限流断路器的固态瞬时跳闸装置的制作方法

文档序号:111528阅读:346来源:国知局
专利名称:限流断路器的固态瞬时跳闸装置的制作方法
本发明涉及到一种具有瞬时模拟跳闸脱扣装置的固态跳闸装置,该脱扣装置使限流断路器的触头快速断开。
限流断路器能在短路电流达到高值前,快速断开触头并切断电流,以实行短路电流的限制。快速断开触头与选择性作用是矛盾的,后者需要足够的时间延迟,以便由下一级断路器切除故障。已有人提出对选择性和发生短路时快速断开触头进行限流的矛盾予以调解,万是随后重合上这些触头重新给电力系统非故障部分供电。但是,这样就使装置复杂化同时难免出现触头的跳跃。
本发明的目的在于获得一个综合装置,该装置在某些情况下以选择性优先,在另一些情况下以电流限制优先。本发明基于这样的事实在严重短路电流的情况下,电流限制取得优先,因为必须限制短路电流以避免断路器及供电线路损坏。在这些特殊情况下,牺牲选择性以限制电流。对于正常的短路电流,其所达到的值低于断路器电动力耐受水平,电流限制的作用是多余的,就以选择性优先。
根据本发明,该固态跳闸装置包括一个使限流断路器的触头快速断开的模拟瞬时跳闸脱扣装置,它包括一个电流传感器,它产生一个微分模拟信号di/dt,该信号与断路器导体内流过的电流对时间的微分成正比。
一个积分电路,它接收上述微分信号di/dt,并输出一个代表电流i的信号。
一个第一定值比较电路;它把上述代表电流的信号与高定值进行比较,当上述电流信号i超过上述高定值时,输出一个瞬时跳闸信号。
一个第二定值比较电路,它把上述微分信号di/dt与第二定值进行比较,当上述微分信号超过上述第二定值时,产生一个选择低瞬时跳闸定值的信号。
电流对时间的微分相当于短路电流增长率,一旦发生短路该值就给出电流峰值的指示;如果断路器没有断开,电流将达到此峰值。如果预期的峰值不超过断路器的电动力的耐受极限,瞬时跳闸脱扣装置就整定在高跳闸定值。这样,它就能由短延时、长延时跳闸脱扣装置或任何其它要求时间延迟的选择装置来提供选择性。另一方面,如果预期的短路电流超过断路器电动力耐受极限,那么瞬时跳闸脱扣装置的低定值起作用,使断路器触头快速断开。显而易见,这个低定值越低就越能较快地超过,这使触头能快速断开并限制电流,而这个低定值当然要比断路器的额定电流高。当发生短路时,定值的改变由电流增长率来控制,但要避免由于扰动或干扰导致电流的突变而引起的误跳闸。重要的是断路器的跳闸取决于出现其值高于断路器额定电流的瞬时电流。微分电流信号决定着瞬时跳闸脱扣装置是工作在高定值还是低定值。
微分电流信号便于由非磁性传感器供给,传感器直接输出一个与被测电流的微分成比例的电压信号。微分信号与定值在比较电路中进行比较,以便根据是否超过这个定值来选择高定值或低定值。同一微分信号方便地被积分,提供一个与电流成比例的信号,它与上述的高定值和低定值比较,当超过选择的定值时,使断路器跳闸。
根据本发明的实施例,瞬时跳闸脱扣装置可以用来检查测量电路的连续性。在这方面,当电路没断开时,直流电流施加在传感器上,在传感器的端子上产生一个预定的电压。当传感器电路断开时,端子上电压增高,对瞬时跳闸装置来说,如同是造成跳闸的短路电流一样。这个监测电路防止断路器在传感器断路或故障情况下造成的动作。在处理电路附近施加直流电流,以监测整个传感器连接电路以及传感器本身回路的连续性。
根据本发明的瞬时跳闸脱扣装置最好是一个模拟跳闸脱扣装置,它的响应速度比数字跳闸脱扣装置快。这个响应速度自然有助于所寻求的限流作用。每相采用一个独立的传感器和处理电路也是合理的,其每一个都能使断路器跳闸。这些单独的传感器和瞬时跳闸脱扣装置,在提供较高的响应速度和提高可靠性方面分别起到各自的作用,其中某一电路的故障都可由其它电路的作用来弥补,则有相当的几率检测在故障情况下的短路故障。
瞬时跳闸脱扣装置涉及规格化的短延时和长延时电子电路断路器,同样的继电器亦便于断路器的瞬时跳闸。短延时、长延时跳闸脱扣装置可以是利用电流互感器供给电流测量信号以及电子电路和跳闸继电器的电源的自电流型。值得注意的是,由非磁性传感器供出的微分信号可以按众所周知的技术方式用于长延时和短延时的跳闸。
通过下面对本发明一个实施例的介绍,将使其它的优点和特征更为明瞭。该实施例仅作为一个例子,且借助附图来描述,在附图中图1表示本发明的瞬时跳闸脱扣装置的方框图。
图2是图1的跳闸脱扣装置的详图。
图3表示带有一个瞬时跳闸脱扣装置和一个具有长、短延时跳闸脱扣装置的固态跳闸单元的方框图。
图中,电力断路器(特别是低压断路器)包括机械触头10,该触头10由跳闸继电器14动作于机构12进行操作。继电器14则接收来自瞬时跳闸脱扣装置16和具有长、短延时的跳闸脱扣装置18的跳闸命令。断路器也可以是固态的型式。瞬时跳闸脱扣装置16包括三个传感器20,其中每一个都与断路器导体R、S、T中的一个相联系,以将一个信号供到跳闸单元22。下面,参考图1和2只介绍一个传感器20和一个跳闸单元22,其它传感器及跳闸单元是一样的。
传感器20可为非磁性型式,例如其构成为二次绕组由一个管形非磁性支架支承,导体R穿过此管形支架而构成一次绕组。已经知道,这样的传感器20可传送一个与流过导体R的电流对时间的微分成比例的电压信号。该传感器20由导线24、26连到跳闸单元22,该跳闸单元22由例如一块支承着瞬时跳闸脱扣组件和电路的印刷电路板构成。电流源28通过电阻30连到导线24、26,将一个直流电流i0供到传感器20的二次绕组。该电流i0是以印刷电路板22的量级施加的,以检查由导线24、26和传感器20构成的电路是否完好。传感器20供出的信号e,是电流i0在传感器20端子处造成的电压及导体R内流过的电流i的微分的函数。这个电压信号e被供到电压监测单元32,单元32将直流分量i0除掉。单元32的输出信号代表di/dt值并加到积分单元34上,单元34则输出一个与流过导体R的电流成比例的信号i。信号i被加到一个高定值检测单元36和一个低定值检测单元38上,当分别超过预定的高定值和低定值时,它们就输出一个跳闸信号。传感器20送出的信号e还并联施加到流过导体R电流i的增长率检测单元40上。当这个增长率超过一个预定值时,单元40就将一个输出信号施加到与门42的一个输入端,其另一个输入端接收来自低定值检测单元38的跳闸信号。如果在与门两个输入端都出现信号(即电流i大于低定值且电流i对时间的微分大于预定值)时,该与门就传输跳闸信号。
在图2中描述的跳闸单元22,是应用运算放大器A1到A10的模拟电路。连接监测单元32采用了环路接线运算放大器A1、A2,将直流电流分量i0除掉。定值检测单元36、38之每一个都包括有两个运算放大器A7、A8和A9、A10;这些运算放大器之一个输入端,由齐纳二极管44、45所决定的定值电压所极化。电流i的增长率检测单元40,包括一个相同类型的带两个放大器A5和A6的定值电路,它们连到运算放大器A3的输出端。这种类型的模拟电路在技术上是众所周知的,在此不予进一步详述。
显然,高定值检测器36的定值与断路器所承受的电动力相对应,即其最大值可以为断路器所承受,而不致出现明显的损坏。检测器38的低定值要高于断路器的额定电流i。直流电流i0值是这样确定的当电路24、26、20被切断时,信号e电压增长量要足以使高定值检测器36去跳闸。单元40反应于电流对时间的变化,其整定方式为当该值(相应于表示电流与时间关系曲线的斜率)高于断路器承受的极限电动力的电流峰值曲线之斜率时,即发出信号。
本发明的瞬时跳闸脱扣装置动作情况如下在正常运行中,流经导体R的电流i小于低定值检测器38的定值,且该电流di/dt的变化亦低于单元40的反应定值,则跳闸单元22不发出跳闸命令。当发生较轻的短路且预期的峰值低于检测器36的高定值(具体说是低于断路器承受电动力的定值)时,信号di/dt就维持低于电流增长率单元40的响应定值,则跳闸单元仅反应于由检测器36确定的高定值。如果电流i值维持低于此高定值,瞬时跳闸脱扣装置就不产生任何跳闸命令。相反,如果电流i超过这个定值(例如,由于短路电流忽然增大了),瞬时跳闸脱扣装置就有反应,且造成跳闸以保护断路器和被供电的线路。当发生严重的短路且其信号di/dt高于单元40的定值时,单元40就将一个信号供到与门42的输入端。同时,积分单元34将一个代表电流i的信号传输到低定值检测单元38,且只要电流i值一超过其定值,单元38就将一个跳闸信号传输到与门42。这个突变非常迅速,能使断路器快速跳闸,具有限制大电流的作用。一旦电流i超过检测器36的高定值,第二个跳闸信号就传输到断路器;但是由于它出现在低定值检测单元38的信号之后,所以该第二信号不起作用。很清楚,改变由单元40确定的定值,能使跳闸更块,从而达到良好的短路电流限制。
在连接导线24、26或传感器20被切断的情况下,由于切断而造成传感器20的端子处电压的增长,使信号i高于检测单元36的高定值,单元36发出使断路器跳闸的跳闸信号。于是始终要监测传感器20到跳闸单元22间的正确接线,其任何会导致断路器跳闸的故障。如果该突变与高于单元40定值的电流变化相一致,则只能在电流i值等于检测器38的低定值时才发生跳闸。反之,如果电流i超过检测器38的低定值,则只有同时大的电流变化超过单元40定值才造成跳闸。以这种方式,可避免由于电流限制幅度突然变化造成的误跳闸。
参考图3,可见传感器20与断路器导体R、S、T中的每一个都相联系,每个传感器20都连到一个跳闸单元22。三个跳闸单元22的输出,都加到一个或门46上,或门46的输出端连到跳闸继电器14。跳闸单元22都连到一个电源单元48,例如连到导体S、T上或任何其它的电压源。瞬间跳闸单元22中任何一个单元的跳闸信号,都可使断路器10跳闸。将不同的瞬时跳闸电路分开,提高了该装置的可靠性。一般说,至少要由导体R、S、T中的两个才能查觉到严重的短路,因此跳闸单元22中的一个发生故障不会有太大的影响。
本发明的瞬时跳闸脱扣装置,一般与一个规格化的具有长、短延时的跳闸脱扣装置相联系,图3中以图示对跳闸脱扣装置的一个实施例进行描述。具有长、短延时的跳闸脱扣装置,将一个跳闸信号与瞬时跳闸单元22一起并联地送到门46的一个输入端。具有长、短延时的跳闸单元18,包括三个电流互感器50,互感器50连到串联起来的整流桥52,以送出一个与导体R、S、T之一个中的最大强度电流成比例的信号。这个信号加到处理电路54,当超过了短延时或长延时的定值(以熟知的技术方式)时,单元54即产生一个带长或短延时的跳闸信号。很清楚,瞬时跳闸脱扣装置可以与不同型式的跳闸单元相联系,例如,与数字处理跳闸系统或规格化的机电跳闸系统相联系。当发生严重的短路时,定值变化系统能保持足够的延时,以在所有不危及断路器完好的短路值下都能有选择地跳闸,即所有的峰值都维持低于断路器所经受的电动力。
当然,本发明并不限于上面详述的实施例,而可扩展到其它实施例,特别是传感器20可为不同型式或由电子处理电路确定电流依时间的变化值可。
权利要求
1.一种固态跳闸装置,它具有一个使限流断路器触头高速断开的模拟瞬时跳闸脱扣装置,该固态跳闸装置特征在于包括;一个电流传感器,它产生一个与流过断路器导体内的电流对时间微分成比例的微分模拟信号di/dt,一个积分电路,它接收上述微分信号di/dt,并发出一个代表电流i的信号,一个第一定值比较器电路,它将上述代表电流的信号与一个高定值比较,当上述电流信号i超过该高定值时,发出一个瞬时跳闸信号,一个第二定值比较器电路,它将上述微分信号di/dt与一个第二定值比较,当上述微分信号超过该第二定值时,产生一个选择低瞬时跳闸定值的信号。
2.根据权利要求
1的一种跳闸装置,它包括一个第三比较器电路,该比较器电路将上述代表电流i的信号和上述低定值比较,发出一个施加到一个与门的一个输入端的跳闸信号,该与门的另一个输入端接收上述选择低定值的信号。
3.根据权利要求
2的一种跳闸装置,其中上述与门的输出端和上述第一比较电路的输出端都连到上述断路器的跳闸继电器。
4.根据权利要求
1的一种跳闸装置,其中上述传感器由一个非磁性管构成,该非磁性管中具有一个由上述导体构成的一次绕组和一个产生上述微分信号di/dt的二次绕组。
5.根据权利要求
4的一种跳闸装置,其中上述二次绕组经过一个电阻连接到一个直流电流源,该直流电流源产生一个直流电流信号i。叠加在上述模拟微分信号di/dt上。
6.根据权利要求
5的一种跳闸装置,它包括一个上述微分信号di/dt的处理电路和直流电流信号i0,正常运行中,该装置将上述直流电流i0除去,且当二次绕组与上述电流源断开时,产生一个跳闸信号。
7.根据权利要求
5的一种跳闸装置,它包括一个电子单元或支承上述积分和比较器电路的印刷板以及与直流电流源联系的电阻,上述传感器通过外部连接连到上述单元。
8.根据权利要求
1的一种用于多极断路器的跳闸装置,其中每个极都与一个固态瞬时跳闸脱扣装置相联系,该固态瞬时跳闸脱扣装置的所有输出端都连到断路器的一个跳闸继电器,使断路器根据来自上述固度瞬时跳闸脱扣装置中任何一个的命令而跳闸。
9.根据权利要求
1的一种包括一个具有长、短延时的固态跳闸脱扣装置的跳闸装置,该装置具有一个电流传感器和一个该电流传感器发出信号的处理电路,如果发生故障就送出一个长延时或短延时的跳闸信号,而且长、短延时跳闸装置和瞬时跳闸装置共用一个跳闸继电器。
专利摘要
一种瞬时固态跳闸装置具有两个定值,以提供高和低跳闸定值。当发生短路时,由一个电流增长率检测器确定电流峰值以及是否趋向于超过相应于断路器耐受的电动力的峰值;一旦超过了低定值,就使跳闸定值改变。这种高速跳闸有助于限制短路电流。当发生的短路较轻时,电流变化小,且仅当超过高定值时瞬时跳闸脱扣装置才造成跳闸。多数情况都达不到高定值,且易于以通常方式实现选择性跳闸。传感器到跳闸单元的回路断线也会造成断路器跳闸。
文档编号H02H3/08GK87103164SQ87103164
公开日1987年11月11日 申请日期1987年4月29日
发明者兰德贝尔·弗朗索瓦 申请人:默林·格伦导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1