离网型综合能源系统动态配置-需求响应联合优化方法与流程

文档序号:36740073发布日期:2024-01-16 12:56阅读:29来源:国知局
离网型综合能源系统动态配置-需求响应联合优化方法与流程

本发明涉及一种离网型综合能源系统动态配置-需求响应联合优化方法,属于多能互补综合能源系统优化。


背景技术:

1、综合能源系统(integrated energy system,ies)依靠多能多供能设备间的优势互补,能够有效实现风光等间歇性可再生能源的大规模接入和就地消纳利用,对实现能源系统清洁低碳转型具有重要意义,是国家以及国际上能源领域未来重要的战略发展方向。

2、对于可在生能源丰富,难以与大电网连接的偏远地区,离网型综合能源系统因其独立、多元能源供应以及高效灵活的独特优势被认为是支撑离网地区能量供应的关键技术。在城市生活区和工业园区,为促进可再生能源就地消纳,降低其出力波动对大电网产生的干扰,离网型综合能源系统得到大力推广。

3、然而在脱离电网支持的情况下,可再生能源的间歇性和用户的负荷波动为离网型综合能源系统的可靠运行带来巨大挑战,这需要可调供能设备在大范围内频繁改变出力,以便更好地平抑间歇性可再生能源的波动,为综合能源系统提供足够的灵活性支撑,使其在长期运行中动态满足用户负荷需求。因此增强离网型综合能源系统的动态运行性能至关重要。

4、制定合理的综合能源系统配置方案、适宜的调度决策和有效的控制系统是确保离网型综合能源系统动态可靠、经济低碳供能的关键。其中,优化配置确定了综合能源系统的供能结构和供能设备容量,是系统调度和控制的基础,同时,供能设备容量配置显著影响系统闭环动态性能。此外,用户负荷的大范围频繁波动也会对离网型综合能源系统的经济可靠运行带来挑战。需求侧响应通过市场价格信号来引导用户用电行为的改变,有效降低负荷峰谷差,制定合理的需求响应策略可以在提升供能经济性的同时有效降低系统的运行难度。

5、因此,如何实现能源系统配置-需求响应联合优化方法至关重要。


技术实现思路

1、本发明所要解决的技术问题在于,为实现高比例可再生能源接入的多能互补离网型综合能源系统经济、可靠运行以及能源的智慧管理,本发明提出一种离网型综合能源系统动态配置-需求响应联合优化方法,在系统配置阶段充分考虑源荷波动下的系统经济成本、闭环动态调节性能,结合需求响应机制实现源荷互动,从而实现整体系统经济、可靠运行。

2、为解决上述技术问题,本发明提供一种离网型综合能源系统动态配置-需求响应联合优化方法,包括如下步骤:

3、离网型综合能源系统动态配置-需求响应联合优化方法,包括以下步骤:

4、步骤1)、选取离网型综合能源系统供能设备关键容量配置参数,分析其对离网型综合能源系统动态负荷跟踪性能的影响;

5、步骤2)、构建设计调度感知的稳态无偏的离线预测控制器;

6、步骤3)、基于步骤2)构建的离线预测控制器,开发设计控制感知的系统闭环动态调度模型;

7、步骤4)、构建整体优化目标函数,充分考虑源荷波动下的系统经济成本、闭环动态调节性能,以及引入需求响应机制所产生的需求响应成本,形成计及闭环运行动态性能的离网型综合能源系统配置-需求响应分层联合优化模型;

8、步骤5)、在离网型综合能源系统配置-需求响应分层联合优化模型下,对离网型综合能源系统开展优化,得到最优功能供能设备容量配置、需求响应策略以及各时刻最优调度指令。

9、进一步的,所述步骤1)具体为,首先构建供能设备机理模型,为后续计及闭环运行动态性能的离网型综合能源系统配置-需求响应分层联合优化奠定模型基础,进而对离网型综合能源系统进行动态分析,选择对供能设备动态运行特性影响最大的供能设备参数作为容量配置参数。

10、进一步的,所述步骤2)中构建设计调度感知的稳态无偏离线控制器步骤如下:

11、步骤2-1)、构建离网型综合能源系统内关键供能设备的离散状态空间模型:将步骤1)得到的供能设备容量配置参数作为可测扰动,对离网型综合能源系统中的关键供能设备机理模型进行激励,产生辨识数据,采用matlab平台中的辨识工具箱systemidentification中的子空间辨识法辨识得到离网型综合能源系统内关键供能设备的离散状态空间模型:

12、

13、式(1)中,ad,bd,cd,dd,ed为系统矩阵,xd为状态向量,可测扰动d包含离网型综合能源系统中的供能设备容量配置参数,u和y分别为系统输入和输出矩阵;

14、步骤2-2)、稳态无偏修正:基于离散状态空间模型建立预测模型,保证设定值的稳态无偏跟踪,预测模型如式所示:

15、

16、式(2)中,a,b,c,d为系统特性矩阵,xe为系统扩增状态;δu(k)=u(k)-u(k-1)为供能设备输入量的增量,δd(k)同理;由于可测扰动d为各供能设备关键设计参数,在动态仿真中应当保持固定不变,因此,当k≥0时,设置δd(k)=0;

17、步骤2-3)、构建控制优化目标函数与控制优化约束:如式所示,控制优化目标函数兼顾输出量与设定值的偏差,以及控制量增量,此外,考虑到离网综合能有系统内关键供能设备控制量的物理限制,构建控制优化约束,控制量应满足速率与幅值约束,如式所示:

18、min h=(y-yr)tq(y-yr)+δutrδu      (3)

19、

20、式和(4)中,y=[y(k+1|k),y(k+2|k),…,y(k+np|k)]t为未来输出量预测矩阵;δu=[u(k),u(k+1),…,u(k+nc)]t;np与nc分别为控制时域与预测时域;yr为输出未来设定值矩阵,q为输出误差权矩阵,r为控制量误差权矩阵;h为预测控制目标函数;umin、umax、δumin、δumax为控制量及其变化量的物理限制;

21、步骤2-4)、多参数规划求解离线律:根据预测模型、控制优化目标函数以及控制速率与幅值约束,通过多参数规划方法离线求解该二次规划问题,得到未来最优控制序列,即离线控制律,如式所示:

22、

23、式中,δu*表示最优控制量增量,θ=[xe(k),d(k),y(k),ysp,umax,umin,δumax,δumin]t是包含扩增状态、可测扰动、当前时刻输出、输出设定值和输入幅值速率约束的参数集;kn、rn、ln、bn代表相应系数;参数集被划分为r个特征域,每个特征域对应相应的离线控制律;cri表示第i个特征域。

24、进一步的,所述步骤3)中开发设计控制感知的系统闭环动态调度模型步骤如下:

25、步骤3-1)、离线控制律计算:将各供能设备关键设计参数作为可测扰动,与各供能设备调度指令一同作为输入激励,采用如式所示的离线控制律,根据每一时刻供能设备当前时刻状态、调度指令、可测扰动及供能设备运行约束的参数确定当前特征域,进而得到特征域矩阵kn、rn,从而计算δu*(θ);

26、步骤3-2)、闭环动态仿真:将各时刻的离线控制律应用于供能设备闭环动态仿真中,得到辨识数据,对所得闭环数据进行子空间辨识,采用matlab中的systemidentification工具箱中的子空间辨识法得到如式所示的具有感知设计、控制的离散闭环调度模型,从而使调度层具有感知设计域底层闭环控制性能的能力:

27、

28、式中,ab,bb,cb,db和eb是由闭环模型辨识所得到的系统矩阵;xb是闭环模型的状态向量;可测扰动项d为各供能设备的关键设计参数;ysp是各供能设备调度指令;y为各供能设备实际输出;从调度模型可知其将随着供能设备设计参数d的变化而变化,并反映供能设备对调度指令跟踪的闭环动态性能。

29、进一步的,所述步骤4)中计及闭环运行动态性能的离网型综合能源系统配置-需求响应联合优化模型分为上、下两层:

30、上层开展需求响应优化具体为:用户侧需求响应采用电力价格型需求响应,优化变量为峰谷电价拉开比为实施电力价格型需求响应后峰时段电价变化量,为实施电力价格型需求响应后谷时段电价变化量;

31、下层计及系统经济成本、闭环动态调节性能的供能设备容量配置优化,下层容量配置优化综合考虑系统年化初始投资成本、运行成本以及闭环动态调节性能。

32、进一步的,所述步骤4)中上层优化综合考虑系统经济成本(ctotal)、闭环动态偏差(θ),对系统经济成本与闭环动态偏差分别设置权重系数σ、γ,如式所示:

33、

34、系统经济成本(ctotal)包括年化初始投资成本(cinv),系统运行成本(cop)以及需求响应成本(cdr);

35、所述年化初始投资成本(cinv)如式所示:

36、

37、式中,cinv,z为供能设备z的单位容量投资成本;cpz为供能设备z的容量;r为资本回收率;h为供能设备服役年限;f为银行利率;

38、系统运行成本(cop)如式所示,包含系统维护成本(cmt)、系统燃料成本(cgas):

39、cop=cmt+cgas       (9)

40、系统维护成本(cmt)按式计算:

41、

42、式中,λ为系统年运行天数;cmt,z为供能设备z的单位维护成本;为供能设备z在典型日内j时刻的平均运行功率;lz,j(k)为供能设备z在典型日内j时刻中第k个采样点的实际运行功率;ts为实际动态仿真中的采样时间长度;

43、所述系统燃料成本(cgas)按式计算:

44、

45、式中,cgas为单位燃料价格;mf,j(k)为典型日内j时刻中第k个采样点燃料消耗速率;

46、所述需求响应为价格型需求响应,通过引入分时电价后,用户在分时电价较高时减少使用电能,或将负荷转移至分时电价较低时段,使得运营商在实施价格型需求响应后,售电收入减少,可理解为实施需求响应的成本,按式计算:

47、

48、式中,为j时刻分时电价,为实施分时电价前的固定电价;pload,j与p’load,j为实施分时电价前后j时刻的用户电负荷,pload,j与p’load,j之间的关联如式所示:

49、

50、式中,ψjk为电量电价弹性系数,表征k时刻的电价变化律对j时刻用电负荷的影响;

51、系统闭环动态调节性能θ反映系统动态过程中的稳定供能,如式所示:

52、

53、式中,ps,j(k)=∑pgen,z(k)-∑pcon,z(k)-p’load,j(k)为j时刻第k个采样点的剩余功率,∑pgen,z(k)表示综合能源系统内能源生产供能设备的总功率,∑pcon,z(k)为综合能源系统内能源消耗供能设备的总功率;ps0=0kw表示剩余功率设定值。

54、进一步的,所述步骤4)中下层在于开展综合能源系统配置优化:

55、在上层确定的峰谷电价拉开比下,根据式计算用户参与电力价格型需求响应后的电负荷曲线,进而开展下层计及系统经济成本、闭环动态调节性能的供能设备容量配置优化;下层容量配置优化综合考虑系统年化初始投资成本、运行成本以及闭环动态调节性能,下层容量配置优化目标函数如式所示:

56、

57、进一步的,下层开展离网型综合能源系统配置优化时,根据式所述的闭环调度模型开展计及系统闭环动态的调度优化,调度优化目标函数、优化约束,如式和式所示:

58、

59、

60、式和式中,s1,j,...,sz,j为供能设备z在第j时刻的调度指令,与为调度层估计的综合能源系统运行成本与闭环动态调节性能,分别根据式与式计算,与分别为能源生产、消耗供能设备在j时刻的调度指令;sgen,z,max、sgen,z,min、scon,z,max、socn,z,min分别为能源生产供能设备、能源消耗供能设备运行上限、下限。

61、进一步的,下层开展离网型综合能源系统配置优化中,根据调度优化所得的各供能设备调度指令与给定的容量,采用离线控制律式计算各时刻优化控制量,将当前时刻最优控制率应用于离网型综合能源系统,开展系统闭环动态仿真,进而评估下层优化目标函数,以实现对不同配置和不同调度方案下的系统性能指标的公正评价。

62、进一步的,所述步骤5)中计及闭环运行动态性能的离网型综合能源系统配置-需求响应分层联合优化模型中,通过不断更新峰谷电价拉开比、容量配置方案、调度方案来最小化整体优化目标函数(7),直到满足终止条件,即求解器步长小于给定值;

63、在开始优化时,上层峰谷电价拉开比与下层容量均预先初始化,随后不断更新迭代,联合优化具体步骤如下:

64、s1,初始化/更新上层分时电价拉开比,得到分时电价制定策略,根据式计算用户参与需求响应后的典型日下电负荷曲线,将其应用于下层配置优化中;

65、s2,初始化/更新各供能设备配置容量方案,根据式所示的调度目标函数以及式所示的闭环离散动态调度模型,在典型日天气、负荷条件下优化各供能设备最佳调度指令;

66、s3,各供能设备的调度指令下发至控制层,根据当前时刻状态、输出、可测扰动即各供能设备关键设计参数以及调度指令更新各供能设备控制器的参数集,更新供能设备参数集θ;

67、s4,根据离线预测控制器查找对应特征域并得到最优控制律,送入离网型综合能源系统机理模型进行系统动态运行仿真;

68、s5,判断是否完成动态控制仿真,如是,进入步骤s6,否则重复步骤s4至步骤s5;

69、s6,根据闭环控制仿真结果计算下层配置优化目标函数式,判断是否满足终止条件,即两次优化指标函数偏差小于给定阈值1e-3,如是,进入步骤s7,否则重复步骤s2至s6;

70、s7,结合配置总目标函数式计算上层优化总目标函数式,判断是否满足终止条件,如是,结束,否则重复步骤s1至s7。

71、有益效果

72、本发明提供一种计及闭环动态运行性能的离网型综合能源系统配置-需求响应联合优化方法,该方法上层优化峰谷电价拉开比,引导用户调整各时段的用电负荷,降低负荷峰谷差;下层优化典型场景下的供能设备容量、调度指令。为公正评估供能设备容量、调度指令以及需求响应对系统动态负荷跟踪性能的影响,通过多参数规划方法构建具有设计-调度感知的稳态无偏离线控制器,求解基于稳态无偏预测控制的约束二次规划问题,得到参数集的各个特征域和其对应离线最优控制律。在线优化参数为峰谷电价拉开比与供能设备容量,通过不断迭代给定峰谷电价拉开比以及给定容量配置参数,对离网型综合能源系统进行调度优化,得到给定峰谷电价拉开比以及给定容量配置参数的离网型综合能源系统内各供能设备的调度指令,进而查表得到对应特征域与控制律,计算当前时刻控制量后将其应用于离网型综合能源系统闭环动态仿真。候选供能设备容量配置方案不断更新以最小化下层配置优化目标函数,候选峰谷电价拉开比不断更新以最小化上层优化总目标函数,直到满足终止条件,输出最优峰谷电价拉开比以及典型气象、用户负荷场景下的离网型综合能源系统容量配置方案。

73、本发明充分考虑源荷波动下的系统经济成本、闭环动态调节性能,并引入需求响应机制实现源荷互动,从而为离网型综合能源系统可靠、经济运行提供指导。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1