垃圾焚烧发电厂的光伏发电系统及并网控制方法_2

文档序号:9455178阅读:来源:国知局
述MPPT模块上集成有直流转换器,直流转换器将太阳能电池组输出的电流转化为相同的电流值,通过直流转换器使得光伏组件以恒流源的形式输出功率。所述太阳能电池片与MPPT模块一一对应连接且MPPT模块与二极管一一对应连接。
[0022]多个太阳能电池片串联形成太阳能电池组,通过MPPT模块控制太阳能电池组工作在最大功率点,使得在部分太阳能电池片被遮挡时,太阳能电池组仍然能够输出此时能够输出的最大输出功率。避免现有技术中由于部分太阳能电池片被遮挡导致其他太阳能电池片的输出功率降低,从而导致光伏发电系统的发电效率低的问题,达到了提高光伏发电系统的发电效率的效果。另外,本发明中光伏组件以恒流源的形式输出功率,光伏组件通过串联集成,相比通过并联集成的恒压型光伏组件,本发明可提高系统电压等级,减小功率损耗,适用与大容量光伏发电系统应用。
[0023]当某个或多个MPPT模块故障或无电能输出时,在该MPPT模块对应的二极管两端会形成正向偏压使该二极管导通,MPPT模块串的工作电流会绕过故障或无电能输出MPPT模块,避免由于MPPT模块故障导致整个光伏组件中的电路中断的问题,而不影响光伏组件的正常工作和电能的正常输出。
进一步地,所述集控中心采集光伏发电系统中各项参数并发送至升压装置中进行分析判断并驱动升压装置动作,具体是指:集控中心中由控制装置对监测组件采集的数据进行处理,然后通过相互连接的集控通信接口、升压通信接口将处理后的数据发送至升压装置,升压装置中控制电路、逻辑电路对采集参数进行分析判断,并通过驱动电路控制并网发电回路的动作;具体步骤如下:
步骤S1:监测组件分别通过霍尔电流传感器组采集太阳能控制组件输出的电流参数、通过霍尔电压传感器组采集太阳能控制组件输出的电压参数、通过频率传感器组采集逆变组件输出交流电能的频率参数、通过第一升压电压检测电路采集第一升压电路输出的第一升压参数、通过第二升压电压检测电路采集第二升压电路输出的第二升压参数、通过第二升压相位检测电路采集第二升压电路输出交流电能的相位参数、通过并网电流检测电路采集并网开关的并网电流参数、通过电网电压检测电路采集市电电网的电压参数、通过电网相位检测电路采集市电电网的相位参数,控制装置对采集数据进行整合或转换处理,通过相互连接的集控通信接口、升压通信接口将处理后的数据发送至升压装置; 步骤S2:升压装置中的控制电路、逻辑电路判断太阳能控制组件输出的电流参数、太阳能控制组件输出的电压参数、逆变组件输出交流电能的频率参数是否正常,若都正常则控制电路输出控制信号并通过驱动电路接通输入保护开关,太阳能电池组输出的交流电压接入并网发电回路中,然后控制电路输出驱动信号并通过驱动电路使第一升压电路开始工作;若任意一个参数不正常则断开输入保护开关并返回步骤SI ;
步骤S3:控制电路判断第一升压电路输出的第一升压参数是否在设定范围内,若是则输出驱动信号并通过驱动电路使第二升压电路开始工作;若否则断开输入保护电路并返回步骤SI ;
步骤S4:控制电路判断第二升压电路输出的第二升压参数与市电电网的电压参数是否处于设定范围内,同时控制电路判断市电电网的电压参数与市电电网的相位参数是否同向,若都是则控制电路输出控制信号并通过驱动电路闭合并网开关使第二升压电路与市电电网电连接;若任意一个参数不满足要求则断开输入保护电路并返回步骤SI ;
步骤S5:控制电路判断并网电流参数是否在设定范围内,若是则并网开关保持闭合且控制电路通过相互连通的升压通信接口、集控通信接口向控制装置发送反馈信号,控制装置通过远程通信模块与电力调度中心建立远程连接并由电力调度中心通过集控中心对升压装置向市电电网并网供电进行远程控制,此时,太阳能电池组转化的电能依次通过防雷组件、太阳能控制器、逆变组件、计量箱、并网发电回路输出的交流电耦合至市电电网进行并网供电,若并网电流参数不在设定范围内则断开并网开关并返回步骤SI ;
步骤S6:在并网供电的过程中,若控制电路判断监测组件采集的任意一个参数出现异常,则输出控制信号断开输入保护开关、并网开关并返回步骤SI,停止并网供电。
[0024]本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明充分利用闲置土地资源,将光伏组件设置在垃圾焚烧发电厂其厂区建筑物屋顶或防护区的闲置土地,并利用太阳能发电减少厂区自身用电的运营成本,富余的电能还可以并网发电,进一步减少二氧化碳、二氧化硫等有害气体排放,节能减排;
(2)本发明提供了光伏发电系统的并网控制方法,使分散的光伏发电系统集中并网、统一监控调度。
【附图说明】
[0025]图1为光伏发电系统的连接关系框图。
[0026]图2为并网组件的连接关系框图。
【具体实施方式】
[0027]下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。另外,为了更好的说明本发明,在下文的【具体实施方式】中给出了众多的具体细节。本领域技术人员将理解,没有这些具体细节,本发明同样可以实施。在另外一些实例中,对于大家熟知的方法、流程、元件和电路未作详细描述,以便于凸显本发明的主旨。
[0028]实施例1:
本实施例的垃圾焚烧发电厂的光伏发电系统,如图1所示,主要是通过下述技术方案实现:垃圾焚烧发电厂的光伏发电系统,包括依次连接的光伏组件、防雷组件、太阳能控制组件、逆变组件、计量箱和分别与计量箱连接的本地配电柜、并网组件,太阳能控制组件还与蓄电池组连接;所述光伏组件包括多个安装在垃圾焚烧发电厂厂区建筑物屋顶或防护区的太阳能电池组,防雷组件包括多个防雷器,太阳能控制组件包括多个太阳能控制器,逆变组件包括多个逆变器,太阳能电池组、防雷器、太阳能控制器、逆变器依次一一对应连接;所述并网组件包括升压装置、集控中心和电力调度中心,升压装置分别与计量箱、集控中心、市电电网连接,升压装置分析集控中心采集的数据并由电力调度中心通过集控中心控制升压装置向市电电网并网供电。
[0029]光伏发电系统的并网控制方法是将小功率、分布式太阳能电池组互联集中并网并接受电力调度中心调度进行并网供电,具体过程为:各个太阳能电池组将转换的直流电能经过对应的防雷器、太阳能控制器接入对应的逆变器中,太阳能电池组转换的直流电能经太阳能控制器以最大功率输出,先向蓄电池组进行充电,蓄电池组充电完成后,逆变器将直流电能逆变为380V的工频交流电能,并通过计量箱分配至本地配电柜或并网组件,集控中心采集光伏发电系统中各项参数并发送至升压装置中进行分析判断并驱动升压装置动作,若所有参数正常则电力调度中心发送实施并网供电的指令并使升压装置与市电电网连通,若有参数不正常则升压装置与市电电网断开。
[0030]实施例2:
本实施例在上述实施例基础上做进一步优化,如图2所示,进一步地,所述升压装置包括依次串联的并网发电回路、驱动电路、逻辑电路、控制电路,控制电路的输入端、输出端之间还连接有升压通信接
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1