利用率与用户用电的可靠性。

对对称双模光伏逆变器装置测试以下基本功能,主要包括通信模块功能、电源切换模块功能、boost升压模块功能、igbt逆变模块功能、并离网模式切换。

实施例1,

以下为本装置功能测试结果,其中通信模块、电源切换模块、boost升压模块、igbt逆变模块、显示功能、风扇散热、并离网模式切换均为装置主要功能测试;

表1基本功能测试

通信模块控制装置启动与停止,采用can通信遥控,并且上位机可采集装置的状态,随时监控装置运行状态。

通信模块无测试条件,即在正常使用情况下可实现远程通信控制装置启动与停止,采集装置状态信息。

电源切换模块为不影响装置在进行电源切换过程中正常工作,需要电源切换速度≤20ms,经检测测试结果为11ms,不会影响装置正常工作,实现了电源切换的功能。

boost升压模块将光伏产生的电能升压到逆变器可进行逆变的数量级,boost升压模块经万用表检测将电压升为820v,满足逆变模块进行逆变条件。

逆变模块将升压后的直流电逆变为用电器可使用的交流电。经逆变后的三相电压有效值分别为224.339v,224.157,224.296,频率为49.977hz,三相电压相位相差120°,基本无谐波,波形与正弦波一致,无抖动,效果图如图8、图9所示。

根据测试结果显示,说明该装置功能均已实现。

本发明未尽事宜为公知技术。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1