一种多电源模块并联同步启动的控制电路及其实现方法与流程

文档序号:36477800发布日期:2023-12-25 03:06阅读:75来源:国知局
一种多电源模块并联同步启动的控制电路及其实现方法与流程

本发明涉及电源启动,具体的说是一种多电源模块并联同步启动的控制电路及其实现方法。


背景技术:

1、针对整机功耗较大,电源电路设计要求输出功率较高的情况时,往往通过同规格两个或两个以上电源模块以并联均流的方式实现。随着输入电压的不断升高,当达到电源模块的开启电压时,使能电平的存在使得电源模块能够正常稳定输出。然而在实际使用过程中,尽管并联的各电源模块规格和内部集成电路相同,但开启电压仍会存在一定的差异。当输入电压升高至某一特殊值时,将会导致某一电源模块因达到开启电压而输出,另一模块因未达到其开启电压而处于截止状态,相对于能够输出的电源模块而言,未能输出的模块将被视为负载,从而可能造成输出电源模块的过流保护,影响整个电源电路的输出。

2、因此,为解决并联电源模块开启电压差异而导致的输出异常问题,本文提供了一种多电源模块并联同步启动的控制电路及其实现方法,保证所有并联的电源模块能够实现正常同步启动。


技术实现思路

1、本发明针对各模块开启电压略微差异导致的输出电压异常问题,提供一种多电源模块并联同步启动的控制电路及其实现方法。

2、第一方面,本发明提供一种多电源模块并联同步启动的控制电路,解决上述技术问题采用的技术方案如下:

3、一种多电源模块并联同步启动的控制电路,包括分压电阻r1和r2、稳压二极管d1、mos1管、mos2管、电容c2、缓冲电阻r5、电阻r3;

4、分压电阻r1和r2串联后对应连接输入电压正极和负极;

5、稳压二极管d1一端连接在串联的分压电阻r1和r2之间,另一端连接输入电压负极;

6、mos1管的栅极g连接输入电压负极,mos1管的源极s连接在串联的分压电阻r1和r2之间,mos1管的漏极d串联电阻r3后连接mos2管的栅极g,mos2管的漏极d连接多电源模块的en脚,mos2管的源极s连接输入电压负极;

7、电容c2与缓冲电阻r5串联形成阻容缓冲电路,阻容缓冲电路的电容c2端连接mos1管的源极s,阻容缓冲电路的缓冲电阻r5端连接mos1管的漏极d。

8、可选的,所涉及控制电路还包括电容c1,电容c1与稳压二极管d1并联。

9、可选的,所涉及控制电路还包括电阻r4,电阻r4一端连接电阻r3,另一端连接输入电压负极。

10、可选的,所涉及mos1管为p型mos管,mos2为n型mos管。

11、可选的,所涉及分压电阻r1、r2的阻值由导通电压|vgs_th_pmos|和所要求实现的电源模块最大开启电压决定。

12、第二方面,本发明提供一种多电源模块并联同步启动的控制电路及其实现方法,解决上述技术问题采用的技术方案如下:

13、一种多电源模块并联同步启动的控制电路实现方法,基于第一方面所述控制电路,所述方法基于输入欠压保护的思想,利用分压电阻r1和r2、稳压二极管d1并联方式控制mos1管导通关断,改变后级mos2管源漏极接地状态,进而控制各电源模块的同步使能;

14、当输入电压达到电源模块电气参数所标识的最大开启电压后,mos1导通,mos2的源漏极导通接地,电源模块en脚低电平使能,实现电源电路所有并联模块的同步启动。

15、可选的,所涉及方法利用分压电阻r1和r2、稳压二极管d1并联方式控制mos1管导通关断,改变后级mos2管源漏极接地状态,进而控制各电源模块的同步使能,具体过程如下:

16、输入电压经分压电阻r1、r2调整mos1管栅源极间电压,

17、当输入电压未达到电源模块标识的最大开启电压时,mos1栅源间电压|vgs_pmos|小于导通电压|vgs_th_pmos|,mos1管处于关断状态,mos2截止,各电源模块使能en脚悬空(非低电平),电源模块始终无输出;

18、当输入电压达到电源模块标识的最大开启电压时,mos1栅源间电压|vgs_pmos|大于导通电压|vgs_th_pmos|,mos1管导通,此时mos2满足vgs_nmos>vgs_th_nmos,mos2导通接地,各电源模块使能en脚为低电平,电源模块具备使能输出条件。

19、进一步可选的,当输入电压达到电源模块标识的最大开启电压后,输入电压继续升高,mos1栅源间电压|vgs_pmos|不断增大,当mos1栅源间电压|vgs_pmos|增大至稳压二极管d1的钳位电压时,即使输入电压进一步升高,mos1栅源间电压|vgs_pmos|将被钳位至安全范围内。

20、进一步可选的,分压电阻r1、r2的阻值由导通电压|vgs_th_pmos|和所要求实现的电源模块最大开启电压决定。

21、本发明的一种多电源模块并联同步启动的控制电路及其实现方法,与现有技术相比具有的有益效果是:

22、(1)本发明可以解决并联电源模块开启电压差异而导致的输出异常问题,保证所有并联的电源模块能够实现正常同步启动;

23、(2)本发明可用于对整机功耗要求较大或输出功率要求较高的电源电路中,同时要求电源模块应具备并联功能。



技术特征:

1.一种多电源模块并联同步启动的控制电路,其特征在于,所述控制电路包括分压电阻r1和r2、稳压二极管d1、mos1管、mos2管、电容c2、缓冲电阻r5、电阻r3;

2.根据权利要求1所述的一种多电源模块并联同步启动的控制电路,其特征在于,所述控制电路还包括电容c1,电容c1与稳压二极管d1并联。

3.根据权利要求1所述的一种多电源模块并联同步启动的控制电路,其特征在于,所述控制电路还包括电阻r4,电阻r4一端连接电阻r3,另一端连接输入电压负极。

4.根据权利要求1所述的一种多电源模块并联同步启动的控制电路,其特征在于,所述mos1管为p型mos管;所述mos2为n型mos管。

5.根据权利要求1所述的一种多电源模块并联同步启动的控制电路,其特征在于,所述分压电阻r1、r2的阻值由导通电压|vgs_th_pmos|和所要求实现的电源模块最大开启电压决定。

6.一种多电源模块并联同步启动的控制电路实现方法,其特征在于,基于权利要求1所述控制电路,所述方法基于输入欠压保护的思想,利用分压电阻r1和r2、稳压二极管d1并联方式控制mos1管导通关断,改变后级mos2管源漏极接地状态,进而控制各电源模块的同步使能;

7.根据权利要求6所述的一种多电源模块并联同步启动的控制电路实现方法,其特征在于,所述方法利用分压电阻r1和r2、稳压二极管d1并联方式控制mos1管导通关断,改变后级mos2管源漏极接地状态,进而控制各电源模块的同步使能,具体过程如下:

8.根据权利要求7所述的一种多电源模块并联同步启动的控制电路实现方法,其特征在于,当输入电压达到电源模块标识的最大开启电压后,输入电压继续升高,mos1栅源间电压|vgs_pmos|不断增大,当mos1栅源间电压|vgs_pmos|增大至稳压二极管d1的钳位电压时,即使输入电压进一步升高,mos1栅源间电压|vgs_pmos|将被钳位至安全范围内。

9.根据权利要求7所述的一种多电源模块并联同步启动的控制电路实现方法,其特征在于,分压电阻r1、r2的阻值由导通电压|vgs_th_pmos|和所要求实现的电源模块最大开启电压决定。


技术总结
本发明公开一种多电源模块并联同步启动的控制电路及其实现方法,涉及电源启动技术领域,控制电路包括电阻R1、R2、R5、R3,稳压二极管D1,MOS1管,MOS2管,电容C2;R1和R2串联后对应连接输入电压正负极;D1一端连接在R1和R2之间,另一端连接输入电压负极;MOS1管的G极连接输入电压负极,S极连接在R1和R2之间,D极串联R3后连接MOS2管的G极,MOS2管的D极连接多电源模块的EN脚,MOS2管的S极连接输入电压负极;C2与R5串联,C2还连接MOS1管的S极,R5还连接MOS1管的D极。控制电路利用R1和R2、D1并联方式控制MOS1管导通关断,改变MOS2管源漏极接地状态,进而控制各电源模块的同步使能。本发明可以解决并联电源模块开启电压差异而导致的输出异常问题。

技术研发人员:魏林超,李莉,戴晓龙
受保护的技术使用者:西安超越申泰信息科技有限公司
技术研发日:
技术公布日:2024/1/15
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1