带有Vbe温度补偿电路的电池充电器的制作方法

文档序号:7299534阅读:281来源:国知局
专利名称:带有Vbe温度补偿电路的电池充电器的制作方法
技术领域
本发明一般地涉及电池充电器,特别涉及电池要求用温度补偿充电电压的改进型的电池充电器。
许多电的及电子的装置使用再充电的即“二次”电池做电源。一种形式的再充电电池含有镍镉电极“Nicad”型电池,这种电池在需要密封电池的环境中及电池保养必须减到最小的场合,用作便携式或备用电源。但Nicad电池相当贵,所以为了充电常用一相当简单的恒流源。
在要求大电流的场合,电池的大小及成本都必须减到最小,所以常用铅一酸电池。在结构方面的改进,包括铅一酸密封电池的容量,有可能使铅一酸电池用在低保养环境中和要求较低电流的设备中。铅一酸密封电池的技术资料某些出版物,例如通用电器公司出版的的“密封铅电池手册”中有关铅一酸电池的技术资料是可用的,与Nicad电池比较,铅一酸电池在同等电能下更经济。
为维持铅一酸电池充分充电,一个电压流接到电池上以便进行“浮置充电”或“涓流充电”。

图1是铅一酸电池的一简单电池充电器10的示意图。参考电压12通过输入电阻14接到运算放大器18的反相输入端。运算放大器18的同相输入端通过地接到参考电压12的正端。运算放大器18的输出端接到铅一酸电池20上,提供电池的充电电压。反馈电阻16从输出端提供负反馈信号回到运算放大器的反相输入端以调整及稳定放大器的输入电压。
如图1所示的运算放大器18的电压增益等于反馈电阻16的阻值除以输入电阻14的阻值。因此,由运算放大器18输出端充到电池20上的电压等于参考电压12提供的输入电压乘以放大器的电压增益,表示为Vout= (-Rf)/(Ri) Vin (1)此处参考电压12是Vin,输入电阻14是Ri,反馈电阻16是Rf。例如假如参考电压是5V,输入电阻14的阻值10KΩ,反馈电阻16的阻值为20KΩ,则运算放大器的电压增益等于2(20K/10K)结果有10V的输出电压提供给电池20,结果如下Vout=- (20K)/(10K) (-5V) (2)由电池温度的增加而引起的化学反应的增加使铅一酸电池产生一个问题,大约每升高10摄氏度,反应增加一倍。当电池温度增加时,内部电阻减小,这样,在给定充电电压下,电池接受较大的充电电流。增加的电流产生了电池的附加热,进一步减小了其内部电阻。这种因电池充电电流增加引起的电池加热的反复循环是使电池损坏和使电池失效的击穿条件。因此,为避免这个问题,必须在铅一酸电池充电器中提供温度补偿以避免过量充电及电池的热击穿。因此,为获得可靠及长寿命的使用铅一酸密封电池的电池/充电器系统,电池充电器的浮置或涓流电压应该在温度增加时减小充电电压或浮量电压来校正电池的环境温度。
铅一酸电池电压的温度补偿范围一般是从-2.5mv/deg.C/Cell到-7mv/deg.C/Cell,这取决于电池的温度和所希望的过量充电速率。
先有技术的电池充电器利用两种技术之一完成电压温度补偿。示于图2的电池充电器电路阐述了一个用一负系数的热敏电阻34接在运算放大器18的负反馈网络中的充电电路。选择电阻36和38,使其与负温度系数热敏电阻34一起提供所希望的总反馈电阻,以便产生所希望的放大器电压增益。而热敏电阻34经受较高的环境温度时,它的电阻值减小,因而产生了较低的总反馈网络电阻值。从而引起了放大器18电压增益减小,结果,送到铅一酸电池20的电压按比例减小。
尽管图2的电路产生负的充电电压温度系数从而保护了铅一酸电池20,但此电路有一缺点,即在补偿网络中要求使用比较昂贵的热敏电阻。进一步说由于合适的热敏电阻仅在电阻值的有限范围内使用及具有有限的温度系数值,所以必须改变或调整几个充电器元件才能获得所希望的充电器电压一温度系数。
第二个先有技术的温度补偿技术简示于图3,它具有一负温度系数的参考电压源,由电源12,电阻器40及晶体管42构成一温度补偿电压参考源。由于晶体管42的基极到发射极电压Vbe具有负电压一温度系数,所以输入到运算放大器18的参考电压相应变化。但是,硅晶体管具有有限的温度感应特性范围,典型的Vbe值为0.6V,温度系数近似-2.2mv/deg.C,因此,必须调整放大器的增益以获得所希望的充电电压一温度补偿。此外,许多商业用的电压调整器电路含有直接连接到单个集成电路封装中有关运算放大器上的自含电压参考源。例如,国家半导体公司LM1578开关调整器系列含有一与集成电路封装外部隔绝的固定的内部参考电压。因此,它即不能提供不同电压的参考电源也不能为芯载电压源提供温度补偿电路。
因此就需要充电器对铅一酸电池有一负充电电压一温度系数。
进一步要求不用昂贵的元件对电池充电器进行温度补偿,以获得充电电压的负温度系数。
更需要对温度补偿的电池充电器,这种充电器能很容易地适应于调整不同电池电压及电压一温度系数。
还需要在电池充电器中使用常规的电压参考源进行电压一温度补偿。
更需要利用最少数量的元件对电池充电器进行电压一温度补偿,以提供充电的负电压一温度系数。
因此,本发明的一个目的就是提供供电池使用的温度补偿充电器,此充电器能很容易地适合各种电池充电电压及使用常规的电压参考源的电压一温度系数。
发明的另一目的是提供供电池使用的温度补偿充电器。此充电器利用便宜并容易得到的元件。
依据本发明的一个方面,提供一具有所希望电压温度系数的输出电压的电池充电器含有一运算放大器,此运算放大器有一求和点和一连到提供电池充电电压的输出端。参考电流发生器提供参考电流给求和点,Vbe放大器电路连接在运算放大器的输出端和求和点之间。Vbe放大器含有一双极晶体管和一加偏压使该双极晶体管进入激活区的装置,因此,放大器提供的充电电压依据双极晶体管电压工作特性的负温度系数进行温度补偿。
依据本发明的另一个方面,反馈电阻Rf与Vbe放大器电路串联,且参考电流源含有一与电阻串联的电压源。
依据本发明的其它方面,偏置装置含有一连在晶体管基极和集电极之间的基极到集电极电阻Rc,以及连在晶体管基极和发射极之间的基极一发射极电阻Re。基极一集电极电阻的电阻值基本上等于基极一发射极电阻(Re)乘以所希望的电压温度系数与晶体管电压温度系数之差再除以晶体管电压一温度系数。
依据本发明的其它方面,电源有一带所希望温度系数Tc的输出电压,并含有一带有输入端及连到提供电池充电电压输出端的电压调整器。参考电压源接到电压调整器的输入端,基极一发射极电压(Vbe)的放大器电路接在电压调整器输入端及输出端之间。Vbe放大器电路含有一双极晶体管和晶体管偏置装置,因此,由电压调整器提供的充电电压依据晶体管的负电压一温度系数工作特性进行温度补偿。
从下面的详细叙述中可看到,对于那些精通此技术的人,本发明的其它目的及优点将更加明显。其中只示出并阐述了本发明的优选实施例,简单地作为实现本发明的最好模式设想说明。如将认识到的,本发明可以用于其它及不同的实施例,并且它的几个细节在许多明显的方面能够修改,而都不脱离本发明。因此,图和描述被认为是性质上的说明,而不是约束。
图1是先有技术的调整电池充电器的示意图。
图2是先有技术的第一个温度补偿电池充电器。
图3是先有技术的第二个温度补偿电池充电器。
图4是本发明的电池充电器,固体器件的Ebers-Moll方程描述晶体管集电极电流和Vbe的关系如下Vbe (KT)/(q) 1n( (Ic)/(Is) +1) (3)
其中,q是电子电荷(1.60×1019库仑),K是波尔兹曼常数(1.38×1023焦耳/°K),T是K氏绝对温度(°K=℃+273.16),Is是晶体管的饱和电流,它也取决于温度T。因为Is依赖于温度,Vbe以约2.2mv/℃减小,所以,Vbe与温度成反比关系。由于Ic=hFEIB,集电集电流正比于基极电流,导致Vbe值的放大。因此,在Vbe放大电路中利用晶体管的电流放大器特性获得所期望的与温度相关的输出。在Vbe放大电路中,对晶体管加偏压以得到所期望的集电极电流。Vbe随着晶体管温度的增加而减小,从而导致集电极电流相应的减小。
在音频放大器中,已经利用Vbe放大电路来对输送晶体管提供各种工作温度下的适当偏压。放大器的偏压电路中也采用Vbe放大电路,从而保持输出的晶体管的静态集电极电流不变,减小输出晶体管的耗散。然而,在Vbe放大器中所采用的原理以前一直没有用于电池充电器来调节和校正充电电压,对电池进行温度补偿。
按照本发明,如图4所示,电池充电器30实现Vbe放大,以提供温度补偿的充电电压,该电池充电器包含一个运算放大器18,它有一个求和点和一个连到对电池提供充电电压的输出端。由参考电压12和串联电阻14组成的参考电流源被连接到该运算放大器的求和点上。Vbe放大器32接在运算放大器18的输出端和求和点之间,它包括一个双极晶体管26。发射极电阻22和集电极电阻24形成了分压器,对晶体管26加偏压,使之进入激活区,这样,运算放大器18提供的充电电压是按照晶体管26的电压工作特性的温度系数进行温度补偿的。
如图1的充电器10,运算放大器18有一个反向输入端,形成一个求和点,参考电流和反馈电流就以通常方式加在这个求和点上,然而,来自电池充电器30的运算放大器18的输出端的反馈电流的大小是由与Vbe放大电路32串连的反馈电阻28来调整的。Vbe放大器两端的电压(Vm)随晶体管26温度的增高而减小,导致一个较低的总有效反馈电阻。因为运算放大器18的电压增益正比于总的有效反馈电阻,所以电池充电器30供给电池20的输出电压显示有负的电压/温度系数。
晶体管26由电阻22和24加偏压,从而工作于激活区,这样Vm正比于晶体管26的Vbe,因为晶体管26的基极-发射极电压Vbe为负的温度电压系数,所以,Vm显示出负温度系数的电压特性如下Vm= (Re+Rc)/(Re) Vbe (4)这里,发射极电阻22相当于Re,集电极电阻24相当于Rc,调节此比例以获得一个所希望的电压一温度系数(Tcm);这里,Vbe具有已知的电压一温度系数(TCVbe),通常在-2.2mv/deg.C范围内,因此,所希望的TCm由下式给出TCm= (Vm)/(Vbe) TCVbe (5)从公式4和5看出,发射极电阻22的值可以表示为集电极电阻24、晶体管电压一温度系数和所希望的电压一温度系数的值的函数即
Rc= (CTCm-T(Vbe))/(TCVbe) Re (6)一旦Vm确定,就可以计算出反馈电阻28的值。反馈电阻28两端的电压等于Vout减去Vm,而流过反馈电阻28的电流等于流过输入电阻14的电流。因此Rf= ((Vout-Vm))/(Vin) Ri (7)这里,反馈电阻28相当于Rf,输入电阻14相当于Ri,参考电源12相当于Vin。
例如,假如电池充电器采用图4所示的Vbe放大器电路,则需有-5mv/deg.C(TCm)的电压一温度系数,用硅晶体管需要有0.6V的Vbe及2.2mv/degC.的负电压一温度系数(TVbe),这就使TCm/TVbe的电压一温度系数是Vbe的系数的2.27倍,因此,Vm= (TCm)/(TVbe) Vbe=1.362V (8)Re选的足够大以致于使通过反馈电路的大部分电流都流过晶体管26。给出Re的值为15KΩ,则Rc计算如Rc= (Vm-Vbe)/(Vbe) Re=19.05KΩ (9)最后,Rf计算如Rf= ((Vout-Vm))/(Vin) Ri=17.28KΩ (10)
当确定适当的TCm时,应该考虑另一个与电池串联的元件。例如,假如,具有负电压一温度系数的开关二极管与电池串联,由于单一电池,这些值应加到TCm上,因此,如果需-10mv/deg.C的电池负电压一温度系数,在充电电流通路上含有两个开关二极管,每个有-2.2mv/deg的TC值,则需要的总TCm为-14.4mv/deg.C。
本发明的电池充电器能用在其它含有温度补偿的电信号的应用中。进一步说,依据本发明的充电器只用了三个附件插入与调整器反馈网络串联,一个晶体管和两个偏置电阻,它仍是便宜、易用的。因此,Vbe加法器补偿电路的费用近似等于等效热敏电阻装置的五分之一。另外,不象先前用可变参考电压的调整器Vbe温度补偿电路调整具有固定的内部参考电压源的电压调整器。
在本公开中,仅表示和阐述了本发明的优选实施例,而,如前所述,应了解到,本发明能用于各种其它系统及环境中,并且在此表示的发明概念范围内修改及变化。例如,运算放大器的输出端直接接到电池上提供充电电压,近一步还可含有电压放大器电路以增加充电器电压或电流的输出。
权利要求
1.一种把具有所希望电压温度系数的输出电压提供到电池的电池充电器,含有一运算放大器,其有一求和点和一连到提供电池充电电压的输出端,提供参考电流给所述的求和点的装置,连接在所述的运算放大器的输出端和求和点之间的Vbe放大器,所说的Vbe放大器装置含有一双极晶体管和一对晶体管加偏压使之进入激活区的装置,因此,由所说的运算放大器提供的充电电压依据所述的双极晶体管电压工作特性的负温度系数进行温度补偿。
2.权利要求1的电池充电器,还含有与所述的Vbe放大器电路路串联的反馈电阻Rf,并且其中所述的提供参考电流的装置含有一与电阻串联的电压源。
3.如权利要求2的电池充电器,其中,所述的偏置电路含有一连在所述的双极晶体管基极和集电极之间的基极至集电极电阻Rc,以及连在所述的双极晶体管的基极和发射极之间的基极至发射极电阻Re,该基极至集电极电阻值基本上等于该基极至发射极电阻Re乘以所述的所希望的电压温度系数与所述的晶体管电压温度系数之差除以所述的晶体管电压一温度系数。
4.一种对电池提供具有所希望的温度系数(TC)的输出电压的充电器电路,包括一个具有输入端和输出端的电压调节器,其输出端连接到电池上,以提供充电电压。一个连接到所述电压调节器输入端的参考电压源;一个连接于所述电压调节器的输入端和输出端之间的基极-发射极电压(Vbe)放大器电路,所述Vbe放大器电路包括一个双极晶体管及在电路中与该晶体管一起的晶体管的偏置装置,以使该晶体管工作在激活区,从而,所述电压调节器提供的充电电压按照所述晶体管管的负电压温度系数工作特性进行温度补偿。
5.一种如权利要求4所述的电源,进一步包括一个反馈电阻(Rf)和一个输入电阻(Ri),电阻(Rf)与所述Vbe放大器电路串连,电阻(Ri)连接在所述参考电压源和前面所述的电压调节器输入端之间。
6.一种如权利要求5所述的电源,其中,所述基极一集电极电阻(Rc)的值基本上等于所述基极-发射极电阻(Re)的阻值除以所述晶体管的温度系数,乘以所希望的温度系数与所述晶体管温度系数之差。
全文摘要
一种电池充电器向电池提供所希望的电压温度系数的输出电压。该充电器包括一个运算放大器,该运算放大器有一个求和点,参考电流和该来自运算放大器输出端的反馈信号加到此求和点,Vbe放大电路包括一个双极晶体管,晶体管被偏置使其工作在激活区,从而,该运算放大器所提供的充电电压按照晶体管负温度系数的电压特性进行温度校正。
文档编号H02J7/00GK1039683SQ8910355
公开日1990年2月14日 申请日期1989年6月3日 优先权日1988年7月21日
发明者小本杰明·恩 申请人:约翰弗兰克制造公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1