一种多能耦合配电系统故障恢复方法、装置及存储介质

文档序号:28685496发布日期:2022-01-29 10:35阅读:58来源:国知局
一种多能耦合配电系统故障恢复方法、装置及存储介质

1.本发明涉及能源互联网技术领域,尤其是涉及一种多能耦合配电系统故障恢复方法、装置及存储介质。


背景技术:

2.近年来频发的自然灾害和高比例的新能源装机容量,给配电系统的稳定性带来了巨大的挑战。如2021年2月美国大停电,造成累计切除负荷约20000mw,影响人口约400万,同时带来巨大的经济损失。为了提升配电网应对极端情况如自然灾害、网络攻击、供应端与线路故障等情况下的恢复能力,引入规模化灵活的电动汽车移动储能单元为电-热配电系统提供供需平衡。通过改进多能源耦合配电系统调度方法能够满足系统内部关键负荷的供电需求,甚至还能为邻近的配电网系统提供电力。


技术实现要素:

3.针对现有技术中的不足,本发明提供一种多能耦合配电系统故障恢复方法、装置及存储介质,可以快速、高效的对配电网故障进行恢复,提升配电系统的韧性。
4.为实现上述目的,本发明的技术方案是:
5.第一方面,发明提供一种多能耦合配电系统故障恢复方法,所示方法包括如下步骤
6.步骤一:首先获取配电系统的网络结构、配电系统负荷数据、热能负荷以及储能容量参数,以作为遗传-粒子群参数,并设置迭代次数为1:
7.步骤二:获取故障之路,确定故障发生时刻、计算分析故障持续时间,计算该时刻下配电系统负荷需求;
8.步骤三:上层优化模型以经济效益为最大为目标函数,以配电网为约束条件、容量平衡约束条件,建立多能协同优化模型,通过基于ga-pso算法计算生成不同供电恢复路径;
9.步骤四:判定当前迭代次数是否已经到达最大迭代次数;若达到最大迭代次数则转移到步骤六,若没有到达最大迭代次数,则转移到步骤五;
10.步骤五:获取上层优化的恢复路径,以容量配比为目标函数,以能源负荷、固定储能和电动汽车的移动储能,得到具体的可恢复节点、网损值与风光储的最优容量值;并通过灰靶贡献度得到各恢复指标客观权重,通过每次迭代及迭代次数完成后两次靶心度对比得到该时段最优恢复方案;把恢复方案反馈给上层优化模型;
11.步骤六:迭代完成,输出配电系统恢复方案。
12.第二方面,本发明提供一种多能耦合配电系统故障恢复装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述方法的步骤。
13.第三方面,本发明提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述方法的步骤。
14.本发明与现有技术相比,其有益效果在于:
15.本方法从韧性电网概念出发,以应变力、防御力、恢复力、感知力、协同力、学习力作为电网的调控目标,有效融合气、电、热能源资源,实现三网融合,构建集“荷-源-网-储”为一体的智慧、数字综合能源系统,从而可以快速、高效的对配电网故障进行恢复,提升配电系统的韧性。
附图说明
16.图1为本发明实施例1提供的多能耦合配电系统故障恢复方法的流程图;
17.图2为调度前电负荷波动情;
18.图3为关停企业正常运行负荷情况;
19.图4为本实施例2提供的多能耦合配电系统故障恢复装置组成示意图。
具体实施方式
20.为使本发明的目的、技术方案及优点更加清楚、明确,下面结合附图和具体实施方式对本发明的内容做进一步详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。
21.实施例1:
22.参阅图1所示,本实施例提供的一种多能耦合配电系统故障恢复方法,该方法主要包括如下步骤:
23.步骤一:首先获取配电系统的网络结构、配电系统负荷数据、热能负荷以及储能容量参数,以作为遗传-粒子群(ga-pso)参数,并设置迭代次数为1:
24.步骤二:获取故障之路,确定故障发生时刻、计算分析故障持续时间,计算该时刻下配电系统负荷需求;
25.步骤三:上层优化模型以经济效益为最大为目标函数,以配电网为约束条件、容量平衡约束条件,建立多能协同优化模型,通过基于ga-pso算法计算生成不同供电恢复路径;
26.步骤四:判定当前迭代次数是否已经到达最大迭代次数;若达到最大迭代次数则转移到步骤六,若没有到达最大迭代次数,则转移到步骤五;
27.步骤五:获取上层优化的恢复路径,以容量配比为目标函数,以能源负荷、固定储能和电动汽车的移动储能,得到具体的可恢复节点、网损值与风光储的最优容量值;并通过灰靶贡献度得到各恢复指标客观权重,通过每次迭代及迭代次数完成后两次靶心度对比得到该时段最优恢复方案;把恢复方案反馈给上层优化模型;
28.步骤六:迭代完成,输出配电系统恢复方案。
29.由此可见,本方法从韧性电网概念出发,以应变力、防御力、恢复力、感知力、协同力、学习力作为电网的调控目标,有效融合气、电、热能源资源,实现三网融合,构建集“荷-源-网-储”为一体的智慧、数字综合能源系统,从而可以快速、高效的对配电网故障进行恢复,提升配电系统的韧性。
30.具体地,所述步骤三中,上层优化模型以经济效益为最大为目标函数:
31.f
u鵰
=γ(f1,f2,f3,f
down
,ωk)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)
32.f1=∑
i∈r
λip
load-i
xiꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
33.f2=minn
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
34.f3=mins_loss
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
35.上式中的f1为经济最优;f2为负荷最小恢复量;f3为网损最小;f
down
为下层目标函数;γ为靶心度;wk为子目标权重;λi节点权重系数;p
load-i
为节点i的有功功率;s_loss为网络网损功率。
36.具体地,所述步骤三中,配电网约束条件为,定义两个状态变量对生成树建模,无论配电网潮流如何流向,都能保证其辐射状约束运行:
[0037][0038][0039][0040][0041][0042][0043]
以上式中,i
sb
、i
dg
分别为发电侧或dg直接相连的跟母线集合;ik与支路k直接相连的母线集合;uk故障状态,若支路k发生故障则uk为0,否则为1;β
i,j
、β
j,i
为0-1状态,代表支路状态,当潮流由节点i流向节点j时,β
i,j
为1,否则为0;当有潮流由节点j流向节点i时,β
j,i
为1,否则为0;sj为dg与节点j连接状态,节点j为根母线时sj为1,否则为0;为支路k的有功功率、无功功率;m为无穷大值。
[0044]
具体地,所述步骤三中,容量平衡约束条件为:
[0045][0046][0047][0048]
以上式中,p
load,mn
为主网络恢复节点i有功功率;p
mn
为主网络供电量;p
loss,mn
为主网络线路损耗;p
load-i,j
为孤岛j内节点i的有功功率;p
loss,j
为孤岛j内的线路损耗;p
dg,j
孤岛j内dg出力;p
eh,j
为孤岛j内储能出力;为储电设备k的放电功率、储电功率。
[0049]
具体地,所述步骤三中,多能协同优化模型含有分布式发电、储能的配电网节点功率平衡约束方程为:
[0050][0051]
以上式中,k(
·
,i)功率流入节点i的支路集合;k(i,
·
)功率流出节点i的支路集合;支路k的有功功率。
[0052]
具体地,所述步骤三中,配电网约束还包括电网安全约束:
[0053][0054][0055]
上述式中,uj参考电压;ui实际电压;σ电压偏差,取σ=5%;ri支路i的电阻;xi支路i的电抗。
[0056]
具体地,所述步骤五中,目标函数为:
[0057][0058]
上述式中,qa为最优储能电量;rb为最优风电与光伏利用率;pc为热机组出力储能及热约束函数与故障前一致。
[0059]
具体地,所述通过灰靶贡献度得到各恢复指标客观权重,通过每次迭代及迭代次数完成后两次靶心度对比得到该时段最优恢复方案包括:
[0060]
基于双侧优化模型得到的恢复策略与恢复指标建立决策矩阵,利用灰靶理论计算各恢复策略的靶心度,在迭代完成后应将每次迭代所产生的最优解再次进行靶心度评估,得到该时段下最优恢复方案:
[0061]
设有恢复方案ωi,i=1、2、.....m,恢复指标k∈k={1,2,3},第i个恢复方案ωi对应于第k个指标下的数值为ωi(k),数值矩阵为ω=(ωi(k))m×3;
[0062]
所述灰靶贡献度:
[0063][0064][0065]
式中:xi(k)为第i个恢复方案对应于第k个指标下的决策数;u0为给定值。
[0066][0067][0068][0069]
上述式中第k个恢复指标对恢复方案i的贡献系数,δi(0,k)=|xi(0)-xi(k)|为xi(0)与xi(k)的差异信息,ζ为分辨系数,ζ∈[0,1],ζ取0.5;式(3-81)表示k指标的贡献度;
[0070][0071][0072][0073]
上述式中:δ
0i
(k)=|y0(k)-yi(k)|=|1-yi(k)|,δ
0i
(k)表示第i个恢复方案ωi与靶心ω0之间的灰关联差异信息;先利用(24)对决策矩阵进行统一测度变换得到灰靶决策
矩阵,再通过式(24)(25)得到靶心度。
[0074]
如此,通过上述步骤即可以准确地得到该时段下最优恢复方案。
[0075]
下面结合一个具体应用场景,来对本方法进行进一步的说明:
[0076]
为考虑维护多极端情况下韧性电网能够保持稳定,本项目考虑了两者情况,设置故障发生时刻为8:00,故障持续时间为5h。
[0077]
场景1:多节点断裂,所形成的孤岛链故障解决方案。
[0078]
场景2:考虑电-热-储参与egies对69节点配电系统进行故障恢复。
[0079]
故障前电负荷以及故障后最低用电负荷情况如图2所示。可以看出最低限度的供电占正常供电站的负荷的20%左右。
[0080]
如图3所示,通过预测风电和光伏故障后的发电量,确定出风电和光伏出力的置信区间。通过置信区间来约束配置储能容量。在对储能容量的配置上,储能系统的运行策略目的在于补偿功率波24小时为储能系统的1个运行周期储能系统的。考虑到极端天气情况下能够满足电动汽车的充电需求,和储能装置对风电功率的有效利用。选用风电机组24小时最大发电量来满足以上需求。本实施例选用的储能装置为钠硫电池其参数如表1所示:
[0081]
表1储能电池参数
[0082][0083]
通过以上数据及方法得到的不同场景下的储能容量v2g及最优经济如表2所示,可以看出通过配置储能利用etaies多能耦合系统及ga-pso优化算法,可以降低极端情况下的损失达到最优。
[0084]
表2 pso和ga-pso算法优化配置结果
[0085][0086]
实施例2:
[0087]
参阅图4所示,本实施例提供的多能耦合配电系统故障恢复装置包括处理器41、存储器42以及存储在该存储器42中并可在所述处理器41上运行的计算机程序43,例如多能耦合配电系统故障恢复程序。该处理器41执行所述计算机程序43时实现上述实施例1步骤,
[0088]
示例性的,所述计算机程序43可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器42中,并由所述处理器41执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序43在所述多能耦合配电系统故障恢复装置中的执行过程。
[0089]
所述多能耦合配电系统故障恢复装置可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述多能耦合配电系统故障恢复装置可包括,但不仅限于,处理器41、存储器42。本领域技术人员可以理解,图4仅仅是多能耦合配电系统故障恢复装置的示例,并不构成多能耦合配电系统故障恢复装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述多能耦合配电系统故障恢复装置还可以包括输入输出设备、网络接入设备、总线等。
[0090]
所称处理器41可以是中央处理单元(central processing unit,cpu),还可以是其他通用处理器、数字信号处理器(digital signal processor,dsp)、专用集成电路(application specific integrated circuit,asic)、现成可编程门阵列(fieldprogrammable gate array,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
[0091]
所述存储器42可以是所述多能耦合配电系统故障恢复装置的内部存储元,例如多能耦合配电系统故障恢复装置的硬盘或内存。所述存储器42也可以是所述多能耦合配电系统故障恢复装置的外部存储设备,例如所述多能耦合配电系统故障恢复装置上配备的插接式硬盘,智能存储卡(smartmedia card,smc),安全数字(secure digital,sd)卡,闪存卡(flash card)等。进一步地,所述存储器42还可以既包括所述多能耦合配电系统故障恢复装置的内部存储单元也包括外部存储设备。所述存储器42用于存储所述计算机程序以及所述多能耦合配电系统故障恢复装置所需的其他程序和数据。所述存储器42还可以用于暂时地存储已经输出或者将要输出的数据。
[0092]
实施例3:
[0093]
本实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现实施例1所述方法的步骤。
[0094]
所示计算机可读介质可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(ram),只读存储器(rom),可擦除可编辑只读存储器(eprom或闪速存储器),光纤装置,以及便携式光盘只读存储器(cdrom)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理再以电子方式获得所述程序,然后将其存储在计算机存储器中。
[0095]
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1