一种实现低压配电故障快速分析处理的方法

文档序号:32666200发布日期:2022-12-24 01:01阅读:26来源:国知局
一种实现低压配电故障快速分析处理的方法

1.本发明涉及物联网和边缘计算技术,特别是一种实现低压配电故障快速分析处理的方法。


背景技术:

2.随着国民经济的增长,国内的年发电量和用电量屡创新高,国家电网和南方电网在高压和中压电网投入了大量的人力物力实现配电自动化,取得了显著成效,大大缩短了高中压电网的故障停电时间。但是对于与大部分用户直接相关的低压电网(400v及以下),未实现自动化智能化管理,低压故障的分析处理主要靠人工去先现场排查解决,效率低、成本高。
3.近年来,随着通信技术和智能设备的发展,国内外学者也设计了几种低压配电故障的分析处理方法,主要内容包括:部署故障诊断分析主站系统和低压配电终端,低压配电终端将当前低压电网运行状态数据上送给主站系统,由主站系统进行分析判断。有的低压配电终端具备录波功能,当故障发生时采集低压电网上的故障录波数据,上传给主站系统进一步进行故障分析诊断。但是这些方法仍然存在诸多问题:
4.(1)低压配电网自动化程度低,通信基础较差,低压配电终端采集到的运行数据很难及时上送给主站系统;
5.(2)如果只有低压配电终端采集到的故障时刻的运行数据(电流值、保护信号、开关动作信号等),可以推断故障发生,但比较难以准确分析故障原因,特别是单相接地故障。
6.(3)对于可以采集录波文件的低压配电终端,录波文件可以很好的辅助系统进行故障诊断和原因分析,但录波文件较大,故障发生时刻,关联的终端设备都会进行录波,录波文件的数量也较多。如果同一时刻这些录波文件都要上传给主站系统,势必会造成网络通信和主站系统沉重负担,主站等待收集完所有的录波文件后再进行分析,肯定影响故障诊断的实时性和准确性。


技术实现要素:

7.发明目的:本发明的目的是提供一种实现低压配电故障快速分析处理的方法,从而实现低压配电网络故障的快速分析处理,提升工作效率,降低维护成本。
8.技术方案:本发明所述的一种实现低压配电故障快速分析处理的方法,包括以下步骤:
9.(1)构建云-边-端一体化的低压配电故障快速分析处理体系。
10.(1.1)部署主站系统:在云端智慧安全用电平台部署故障分析诊断子系统,用于接收故障信号,定位故障区间、实施故障隔离等处理措施。其主要功能包括:
11.(1.1.1)拓扑分析:能够根据低压配电网模型,分析配电线路、设备、负荷之间的连接关系和上下游关系,并提供拓扑着色功能,用于标注特定的设备或线路;
12.(1.1.2)故障定位:接收到边缘计算网关上送的故障特征数据和定位信息后,从全
局拓扑角度进行校验,并以可视化的方式(弹出文字说明或电气图上着色等)展现故障区间,并发出告警信息,上告警窗口;
13.(1.1.3)故障隔离:定位故障区间后,为减少故障停电范围,经过分析给出隔离故障区间的操作建议,由调度人员遥控执行,也可由系统自动遥控快速隔离;
14.(1.1.4)非故障区间恢复供电:对于有备用电源或多路供电的低压用户,分析如果不在故障区间内,应给出如何切换电源或通过其他低压线路转供的方案,由调度人员通过遥控执行,也可自动遥控执行。
15.(1.2)部署边缘计算网关:以区域为单位(园区、居民小区、楼宇、供电台区等),每个区域部署一台边缘计算网关,边缘计算网关采用容器化技术,允许在其上部署不同功能的app应用。在边缘计算网关中部署故障录波分析app应用,用于区域内发生故障时,对所有故障录波文件进行实时计算分析,将预处理结果发送给主站系统。支持多种通信方式(光纤、3g/4g/5g)与主站系统交互。
16.(1.3)安装用电测控终端:在用户进户线路安装用电测控终端,作为采集终端和控制设备;通过多种通信方式(光纤、wifi、lora)与边缘计算网关连接;用电测控终端需具备故障录波功能,能够存储和发送故障录波文件。
17.注:用电测控终端泛指用户侧具备用电数据采集、计量、开关/断路器控制、继电保护功能的智能终端设备,包括但不限于能源关口断路器、智能微型断路器、智能空开、智能电表、采集器和传感器。
18.(1.4)部署通信物联网络:故障录波文件较大,且故障发生时往往同一时间产生多个录波文件,全部上传给边缘计算网关时占用通信带宽较大,所以边缘计算网关向下的局域网有条件的情况下采用光纤通信,不具备布线的条件下,建议采用物联网lora通信方式,可自行组网,边缘计算网关可根据同一母线下用电测控终端的分布情况选择最佳位置安装。
19.(2)边缘计算网关与主站系统之间建立模型同步机制,保证主站系统与边缘计算网关内存储的电气模型和拓扑的一致性。
20.在云端主站系统中存储的是全局电网的电气模型和拓扑数据,边缘计算网关主要关注的是区域内电气模型和拓扑数据,两者的数据必须一致,才能正确的对故障进行诊断分析。所以当某个区域的拓扑模型发生变化时,在主站系统进行修改更新的同时,要通过模型同步接口,将该对应区域更新后的模型同步到对应的管理该区域的边缘计算网关中。边缘计算网关中的模型由区域电网模型管理app进行管理。低压电网模型遵循cim标准,保证了云端完整模型和边缘域局部模型的一致性。
21.(3)带故障录波功能的用电测控终端将故障录波文件实时上送到边缘计算网关,由边缘计算网关中的故障录波分析app进行处理。
22.(3.1)故障录波文件采集。
23.用电测控终端具备故障录波功能,一旦某条低压线路发生短路或接地故障,该线路上以及与该线路同一母线的其他线路上的用电测控终端都会感应到并启动故障录波;录波文件格式遵循comtrade 1999标准中定义的格式,采用cfg(配置文件)和dat(数据文件)两个文件,并且采用二进制格式。
24.(3.2)故障录波文件上送到边缘计算网关。
25.用电测控终端与边缘计算网关之间的数据文件传输采用电力系统常用的标准通信规约(例如iec101、iec104等),边缘计算网关的数据采集处理app对接收到的数据报文进行解析,将接收到的故障录波配置文件和数据文件转换成一个熟数据文件,根据配置文件完成原始波形数据与主站系统电网模型的关联映射,将二次量测值转换成一次量测值。
26.(3.3)故障录波分析app采用对录波文件进行综合分析计算,处理后得到故障特征数据和故障定位信息。
27.分析软件提取暂态波形的故障特征分量,包括暂态电流幅值、暂态电流极性、对地电容值、相电流突变值及相关系数。运用波形相似度分析方法,对安装于低压线路上的用电测控终端上传的对地电容、零序电压、零序电流等故障暂态波形相似度进行分析,根据故障线路与非故障线路暂态波形差异,比较相邻采集单元暂态电流的相似度来确定故障区段。
28.暂态电流幅值计算:计算出每条线路在故障发生时刻暂态过程(大约2个周波内)的幅值,有效值或者暂态波形与横坐标的面积。在不接地系统中,比较各出线暂态零序电流幅值,选择幅值最大的线路为故障线路。
29.暂态电流极性计算:计算出每条线路在故障发生时刻暂态电流的极性,由于故障线路与各健全线路暂态电流的极性相反,可以通过暂态电流极性比较的方法选择故障线路。比较各出线暂态零序电流的极性,如果某一条出线和其它出线反极性则该出线为故障线路;如果所有出线都同极性则为母线接地故障。
30.对地电容值计算:应用参数辨识法实现配电网单相接地故障的选线与区段定位。需要计算出每条线路对地等值电容,根据对地电容的正负实现故障选线。
31.可以采用3种计算方法,一是零序电流积分法;二是零序电压求导法;三是傅里叶变换法。
32.零序电流积分法计算步骤:
33.1)分别对零序电流和零序电压故障开始后的一个周波内采样160个数据点;
34.2)对零序电流160个采样数据进行积分求解;
35.3)利用下面的公式,零序电流积分数据除以零序电压采样数据,得到线路等效对地电容值。
[0036][0037]
零序电压求导法计算步骤:
[0038]
1)对零序电压故障开始后的一个周波内采样161个数据点;零序电流故障开始后的一个周波内采样160个数据点;
[0039]
2)采用差分法对零序电压的161个采样点进行求导计算;
[0040]
3)利用下面的公式,零序电流除以零序电压积分得到的数据,得到线路等效对地电容值。
[0041][0042]
傅里叶变换法计算步骤:
[0043]
1)分别对零序电流和零序电压故障开始后的一个周波内采样160个数据点;
[0044]
2)分别对零序电流和零序电压采样的160个数据点进行傅里叶变换,得到零序电
压和零序电流的幅值和相位;
[0045]
傅里叶变换的计算公式为:
[0046][0047]
x(k)也是一个由n个独立谐波分量组成的傅里叶级数。
[0048]
x(k)为周期序列,周期为n。
[0049][0050][0051]
3)零序电流的傅里叶变换值除以零序电压的傅里叶变换值,得到线路导纳值。通过电纳求出线路等效对地电容值。
[0052]
yk=(ia+jib)/(ua+jub)=g+jb
[0053][0054]
相电流突变值及相关系数计算:计算健全线及故障线末端区段的各相电流突变量。配电网单相接地故障点前后在故障发生时刻相电流波形相似程度以及波形的相关系数分析;配电网单相接地故障发生时刻前后三相电流突变特性以及三相突变电流两两之间的相关系数分析。
[0055]
运用波形相似度分析方法,对安装于低压线路上的用电测控终端上传的对地电容、零序电压、零序电流等故障暂态波形相似度进行分析。故障线路暂态电流波形不相似、极性相反;非故障线路暂态电流波形相似、极性一致;故障点上游的暂态电流波形相似、极性一致;故障点下游与上游的暂态电流波形相比,暂态电流不相似、极性相反。因此,能够通过比较相邻采集单元暂态电流的相似度来确定故障区段。
[0056]
(4)边缘计算网关对故障录波文件进行解析后,将故障特征数据和计算得到的定位信息上传给主站系统。
[0057]
边缘计算网关将收到的故障录波文件解析后,将较大的录波文件转为轻量化的量测数据和定位信息,包括故障时的电流、电压、开关位置,以及边缘计算分析得到的故障区间信息(例如:a开关到b开关之间的低压线路lab发生故障);边缘计算网关将上述信息通过公共网络(光纤/3g/4g/5g)实时上送给云端的主站系统。
[0058]
(5)主站系统接收到边缘计算网关上送的故障相关数据和定位信息后,快速定位故障区间,生成故障隔离和非故障区域恢复供电方案,为运维调度人员提供决策支持。
[0059]
(5.1)根据收到的信息,在电气图上对故障区域进行着色,故障区域着色将停电设备都着色显示,用彩色方框将具体故障区域着色显示出来,支持转供路径着色及负载显示。
[0060]
(5.2)根据波形分析,生成故障告警信息,在调度员界面告警窗口显示;同时以短信告警信息方式,告知用户故障信息,并提示用户尽快解决。
[0061]
(5.3)根据网络运行状况,生成故障隔离和非故障区域恢复供电的方案,方案中包
含了需要操作哪些开关分合,以及操作的顺序和操作后的结果;系统根据方案自动执行遥控,分合开关,完成故障隔离和非故障区域恢复供电,或由调度人员根据方案按步骤进行人工遥控操作,完成故障隔离和非故障区域恢复供电。
[0062]
(5.4)提供历史事故分析与反演功能,主要用于针对已经发生的历史事故进行事后分析,发生事故时,系统会自动记录关于事故以及操作的全部信息,并将信息存入历史数据库中,用户能够根据界面查看历史事故,进行历史事故的反演操作。
[0063]
一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的一种实现低压配电故障快速分析处理的方法。
[0064]
一种计算机设备,包括储存器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的一种实现低压配电故障快速分析处理的方法。
[0065]
有益效果:与现有技术相比,本发明具有如下优点:
[0066]
1、本发明基于物联网技术和边缘计算技术,将电力系统输配电故障判别技术及分析处理技术进行低压配电场景下的重构和网络化分层融合,实现低压配电网络故障的快速分析处理。
[0067]
2、对低压配电网的故障自动诊断分析,改变了原有的人工现场查找故障点的方式,提升了工作效率,降低了维护成本;
[0068]
3、通过故障录波文件进行故障定位分析,能够准确的判断故障点以及故障类型,尤其是接地故障的判断;
[0069]
4、采用物联网通信技术解决了故障录波文件传输的时效性问题;
[0070]
5、边缘计算技术减轻了云端主站系统的分析处理压力,提升了故障处理的效率和准确性;
[0071]
6、系统提供了低压配电网故障定位、隔离到非故障区域供电恢复的完整操控方案,缩短了停电抢修时间,减少了停电影响范围,提升了用户侧供电可靠性。
附图说明
[0072]
图1为本发明所述方法的步骤流程图;
[0073]
图2为低压配电故障快速分析处理功能模块及数据流示意图。
具体实施方式
[0074]
下面结合附图对本发明的技术方案作进一步说明。
[0075]
如图1~2所示,一种实现低压配电故障快速分析处理的方法,包括以下步骤:
[0076]
(1)构建云-边-端一体化的低压配电故障快速分析处理体系。
[0077]
(1.1)部署主站系统:在云端智慧安全用电平台部署故障分析诊断子系统。其主要功能包括:
[0078]
(1.1.1)拓扑分析:能够根据低压配电网模型,分析配电线路、设备、负荷之间的连接关系和上下游关系,并提供拓扑着色功能,用于标注特定的设备或线路;
[0079]
(1.1.2)故障定位:接收到边缘计算网关上送的故障特征数据和定位信息后,从全局拓扑角度进行校验,并以可视化的方式(弹出文字说明或电气图上着色等)展现故障区
间,并发出告警信息,上告警窗口;
[0080]
(1.1.3)故障隔离:定位故障区间后,为减少故障停电范围,经过分析给出隔离故障区间的操作建议,由调度人员遥控执行,也可由系统自动遥控快速隔离;
[0081]
(1.1.4)非故障区间恢复供电:对于有备用电源或多路供电的低压用户,分析如果不在故障区间内,应给出如何切换电源或通过其他低压线路转供的方案,由调度人员通过遥控执行,也可自动遥控执行。
[0082]
(1.2)部署边缘计算网关:以供电台区为单位,因为各个供电台区下的低压线路相对独立,台区之间模型边缘清晰。每个台区部署一台边缘计算网关,用于区域内实时数据计算处理,对用电测控终端采集的故障录波进行处理。支持多种通信方式与主站系统交互。
[0083]
本实施例中,在某栋商业楼宇(独立台区)部署一台smart-box边缘计算网关:
[0084]
双核arm9cpu,512m内存;
[0085]
内置linux操作系统,支持docker容器化多应用部署;
[0086]
对上公网通信支持4g/5g/光纤,对下局域网通信支持wifi/lora/光纤。
[0087]
(4)部署的app应用包括区域电网模型管理、数据采集处理、故障录波分析等。
[0088]
(1.3)安装用电测控终端。
[0089]
本实施例中,用电测控终端采用能源关口断路器。
[0090]
在低压线路上安装能源关口断路器,作为采集终端和控制设备,具备故障录波功能,可在系统发生故障时,自动地、准确地记录故障前、后过程的各种电气量的变化情况。支持多种通信方式与边缘计算网关连接,本实施例中采用lora通信方式。
[0091]
(1.4)部署通信物联网络。
[0092]
本实施例采用lora自组网通信方式,lora是远距离无线电(long range radio),它最大特点就是在同样的功耗条件下比其他无线方式传播的距离更远,实现了低功耗和远距离的统一,它在同样的功耗下比传统的无线射频通信距离扩大3-5倍。smart-box边缘计算网关作为lora网关,可支持区域内所有能源关口断路器接入。
[0093]
传输距离:城镇可达2-5km,郊区可达15km
[0094]
工作频率:ism频段包括433、868、915mh等
[0095]
标准:ieee 802.15.4g
[0096]
传输速率:几百kbps
[0097]
(2)边缘计算网关与主站系统之间建立模型同步机制,保证主站系统与边缘计算网关内存储的电气模型和拓扑的一致性。
[0098]
所述步骤(2)具体为:在云端主站系统中对所管理的电网进行电气拓扑建模,模型包括电力设备和线路;其中各个区域的拓扑模型要同步更新到对应的管理该区域的边缘计算网关中,边缘计算网关能够识别电网模型和拓扑结构。
[0099]
本实施例中,在主站系统建立该栋商业楼宇的低压配电网络拓扑模型,再将此拓扑模型通过模型同步接口下发给部署在该楼宇配电房的smart-box边缘计算网关,模型遵循cim标准,保证主站与边缘计算网关中的拓扑模型一致。
[0100]
(3)带故障录波功能的用电测控终端将故障录波文件实时上送到边缘计算网关,由边缘计算网关中的故障录波分析app进行处理。
[0101]
(3.1)故障录波文件采集。
[0102]
本实施例中,当楼宇中某一条配电线路发生短路或接地故障时,该线路上以及与该线路同一母线的其他线路上的能源关口断路器都会感应到并启动故障录波;录波文件格式遵循comtrade 1999标准中定义的格式,采用cfg(配置文件)和dat(数据文件)两个文件,并且采用二进制格式。
[0103]
(3.2)故障录波文件上送到边缘计算网关。
[0104]
本实施例中,能源关口断路器与边缘计算网关之间的数据文件传输采用电力系统常用的iec104标准通信规约,边缘计算网关的数据采集处理app对接收到的数据报文进行解析,将接收到的故障录波配置文件和数据文件转换成一个熟数据文件,根据配置文件完成原始波形数据与主站系统电网模型的关联映射,将二次量测值转换成一次量测值。
[0105]
(3.3)故障录波分析app采用对录波文件进行综合分析计算,处理后得到故障特征数据和故障定位信息。
[0106]
本实施例中,安装在配电房的边缘计算网关获取到各条线路上的能源关口断路器上送的录波文件,在一定时间范围内(10秒《t《5分钟),波形召唤成功的完整度达到80%(含),就开始分析。分析软件提取暂态波形的故障特征分量,包括暂态电流幅值、暂态电流极性、对地电容值、相电流突变值及相关系数。
[0107]
暂态电流幅值计算:计算出每条线路在故障发生时刻暂态过程(大约2个周波内)的幅值,有效值或者暂态波形与横坐标的面积。
[0108]
暂态电流极性计算:计算出每条线路在故障发生时刻暂态电流的极性,由于故障线路与各健全线路暂态电流的极性相反,可以通过暂态电流极性比较的方法选择故障线路。
[0109]
对地电容值计算:应用参数辨识法实现配电网单相接地故障的选线与区段定位。需要计算出每条线路对地等值电容,根据对地电容的正负实现故障选线。
[0110]
相电流突变值及相关系数计算:计算健全线及故障线末端区段的各相电流突变量。配电网单相接地故障点前后在故障发生时刻相电流波形相似程度以及波形的相关系数分析;配电网单相接地故障发生时刻前后三相电流突变特性以及三相突变电流两两之间的相关系数分析。
[0111]
运用波形相似度分析方法,对安装于低压线路上的用电测控终端上传的对地电容、零序电压、零序电流等故障暂态波形相似度进行分析。故障线路暂态电流波形不相似、极性相反;非故障线路暂态电流波形相似、极性一致;故障点上游的暂态电流波形相似、极性一致;故障点下游与上游的暂态电流波形相比,暂态电流不相似、极性相反。因此,能够通过比较相邻采集单元暂态电流的相似度来确定故障区段。
[0112]
(4)边缘计算网关对故障录波文件进行解析后,将故障特征数据和计算得到的定位信息上传给主站系统。
[0113]
本实施例中,边缘计算网关将收到的故障录波文件解析后,将较大的录波文件转为轻量化的量测数据和定位信息,包括故障时的电流、电压、开关位置,以及边缘计算分析得到的故障区间信息(例如:a开关到b开关之间的低压线路lab发生故障);边缘计算网关将上述信息通过4g网络实时上送给云端的主站系统。
[0114]
(5)主站系统接收到边缘计算网关上送的故障相关数据和定位信息后,快速定位故障区间,生成故障隔离和非故障区域恢复供电方案,为运维调度人员提供决策支持。
[0115]
(5.1)根据收到的信息,在电气图上对故障区域进行着色,故障区域着色将停电设备都着色显示,用彩色方框将具体故障区域着色显示出来,支持转供路径着色及负载显示。
[0116]
(5.2)根据波形分析,生成故障告警信息,在调度员界面告警窗口显示;同时以短信告警信息方式,告知用户故障信息,并提示用户尽快解决。
[0117]
(5.3)根据网络运行状况,生成故障隔离和非故障区域恢复供电的方案,方案中包含了需要操作哪些开关分合,以及操作的顺序和操作后的结果;系统根据方案自动执行遥控,分合开关,完成故障隔离和非故障区域恢复供电,或由调度人员根据方案按步骤进行人工遥控操作,完成故障隔离和非故障区域恢复供电。
[0118]
(5.4)提供历史事故分析与反演功能,主要用于针对已经发生的历史事故进行事后分析,发生事故时,系统会自动记录关于事故以及操作的全部信息,并将信息存入历史数据库中,用户能够根据界面查看历史事故,进行历史事故的反演操作。
[0119]
一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的一种实现低压配电故障快速分析处理的方法。
[0120]
一种计算机设备,包括储存器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的一种实现低压配电故障快速分析处理的方法。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1