噪声滤波器的制作方法

文档序号:7524779阅读:310来源:国知局
专利名称:噪声滤波器的制作方法
技术领域
本发明涉及适合用于抑制电子设备的电磁噪音障碍的噪声滤波器。
另外,作为另一已有技术的噪声滤波器,人们还知道有下述类型,其中,形成由多个电感器和电容器形成的电路(比如,特开2000-348944号公报等)。
但是,在上述的已有技术中,由于通过反射损耗,抑制噪声,故在比如,将电路之间连接的线路中,设置噪声滤波器的场合,具有下述问题,即,在噪声滤波器与周边的电路之间,特定频率的噪声产生共振,因共振,将噪声放大。
特别是,近年来,具有数字设备中所采用的信号频率增加的倾向,信号频率大于100MHz的电子设备增加。由此,与要求截止频率大于200MHz的低通滤波器的场合相对,比如,噪声滤波器与周围的部件之间的线路长度,多个部件之间的线路长度等为相对大于200MHz的高频的信号(噪声),容易产生共振的长度。因此,在信号频率大于100MHz的电子设备中,具有象已有技术那样,采用反射损耗的噪声滤波器难于使用的倾向。
此外,在另一已有技术中,通过使反射损耗减小,抑制共振现象。但是,该另一已有技术的噪声滤波器具有下述问题,即,由于通过将多个电感器和电容器连接,形成电路,故结构复杂,整体尺寸难于减小,制造成本增加,而且由于不是芯片形状,故难于安装于印刷电路的布线上。
本发明是针对上述的已有技术的问题而提出的,本发明的目的在于提供一种可防止噪声的共振、整体尺寸较小的、价格较低的噪声滤波器。
由于通过象这样构成,对于形成磁性片的磁性材料,伴随通过传送线路的信号的频率的增加,信号的热损耗增加,故可采用这样的热损耗,抑制噪音。
另外,通过适当地设定传送线路的宽度、磁性片的厚度,可设定噪声滤波器的特性阻抗。特别是,由于磁性材料的比透磁率与信号的频率无关,而基本保持在一定值,故可不依赖信号的频率,使该特性阻抗基本保持在一定值。由此,可针对基本全部的频率区域,获取相对与噪声滤波器连接的电路的阻抗匹配,可使噪声滤波器的反射损耗减小。
此外,由于在2个磁性片之间,设置传送线路,并且通过2个接地导体,夹持该2个磁性片,故可在其全长的范围内,通过接地导体覆盖位于2个磁性片之间的传送线路。由此,由于可在传送线路的全长的范围内,将特性阻抗设定在一定值,故可在传送线路的途中,噪声不产生反射的情况下,抑制噪声的共振。另外,可将通过传送线路的信号封闭于2个接地导体之间,可防止通频带的信号的衰减,并且可防止噪声从外部混入传送线路中,可确实传输信号。
权利要求2所述的发明采用下述方案,其中,其包括重合的多个磁性片,在该各磁性片的最顶层和最底层,设置接地导体的状态,在上述各磁性片之间,交替地叠置有传送线路和接地导体,通过按照贯穿上述各磁性片的方式设置的贯穿线路,将多层的传送线路串联。
由此,可利用当高频的信号通过传送线路时,磁性片的热损耗增加的现象,抑制噪声。另外,可通过适当设定传送线路的宽度,磁性片的厚度,设定噪声滤波器的特性阻抗。特别是,由于磁性材料的比透磁率与信号的频率无关,而基本为一定值,故可针对基本全部的频率区域,在噪声滤波器与和该噪声滤波器连接的电路之间,获取阻抗匹配,可使噪声滤波器的反射损耗减小。
还有,由于在重合的多个磁性片的最顶层和最底层,设置接地导体的状态,在上述各磁性片之间,交替地叠置传送线路与接地导体,故可在2个磁性片之间,设置各层的传送线路,并且可在其全长的范围内,通过2个接地导体,覆盖各层的传送线路。由此,可将通过传送线路的信号封闭于接地导体之间,可防止通频带的信号的衰减。
再有,由于在重合的多个磁性片中的最顶层和最底层,设置接地导体,故可防止在外部的传送线路中,混入噪声,可确实传输信号。
另外,在将全部的传送线路的宽度设定在基本相同的值,并且将全部的磁性片的厚度设定在基本相同的值的场合,故可使各层的传送线路的特性阻抗相互基本保持一致。由此,可在相互串联的传送线路的全部的范围,将特性阻抗设定在基本相同的值,由此,可在传送线路的途中,噪声不产生反射的情况下,抑制噪声的共振,可容易获取与外部的电路的阻抗匹配。
此外,由于通过贯穿各磁性片而设置的贯穿线路,将多层的传送线路串联,故可增加传送线路的全长,可使通过传送线路的噪声的衰减量增加。
权利要求3所述的发明在于传送线路呈具有折回部的基本圆弧状,或コ字形,通过它们的全部,相对厚度方向,呈螺旋状。
由此,虽然具有噪声滤波器的厚度增加的倾向,但是,可按照与螺旋的开口面积相同的程度,设定噪声滤波器的底面积。由此,即使相对较窄的设置场所,仍可设置噪声滤波器。
权利要求4所述的发明在于上述传送线路呈弯折的蛇形。由此,与传送线路呈直线状的场合相比较,可使其长度增加,可使噪声的衰减量增加。
权利要求5所述的发明在于通过具有磁特性的陶瓷材料,形成磁性片。由此,可通过在将磁性片重合的状态,对其进行烧制的方式,形成噪声滤波器。
权利要求6所述的发明在于上述磁性片由混入有磁性粉的树脂材料形成。由此,可采用粘接剂,将磁性片接合,由此,可形成噪声滤波器,可省去烧制等的制造步骤,可使生产率提高。
权利要求7所述的发明在于采用下述方案,其中,上述磁性片呈四边形状,在该磁性片的长度方向两端侧,设置有与上述传送线路的两端连接的信号用电极,在该磁性片的长度方向的中间位置,设置有与上述接地导体连接的接地用电极。
由此,由于连接2个电路之间的布线呈直线状延伸,故可在这样的布线的两端之间,容易连接位于磁性片的长度方向两端侧的信号用电极。另外,由于设置于磁性片的长度方向的中间位置的接地用电极也可容易与设置于布线的周边的接地端子连接,故可提高噪声滤波器的装配性。
权利要求8所述的发明采用下述方案,其包括重合的多个磁性片,在该各磁性片的最顶层和最底层,设置接地导体的状态,在上述各磁性片之间,交替地叠置有传送线路和接地导体,多层的传送线路的一端与相互不同的信号输入用电极连接,多层的传送线路的另一端与相互不同的信号输出用电极连接。
由此,由于多层的传送线路与相互不同的信号输入用电极、信号输出用电极连接,故可将多层的传送线路分别单独地作为低通滤波器而动作,从整体上,可形成噪声滤波器。另外,利用当高频信号通过各层的传送线路时,磁性片的热损耗增加的现象,可抑制噪声。此外,可通过适当设定传送线路的宽度、磁性片的厚度,设定噪声滤波器的特性阻抗。特别是,由于磁性材料的比透磁率与信号的频率无关,而基本为一定值,故可针对基本全部的频率区域,获取相对与噪声滤波器连接的电路的阻抗匹配,可使噪声滤波器的反射损耗减小。
另外,由于多层的传送线路分别作为单独的低通滤波器而动作,故与下述场合相比较,在传送线路的途中,不产生阻抗的不匹配,该下述场合指比如,通过贯穿磁性片的贯穿线路,将多层的传送线路连接。由此,在传送线路的途中,噪声不产生反射,不产生阻抗的不匹配,可抑制噪声的共振,并且可容易获取与外部的电路的阻抗匹配。
此外,由于在重合的多个磁性片的最顶层和最底层,设置接地导体的状态,在上述各磁性片之间,交替地叠置传送线路与接地导体,故可在2个磁性片之间,设置各层的传送线路,并且可通过2个接地导体,在全长范围内覆盖各层的传送线路。由此,可将通过各层的传送线路的信号封闭于接地导体之间,防止通频带的信号的衰减。
还有,由于在重合的多个磁性片的最顶层和最底层,设置接地导体,故可防止从外部,在各层的传送线路中,混入噪声的情况,可确实传输信号。
按照权利要求9所述的发明,传送线路呈弯折的蛇形,按照权利要求10所述的发明,上述传送线路呈螺旋状。由此,与传送线路呈直线状的场合相比较,可使其长度增加,可使噪声的衰减量增加。
权利要求11的发明在于截止频率在200MHz~2GHz的范围内,当上述磁性片的比透磁率由μr表示,上述传送线路的长度由L(mm)表示时,则满足4≤μr≤30,L/(μr-1)≥3mm]]>的条件。另外,在这里,比透磁率μr表示磁性片的透磁率μ(H/m)与真空中的透磁率μ0(H/m)的比,其表示由下述的数学公式1表示的值。
数学公式1μr=μμ0]]>象这样,按照将磁性片的比透磁率μr设定在4≤μr≤30的范围内,L/(μr-1)≥3mm]]>的方式,设定传送线路的长度L,由此,可容易将截止频率的范围设定在200MHz≤fc≤2GHz的范围内。另外,具有下述倾向,即,噪声的衰减曲线的斜率(衰减量变化相对信号的频率的比例)与传送线路的长度L成比例地增加,并且磁性片的比透磁率μr,按照与(μr-1)]]>成反比例的方式增加。由此,将磁性片的比透磁率μr设定在4≤μr≤30的范围内,设定L/(μr-1)≥3mm]]>的关系,由此,可使噪声的衰减曲线的斜率大于比如,20dB/dec.,可增大信号与噪声的衰减量的差。
权利要求12所述的发明在于上述接地导体的厚度小于上述传送线路的厚度。
由此,可减小噪声滤波器整体的厚度,可使整体尺寸减小。另外,由于可使传送线路的厚度大于接地导体,故可减小传送线路的直流电阻,可流过更大的电流。
图2为以分解方式表示本发明的第1实施例的噪声滤波器的分解透视图。
图3为沿

图1中的箭头剖线III-III方向观看噪声滤波器的剖视图。
图4为沿图3中的箭头剖线IV-IV方向观看噪声滤波器的剖视图。
图5为沿图4中的箭头剖线V-V方向观看噪声滤波器的剖视图。
图6为表示将磁性片的比透磁率μr设定为10时的信号的频率与衰减量之间的关系的特性曲线图。
图7为表示将传送线路的长度L设定为50mm时的信号的频率与衰减量之间的关系的特性曲线图。
图8为表示将常数C设定为20mm时的信号的频率与衰减量之间的关系的特性曲线图。
图9为表示将常数C设定为3mm时的信号的频率与衰减量之间的关系的特性曲线图。
图10为表示常数C与衰减量的斜率之间的关系的特性曲线图。
图11为表示截止频率fc与比透磁率μr之间的关系的特性曲线图。
图12为表示第2实施例的噪声滤波器的透视图。
图13为以分解方式表示第2实施例的噪声滤波器的分解透视图。
图14为沿图12中的箭头剖线XIV-XIV方向观看噪声滤波器的剖视图。
图15为沿图14中的箭头剖线XV-XV方向观看噪声滤波器的剖视图。
图16为从与图5相同的位置观看第1变形实例的噪声滤波器的剖视图。
图17为表示第3实施例的噪声滤波器的透视图。
图18为以分解方式表示第3实施例的噪声滤波器的分解透视图。
图19为表示第4实施例的噪声滤波器的透视图。
图20为以分解方式表示第4实施例的噪声滤波器的分解透视图。
图21为表示图20中的第4传送线路的俯视图。
图22为表示第2变形实例的传送线路的俯视图。
图23为以分解方式表示第3变形实例的噪声滤波器的分解透视图。
图24为从与图3相同的位置观看第4变形实例的噪声滤波器的剖视图。
图1~图5涉及第1实施例,1表示本实施例的噪声滤波器,该噪声滤波器1由后面将要描述的磁性片2a~2d、传送线路3、接地导体4、信号用电极5、接地用电极6构成。另外,该噪声滤波器1的截止频率fc设定在比如,200MHz~2GHz的范围内的值(200MHz≤fc≤2GHz)。
叠层体2具有形成噪声滤波器1的外形的基本呈方柱状的形状,该叠层体2通过下述方式形成,该方式为比如,将4个磁性片2a~2d以重合方式叠置,在此状态下对其施加压力,然后,对这些磁性片2a~2d进行烧制。另外,该磁性片2a~2d呈基本为四边形的板状,其由比如,铁氧体等的具有磁特性的陶瓷材料形成。另外,由后面将要描述的接地导体4夹持的磁性片2b、2c的比透磁率μr设定在比如,4~30的范围内的值(4≤μr≤30)。
另外,也可采用与磁性片2a、2d和磁性片2b、2c不同的材料。但是,为了减小制造成本,最好4个磁性片2a~2d采用完全相同的材料。
传送线路3设置于磁性片2b、2c之间,该传送线路3由比如,银膏、钯等的导电性金属材料形成,其基本上呈带状,其位于磁性片2b、2c的较短尺寸方向的中间侧,沿较长尺寸方向呈直线状延伸。另外,上述传送线路3位于后面将要描述的2个接地导体4之间的基本中间处,在其基本全长范围内,为2个接地导体4覆盖。此外,上述传送线路3的两端侧形成电极部3A,与信号用电极5连接。
在这里,当上述传送线路3的宽度由A表示,2个接地导体4之间的距离由B表示,叠层体2(磁性片2b、2c)的透磁率由μ表示,叠层体2的介电系数由ε表示时,则该传送线路3的特性阻抗W为由下述的数学公式2表示的值。
数学公式2W=14μϵBA]]>另外,上述传送线路的长度L相对磁性片2b、2c的比透磁率μr,设定为比如,满足下述数学公式3的值。
数学公式3Lμr-1≥3mm]]>此外,在通过小型的芯片部件,形成噪声滤波器1的场合,上述传送线路的长度L比如,必须小于100mm。另一方面,磁性片2b、2c的比透磁率μr设定在4≤μr≤30的范围内。由此,最好,L/(μr-1)]]>的值象下述的数学公式4所示的那样,在3~20mm的范围内。
数学公式43mm≤Lμr-1≤20mm]]>接地导体4分别设定在磁性片2b的外面侧与磁性片2c的内面侧,在这些接地导体4中,从上下方向夹持噪声滤波器1中的,位于厚度方向的之间的2个磁性片2b、2c。另外,各接地导体4由比如,银膏、钯等的导电性金属材料形成,其呈基本为四边形的平板状,基本在整个表面范围,覆盖磁性片2b、2c。另外,在接地导体4中的,基本呈四边形的磁性片2b、2c的长度方向(图2的左,右方向)的中间位置,设置电极部4A,该电极部4A朝向宽度方向(图2中的前,后方向)两端侧呈舌状伸出。该电极部4A与后面将要描述的接地用电极6连接。此外,各接地导体4由磁性片2a,2d覆盖。
信号用电极5分别设置于叠层体2(磁性片2a~2d)的长度方向两端侧,该信号用电极5覆盖叠层体2的端面,并且呈筒状覆盖其外面、内面和侧面。另外,信号用电极5通过下述方式固定,与传送线路3的电极部3A连接,该方式为在于比如,叠层体2的两端侧,涂敷导电性金属材料后,对该导电性金属材料进行烧制。
接地用电极6在叠层体2的长度方向中间位置,分别设置于宽度方向的两端侧,该接地用电极6基本上呈コ状,在叠层体2的侧面,沿厚度方向呈带状延伸,并且其一部分在叠层体2的外面和内面延伸。另外,接地用电极6通过下述方式形成,与接地导体4的电极部4A连接,该方式为在将导电性金属材料涂敷于比如,叠层体2的侧面侧的状态,进行烧制。
本实施例的噪声滤波器1象上述那样构成,下面对其动作进行描述。
首先,在设置有传输信号的布线的衬底上,设置噪声滤波器1,分别将信号用电极5与布线的途中连接,并且将接地用电极6与接地端子连接。由此,信号通过传送线路3传递,并且接地导体4为接地电位。
在这里,形成磁性片2a~2d的铁氧体等的磁性材料具有下述倾向,即,伴随通过传送线路3的信号的频率的增加,信号的热损耗加大。由此,通过采用这样的热损耗,可形成低通滤波器,这样,上述传送线路3使下述信号通过,该信号指小于设定在比如,200MHz~2GHz的范围内的截止频率fc的频率(100MHz~1GHz)的信号,由此,可将比其高的频率的信号作为噪声而衰减,对其抑制。
另外,可通过适当地设定上述传送线路3的宽度A、磁性片2b、2c的厚度(接地导体4之间的距离B),设定噪声滤波器1的特性阻抗W。另外,由于磁性材料的比透磁率μr与信号的频率无关而基本保持在一定值,故可使特性阻抗W在不依赖信号的频率的情况下,基本保持在一定值。由此,相对与噪声滤波器1连接的电路,可针对基本上全部的频率区域,获取阻抗匹配,可使噪声滤波器1的反射损耗降低,可防止共振造成的噪声的增加。
此外,由于采用下述方案,其中,在2个磁性片2b、2c之间,设置传送线路3,并且通过2个接地导体4,夹持上述2个磁性片2b、2c,故可通过2个接地导体4,在其全长的范围内,覆盖位于磁性片2b、2c之间的传送线路3。由此,由于可在传送线路3的全长的范围内,将特性阻抗W设定在一定值,故在该传送线路3的途中,噪声不产生反射,可抑制噪声的共振。还有,可将通过传送线路3的信号封闭于接地导体4之间,可防止通频带的信号的衰减,并且可防止在外部的传送线路3中,混入噪声,可确实传输信号。
还有,噪声滤波器1的截止频率fc可通过下述方式适当地设定,该方式为调整磁性片2a~2d的磁性材料的组成(磁性片2b,2c的比透磁率μr)和上述传送线路3的长度。
下面参照图6~图11,对相对磁性片2b、2c的比透磁率μr和传送线路3的长度L的截止频率fc之间的关系进行分析。
首先,使磁性片2b、2c的比透磁率μr为一定值,比如,为10(μr=10),将上述传送线路3的长度L分别设定为5mm、10mm、20mm、50mm,进行噪声滤波器1的模拟。
其结果是,象图6所示的那样,对应4种传送线路3的长度L,获得4根衰减曲线。
根据图6的结果知道,伴随传送线路3的长度L的增加,截止频率fc(衰减量为-3dB的频率)降低,并且,比如,在衰减量为-10dB附近的衰减曲线的斜率(衰减量相对频率变化的比例)增加。
另一方面,使传送线路3的长度L为一定值,比如,50mm(L=50mm),将磁性片2b、2c的比透磁率μr分别设定为3、5、10、20、30,进行噪声滤波器1的模拟。其结果是,象图7所示的那样,对应于5种比透磁率μr,获得5根衰减曲线。
根据图7的结果知道,虽然伴随比透磁率μr的增加,截止频率fc降低,但是,比如,衰减量为-10dB附近的衰减曲线的斜率减少。
作为本申请发明人等对这些特性进行深入分析的结果,可知道,在根据传送线路3的长度L和磁性片2b,2c的比透磁率μr,由下述的数学公式5确定的常数C(mm)相同的场合,即使在长度L、比透磁率μr不同的情况下,衰减曲线的形状(斜率)基本上相同。
数学公式5C=Lμr-1]]>比如,图8表示下述场合的衰减曲线,在该场合,使常数C为一定值,比如,为20mm(C=20mm),将磁性片2b、2c的比透磁率μr分别设定为3、5、10、20、30,并且将传送线路3的长度L分别设定为35mm、45mm、63mm、89mm、109mm,进行模拟。
再有,图9表示下述场合的衰减曲线,在该场合,使常数C为一定值,比如,为3mm(C=3mm),将磁性片2b、2c的比透磁率μr分别设定为3、5、10、20、30,将传送线路3的长度L分别设定为5.19mm、6.72mm、9.48mm、13.4mm、16.4mm,进行模拟。
在象这样,常数C相同的场合,虽然伴随比透磁率μr的增加,截止频率fc降低,但是,即使在长度L、比透磁率μr不同的情况下,衰减曲线的形状(斜率)仍基本上相同。另外,伴随常数C的增加,衰减曲线的斜率增加。
于是,在对常数C与衰减量为-10dB附近处的衰减曲线的斜率之间的关系进行分析时,获得图10所示的结果。在这里,一般,用于对付噪声的旁路电容器的衰减曲线的斜率20dB/dec.,为了用作噪声抵抗部件,最好具有其以上的斜率。根据图10的结果知道,如果常数C大于3mm时,衰减曲线的斜率大于20dB/dec.,噪声抵抗部件获得优良的效果。
另外,根据图8和图9的结果知道,在比透磁率μr相同的场合,伴随常数C的减小,截止频率fc(衰减量为-3dB的频率)增加。由此,为了对噪声滤波器1的最高的截止频率fc进行分析,对常数C为3mm(C=3mm)、比透磁率μr与截止频率fc之间的关系进行分析。其结果列于图11中。
在这里,近年,作为在数字装置之间进行信息传输的机构,无线LAN开始普及,该无线LAN采用比如,2.45GHz和5GHz的高频的信号。为此,为了相对这些高频的信号,保护数字装置中的低频(数百MHz)的信号,必须要求截止频率小于2GHz的噪声滤波器。于是,根据对图11的结果进行分析而知道,为了将截止频率fc设定为2GHz,则可将比透磁率μr设定为4。
此外,按照数学公式5,由于常数C与(μr-1)]]>成反比,故当传送线路3的长度L一定时,在将比透磁率μr设定在较小值的场合,可增加常数C,增加衰减曲线的斜率。另外,如果常数C一定,则在比透磁率μr设定在较小值的场合,可减小传送线路3的长度L,可形成小型的噪声滤波器1。
因此,最好,比透磁率μr最好设定为尽可能小的值的4。但是,按照图11的结果,当常数C为作为最小值的3mm时(C=3mm),即使在比透磁率μr设定在30的情况下,仍可将截止频率fc设定为对于数字装置等是必需的200MHz。由此,最好,比透磁率μr设定在4~30范围内(4≤μr≤30)。
还有,由于传送线路3的长度L越长,常数C越大,故最好,该长度L设定在尽可能长的值。但是,由于伴随该长度L的增加,噪声滤波器1的整体形状加大,故为了使噪声滤波器1加大实用性,上述长度L必须约小于100mm。
在这里,如果比透磁率μr的最小值为4,则常数C的最大值约为20。因此,最好,常数C设定在3mm~20mm的范围内(3mm≤C≤20mm)。
如果象这样,采用本实施例,则由于采用下述方案,其中,在2个磁性片2b、2c之间设置传送线路,并且通过2个接地导体4,覆盖这些磁性片2b、2c,故可采用形成磁性片2b、2c的磁性材料的热损耗,抑制噪声。另外,由于可使传送线路3的特性阻抗W在不依赖信号的频率的情况下,基本保持在一定值,故可容易获取与外部的电路的阻抗匹配。由此,可使噪声滤波器的反射损耗降低,可防止共振造成的噪声的增加。
再有,由于通过2个接地导体4,在传送线路3的全长范围内,覆盖位于磁性片2b、2c之间的传送线路3,故在该传送线路3的全长范围内,将特性阻抗W设定在一定值,在传送线路3的途中,噪声不反射,并且可将通过该传送线路3的信号封闭于接地导体4之间。由此,可防止通频带的信号的衰减,可确实传输信号。
另外,由于采用下述方案,其中,磁性片2a~2b基本上呈四边形,在该磁性片2a~2d的长度方向两端侧,设置有与传送线路3的两端连接的信号用电极5,在该磁性片2a~2d的长度方向的中间位置,设置与接地导体4连接的接地用电极6,故可容易将位于磁性片2a~2d的长度方向两端侧的信号用电极5连接于呈直线状延伸的布线的两端之间。此外,由于设置于磁性片2a~2d的长度方向中间位置的接地用电极6也可容易与设置于布线的周边的接地端子连接,故可提高噪声滤波器1的装配性。
此外,由于将磁性片2b,2c的比透磁率μr设定在4≤μr≤30的范围内,并且按照常数C大于3mm(C≥3mm)的方式,设定传送线路的长度L,故可容易将截止频率fc的范围设定在作为实用的频带的200MHz≤fc≤2GHz的范围内。另外,具有下述倾向,即,噪声的衰减曲线的斜率与传送线路3的长度L成比例地增加,并且与(μr-1)]]>成反比地增加。由此,将磁性片2b,2c的比透磁率μr设定在4≤μr≤30的范围内,将常数C设定在大于3mm的值,由此,可使噪声的衰减曲线的斜率大于比如,20dB/dec.。其结果是,可增加信号与噪声的衰减量的差,由此,信号可在不衰减的情况下通过,并且可确实将噪声衰减。
图12~图15表示本发明的第2实施例的噪声滤波器,本实施例的噪声滤波器的特征在于采用下述方案,其中,按照磁性片的最顶层和最底层形成接地导体的方式,在该磁性片之间,交替地叠置传送线路和该接地导体,将多层的传送线路串联。
该噪声滤波器11由后面将要描述的磁性片12a~12n、传送线路13~18、接地导体19、贯穿线路20~24、信号用电极25、接地用电极26构成。
叠层体12具有形成噪声滤波器11的外形的,基本呈方形状的形状,该叠层体12通过下述方式形成,该方式为在以重合方式将比如,14个磁性片12a~12n叠置的状态,对其进行施加压力,然后,对这些磁性片12a~12n进行烧制。另外,该磁性片12a~12n呈基本四边形的板状,其由比如,铁氧体等的具有磁特性的陶瓷材料形成。
传送线路13~18分别设置于相应组的磁性片12b、12c之间、磁性片12d、12e之间、磁性片12f、12g之间、磁性片12h、12i之间、磁性片12j、12k之间、磁性片12l、12m之间,各传送线路13~18由导电性金属材料形成,其呈具有折回部的,基本为コ字形,或圆弧形的形状,通过将它们串联,相对叠层体12的厚度方向,呈具有基本为四边形,或圆弧形的开口的框形的螺旋状。
在这里,在位于顶层侧的磁性片12b、12c之间的传送线路13中,其一端形成朝向叠层体12的长度方向一端侧延伸的电极部13A,与后面将要描述的信号用电极25连接,并且在其另一端,设置有穿过磁性片12c,12d的通孔13B。
另外,在磁性片12d、12e之间的传送线路14的一端,设置有连接部14A,该连接部14A用于通过通孔13B,与传送线路13连接,在该传送线路14的另一端,设置有穿过磁性片12e、12f的通孔14B。
同样,在磁性片12f、12g之间的传送线路15的一端,设置有连接部15A,在该传送线路15的另一端,设置有通孔15B。同样对于磁性片12h、12i之间的传送线路16,在其一端,设置有连接部16A,在该传送线路16的另一端,设置有通孔16B。同样对于磁性片12j、12k之间的传送线路17,在其一端,设置有连接部17A,在该传送线路17的另一端,设置有通孔17B。
此外,在位于底层侧的磁性片12l、12m之间的传送线路18的一端,设置有连接部18A,该连接部18A用于通过通孔17B,与传送线路17连接,该传送线路18的另一端形成朝向叠层体12的长度方向的另一端延伸的电极部18B,与后面将要描述的信号用电极25连接。
还有,传送线路13~18的特性阻抗与第1实施例的传送线路3相同,由传送线路13~18的宽度、相邻接地导体19之间的距离、叠层体12的透磁率、介电系数确定。由此,将传送线路13~18的宽度设定在基本相同的值,并且将磁性片12b~12m的厚度设定在基本相同的值,由此,可在传送线路13~18的全长的范围内,将特性阻抗设定在一定值。
接地导体19按照夹持各层的传送线路13~18的方式,分别设置于磁性片12a~12n之间,各接地导体19分别设置于磁性片12b~12m的最顶层和最底层之间,并且按照与传送线路13~18交替的方式叠置于磁性片12b~12m之间。另外,接地导体19由导电性金属材料形成,其呈基本为四边形的平板状,其基本覆盖磁性片12b~12m的整个表面。此外,与第1实施例的接地导体4基本相同,在该接地导体19上,设置有朝向宽度方向两端侧突出的电极部19A,该电极部19A与后面将要描述的接地用电极26连接。
贯穿线路20~24为将传送线路13~18串联的导体,该贯穿线路20~24通过下述方式形成,该方式为在通孔13B~17B的内部,填充银膏、钯等的导电性金属材料。
信号用电极25为下述电极,该电极分别设置于叠层体12(磁性片12a~12n)的长度方向两端侧,该信号用电极25与第1实施例的信号用电极5相同,覆盖叠层体12的端面,均呈筒状而覆盖其外面、内面和侧面。另外,信号用电极25通过对导电性金属材料进行涂敷后,对其进行烧制而形成,其与传送线路13、18的电极部13A、18B连接。
接地用电极26分别设置于叠层体12的长度方向的中间位置,宽度方向的两端侧,该接地用电极26基本呈コ字形,沿厚度方向呈带状在叠层体12的侧面延伸,并且其一部分在叠层体12的外面与内面延伸。然后,接地用电极26通过比如,在叠层体12的侧面上,涂敷导电性金属材料后,对其进行烧制而形成,其与接地导体19的电极部19A连接。
于是,同样在象这样构成的本实施例中,也可获得与前述的第1实施例基本相同的作用效果,但是特别是在本实施例中,由于通过穿过各磁性片12c~12l而设置的贯穿线路20~24,将6层的传送线路13~18串联,故可增加传送线路13~18的全长,可使通过传送线路13~18的噪声的热损耗增加,可使其衰减量增加。
此外,由于通过将传送线路13~18的宽度、磁性片12b~12m的宽度均设定在基本相同的值,可使叠层的各层的传送线路13~18的特性阻抗相互基本保持一致,故在传送线路13~18的途中,特性阻抗不变化,可容易在与外部的电路之间,获得阻抗匹配。
还有,由于传送线路13~18基本呈コ字形,或圆弧状,通过全部的上述的传送线路,相对厚度方向,呈螺旋状,故虽然具有噪声滤波器11的厚度增加的倾向,但是,可按照与呈螺旋状的传送线路13~18的开口面积相同的程度,设定噪声滤波器11的底面积。由此,即使相对较窄的设置场所,仍可设置噪声滤波器11,可提高噪声滤波器11的安装自由度。
再有,在上述的第1实施例中,采用使传送线路3呈直线状延长的方案,但是,也可采用下述方案,其中,象图16所示的第1变形实例那样,沿叠层体2的宽度方向,设置往复地弯折的蛇形的传送线路3’,还可采用下述方案,其中,沿叠层体2的纵向往复地弯折的蛇形的传送线路3(图中未示出)。
象这样,在传送线路3’呈弯折的蛇形的场合,与象第1实施例那样,呈直线状形成传送线路3的场合相比较,可使其长度增加,可使噪声的衰减量增加。
另外,在第2实施例中,传送线路13~18基本呈コ字形,或圆弧状,但是也可与第1变形实例相同,呈蛇形,还可呈螺旋状等形状。
图17和图18表示本发明的第3实施例的噪声滤波器,本实施例的噪声滤波器的特征在于采用下述方案,其中,在磁性片之间,按照位于同一层的方式,设置第1传送线路和第2传送线路,该第1,第2传送线路与接地导体交替地叠置于磁性片之间,将多层的第1传送线路串联,并且独立于这些第1传送线路,将多层的第2传送线路串联。
噪声滤波器31由后面将要描述的磁性片32a~32j、第1传送线路33~36、第2传送线路37~40、接地导体41、贯穿线路(图中未示出)、第1信号用电极42、第2信号用电极43、接地用电极44构成。
该叠层体32呈形成噪声滤波器31的外形的,基本为方柱状的形状,该叠层体32通过比如,将10个磁性片32a~32j叠层而形成。另外,该磁性片32a~32i呈基本为四边形的板状,其由比如,铁氧体等的,具有磁特性的陶瓷材料形成。
第1传送线路33~36按照共计4层的方式分别设置于相应组的磁性片32b、32c之间、磁性片32d、32e之间、磁性片32f,32g之间、磁性片32h,32i之间,各传送线路33~36由导电性金属材料形成,其呈螺旋状,其设置于相对叠层体32的厚度方向,相互对置的位置。
在这里,传送线路33的一端侧形成电极部33A,该电极部33A朝向该叠层体32的长度方向(图18中的左,右方向)的一端侧延伸,在该传送线路33的另一端侧,设置有通孔33B,该通孔33B位于螺旋的中心侧,贯穿磁性片32c,32d。
此外,在传送线路34的一端侧,设置有连接部34A,该连接部34A位于螺旋的中心侧,其用于通过通孔33B,与传送线路33连接,在该传送线路34的另一端侧,设置有通孔34B,该通孔34B位于螺旋的外周侧,贯穿磁性片32e、32f。同样,在传送线路35的一端侧,设置有通孔35B,其位于螺旋的外周侧,在传送线路35的另一端侧,设置有通孔35B,该通孔35B位于螺旋的中心侧。
还有,在传送线路36的一端侧,设置有连接部36A,该连接部36A位于螺旋的中心侧,其用于通过通孔35B,与传送线路35连接,该传送线路36的另一端侧形成有电极部36B,该电极部36B位于螺旋的外周侧,朝向叠层体32的长度方向的另一端侧延伸。另外,在通孔33B、34B、35B的内部,与第2实施例相同,形成有由导电性金属材料形成的贯穿线路(图中未示出)。由此,传送线路33~36通过贯穿线路,相互串联。
再有,将传送线路33~36的宽度设定为基本相同的值,并且将磁性片32b~32i的厚度设定为基本相同的值。由此,传送线路33~36的特性阻抗在其全长范围内,基本上设定在一定值。
第2传送线路37~40按照共计4层的方式分别设置于相应组的磁性片32b、32c之间、磁性片32d、32e之间、磁性片32f、32g之间、磁性片32h、32i之间,各传送线路37~40位于与第1传送线路33~36不同的位置,它们按照沿叠层体32的宽度方向(图18的前,后方向)与第1传送线路33~36错开的方式设置,与第1传送线路33~36绝缘。另外,该传送线路37~40由导电性金属材料形成,其呈螺旋状,其设置于沿叠层体32的厚度方向,相互对置的位置。
另外,第2传送线路37~40呈与第1传送线路33~36基本相同的形状,在传送线路37的一端侧,设置有电极部37A,在该传送线路37的另一端侧,设置有通孔37B。同样,在传送线路38,39的一端侧,设置有连接部38A、39A,在该传送线路38、39的另一端侧,设置通孔38B,39B。还有,在传送线路40的一端侧,设置有连接部40A,在该传送线路40的另一端侧,设置有电极部40B。
此外,在该通孔37B,38B,39B的内部,设置有由导电性金属材料形成的贯穿线路(图中未示出)。由此,传送线路37~40通过贯穿线路相互串联。
还有,将传送线路37~40宽度设定为基本相同的值,并且将磁性片32b~32i的厚度设定为基本相同的值。由此,传送线路37~40的特性阻抗在其全长范围内,基本上设定在一定值。
接地导体41按照针对每层夹持第1传送线路33~36和第2传送线路37~40的方式,分别设置于磁性片32a~32i之间,各接地导体41分别设置于磁性片32b~32i的最顶层与最底层,并且按照与第1、第2传送线路33~36、37~40交替的方式叠层于磁性片32b~32i之间。
再有,接地导体41通过导电性金属材料形成,其呈基本为四边型的平板状,覆盖磁性片32b~32i的基本整个表面。另外,在接地导体41上,与第1实施例的接地导体4基本相同,设置有朝向宽度方向两端侧突出的电极部41A,该电极部41A与后面将要描述的接地用电极44连接。
第1信号用电极42分别设置于叠层体32(磁性片32a~32j)的长度方向两端侧,该信号用电极42由导电性金属材料形成,形成与信号用的布线连接的电极。另外,其中一个信号用电极42与传送线路33的电极部33A连接,并且另一信号用电极42与传送线路36的电极部36B连接。
第2信号用电极43分别设置于叠层体32(磁性片32a~32j)的长度方向两端侧,该信号用电极43由导电性金属材料形成,按照沿叠层体32的宽度方向与第1信号用电极42错开的方式设置,与第1信号用电极42绝缘。另外,其中一个信号用电极43与传送线路37的电极部37A连接,并且另一信号用电极43与传送线路40的电极部40B连接。
此外,比如,其中一个信号用电极42、43形成信号输入用电极,另一信号用电极42、43形成信号输出用电极。此外,也可其中一个信号用电极42、43用于信号输出,而另一信号用电极42、43用于信号输入。
接地用电极44分别设置于叠层体32的宽度方向的两端侧,该接地用电极44由导电性金属材料形成,与接地导体41的电极部41A连接。
于是,同样在象这样构成的本实施例中,可获得基本与前述的第1实施例相同的作用效果。
但是,在本实施例中,由于将第1传送线路33~36串联,并且将第2传送线路37~40串联,故可分别增加第1、第2传送线路33~36、37~40的全长,可使噪声的衰减量增加。
还有,由于各自独立地设置第1、第2传送线路33~36、37~40,故可在单一的叠层体32的内部,设置由第1传送线路33~36形成的低通滤波器和由第2传送线路37~40形成的低通滤波器。由此,噪声滤波器31可从整体上,形成具有2个低通滤波器的噪声滤波器组合,这样,与分别具有2个低通滤波器的场合相比较,可共同使用接地导体41、接地电极44等,可使噪声滤波器31的整体尺寸减小。
图19和图21表示本发明的第4实施例的噪声滤波器,本实施例的噪声滤波器的特征在于采用下述方案,其中,按照磁性片的最顶层和最底层形成接地导体的方式,在该磁性片之间,交替地叠置传送线路和该接地导体,多层的传送线路的一端侧与相互不同的信号输入用电极连接,多层的传送线路的另一端侧与相互不同的信号输出用电极连接。
噪声滤波器51基本由后面将要描述的磁性片52a~52j、第1~第4传送线路53~56、接地导体57、第1~第4信号用电极58~61、接地用电极62构成。
该叠层体52呈形成噪声滤波器51的外形的,基本为方柱状的形状,该叠层体52通过将比如,10个磁性片52a~52i叠层而形成。另外,该磁性片52a~52i呈基本为四边形的板状,其由比如,铁氧体等的、具有磁特性的陶瓷材料形成。
第1传送线路53设置于磁性片52b、52c之间,该传送线路53由导电性金属材料形成,其呈较细的带状,并且呈沿叠层体52的宽度方向(图20的前、后方向)多次地弯折(往复)的蛇形。另外,在该传送线路53的两端侧,形成有电极部53A,该电极部53A朝向叠层体52的长度方向(图20的左、右方向)两端侧,分别延伸,这些电极部53A设置于比如,叠层体52的宽度方向的一端侧。
第2传送线路54设置于磁性片52d、52e之间,该传送线路54与第1传送线路53相同,由导电性金属材料形成,呈弯折的蛇形,在其两端侧,形成有电极部54A,该电极部54A朝向叠层体52的长度方向两端侧分别延伸。另外,这些电极部54A位于与第1电极部53A不同的位置,比如,设置于叠层体52的宽度方向的中间侧。
第3传送线路55设置于磁性片52f、52g之间,该传送线路55与第1传送线路53相同,由导电性金属材料形成,呈弯折的蛇形,在其两端侧,形成有电极部55A,该电极部54A朝向叠层体52的长度方向两端侧分别延伸。另外,这些电极部55A位于与第1电极部53A、54A不同的位置,比如,设置于第2电极部54A与叠层体52的宽度方向另一端的中间部位。
第4传送线路56设置于磁性片52h、52i之间,该传送线路56与第1传送线路53相同,由导电性金属材料形成,呈弯折的蛇形,在其两端侧,形成有电极部56A,该电极部56A朝向叠层体52的长度方向两端侧分别延伸。另外,这些电极部56A位于与第1~第3电极部53A~55A不同的位置,比如,设置于叠层体52的宽度方向的另一端侧。
接地导体57按照夹持第1~第4传送线路53~56的方式,分别设置于磁性片52a~52i之间,各接地导体57分别设置于磁性片52b~52j的最顶层和最底层,并且按照与传送线路53~56交替的方式叠层于磁性片52b~52i之间。另外,接地导体57由导电性金属材料形成,呈基本为四边形的平板状,覆盖磁性片52b~52i的基本整个表面。此外,在接地导体57上,与第1实施例的接地导体4基本相同,设置有朝向宽度方向两端侧突出的电极部57A,该电极部57A与后面将要描述的接地用电极62连接。
第1~第4信号用电极58~61由导电性金属材料形成,该第1~第4信号用电极58~61按照位于叠层体52的长度方向两端侧的侧面的方式分别成对地设置。此外,第1~第4信号用电极58~61位于相对叠层体52的宽度方向,相互不同的位置,从比如,叠层体52的宽度方向一端侧,朝向另一端侧依次地设置,实现相互之间的绝缘。
另外,第1信号用电极58与第1传送线路53的电极部53A连接,第2信号用电极59与第2传送线路54的电极部54A连接,第3信号用电极60与第3传送线路55的电极部55A连接,并且第4信号用电极61与第4传送线路56的电极部56A连接。
此外,成对设置的第1~第4信号用电极58~61中的其中一个信号用电极58~61形成信号输入用电极,另一信号用电极58~61形成信号输出用电极。
接地用电极62分别设置于叠层体52的宽度方向的两端侧,该接地用电极62由导电性金属材料形成,与接地导体57的电极部57A连接。
于是,同样在象这样构成的本实施例中,可获得与前述的第1实施例基本相同的作用效果。但是,在本实施例中,由于多层的传送线路53~56与相互不同的信号用电极58~61连接,故可使多层的传送线路53~56分别单独地作为低通滤波器而动作,作为整体,可形成噪声滤波器。
还有,在象第3实施例那样,于同一层中,设置有多个传送线路33~36、37~40,将该多层的传送线路33~36、37~40连接的场合,伴随低通滤波器的个数的增加,必须增加磁性片32a~32j的面积。由此,在噪声滤波器31中,设置多个低通滤波器的场合,具有噪声滤波器31的整体尺寸容易增加的倾向。
相对该情况,在本实施例中,由于多层的传送线路53~56形成针对每层,分别独立的低通滤波器,故即使在使低通滤波器的个数增加的情况下,仍可增加磁性片52a~52j的个数。
由此,即使在噪声滤波器51的内部,设置有多个低通过滤器的情况下,仍可使噪声滤波器51的整体尺寸减小。
再有,在象第3实施例那样,通过通孔33B~35B、37B~39B(贯穿线路)将多层的传送线路33~36、37~40连接的场合,在作为非连续点的通孔33B~35B、37B~39B附近,容易产生阻抗的不匹配。另外,具有下述倾向,即,必须进行通孔33B~35B、37B~39B的孔的加工,贯穿线路用的导电性膏的填充等处理,制造步骤增加,制造成本上升。
与该情况相对,在本实施例中,由于多层的传送线路53~56作为针对每层而分别单独的低通滤波器而动作,故在传送线路53~56的途中,不产生阻抗的不匹配,由此,在传送线路53~56的途中,噪声不产生反射,可抑制噪声的共振,并且相对外部的电路,可容易获取阻抗匹配。另外,在本实施例中,由于不必进行通孔的孔加工等,与第3实施例相比较,可简化制造步骤,可减小制造成本。
另外,在象第3实施例那样,在同一层中,形成多个传送线路33~36、37~40的场合,具有在相邻的传送线路33~36、37~40之间,容易产生交调失真的倾向,信号性能容易变差。
与此相对,在本实施例中,由于在传送线路53~56之间,设置有接地导体57,故可通过接地导体57,防止相邻的传送线路53~56之间的交调失真的倾向,可确实传送信号。
此外,在象第3实施例那样,通过通孔33B~35B、37B~39B(贯穿线路)将多层的传送线路33~36、37~40连接的场合,还必须在接地导体41中,在通孔33B~35B、37B~39B的中心,设置直径为100μm的孔,以避免与贯穿线路接触。在此场合,由于不能够在孔的周围,设置传送线路,故可在1个磁性片中,形成传送线路的面积减少,传送线路变短,噪声的衰减量容易减少。
与此相对,在本实施例中,由于在磁性片52a~52j中,未设置通孔,故可在磁性片52a~52i的整个表面范围设置传送线路53~56。由此,可增加传送线路53~56的长度,可使噪声衰减量增加。
还有,在象第3实施例那样,沿叠层体32的厚度方向将多层的传送线路33~36、37~40连接的场合,为了使传送线路33~36、37~40不接触,必须将比如,输入用的信号用电极42与输出用的信号用电极42设置于相互对置的位置,并且必须将输入用的信号用电极43与输出用的信号用电极43也设置于相互对置的位置。
与此相对,在本实施例中,由于多层的传送线路53~56针对每层而相互独立,故输入用的信号用电极58~61与输出用的信号用电极58~61不必相互对置。由此,相对比如,将输入用的信号用电极58~61从叠层体52的宽度方向的一侧朝向另一侧依次设置的情况,还可将输入用的信号用电极58~61从叠层体52的宽度方向的另一侧朝向一侧依次设置。由此,由于该输入用的信号用电极58~61与输出用的信号用电极58~61可单独地设置,故可提高设计自由度。
再有,在本实施例中,由于多个传送线路53~56形成针对每层单独的低通滤波器,故可通过将磁性片52b~52i的厚度设定在不同的值,容易使相应的低通滤波器的特性阻抗不同。由此,本实施例的噪声滤波器51可还容易适合于具有多种特性阻抗的布线。
另外,在上述的第4实施例中,传送线路53~56呈弯折状。但是,本发明不限于此,比如,也可象比如,图22所示的第2变形实例那样,形成两端侧构成电极部71A的螺旋状的传送线路71。
此外,在象截止频率较高的场合的那样,传送线路的长度较短的场合,也可象图23所示的第3变形实例那样,形成直线状的传送线路53’~56’。
还有,也可象图24所示的第4变形实例那样,使接地导体4”的厚度T1小于传送线路3”的厚度T2。由此,可减小噪声滤波器1的整体厚度,可使整体尺寸减小。另外,由于可使传送线路3”的厚度T2大于接地导体4”的厚度T1,故可减小传送线路3”的直流电阻,可流过更大的电流。
再有,在上述各实施例中,采用下述方案,其中,磁性片2a~2d,12a~12n,32a~32j,52a~52j由铁氧体等的陶瓷材料形成,对这些进行烧制。但是,本发明不限于此,也可按照在树脂材料中,混入羰基铁等的磁性粉的方式形成磁性片。由此,可通过采用粘接剂,将磁性片接合,形成噪声滤波器,可省略烧制等的制造步骤,可使生产率提高。另外,在此场合,噪声滤波器的截止频率通过所混入的磁性粉的组分、树脂材料与磁性粉的比例和传送线路的长度而设定。产业上的使用可能性象上述那样,本发明的噪声滤波器可防止噪声的共振,整体尺寸较小,价格较低,特别是有效用作用于信号频率大于100MHz的电子设备的噪声滤波器。
权利要求
1.一种噪声滤波器,该噪声滤波器包括重合的2个磁性片,在该2个磁性片之间,设置传送线路,通过2个接地导体,从上、下夹持上述2个磁性片。
2.一种噪声滤波器,该噪声滤波器包括重合的多个磁性片,在该各磁性片的最顶层和最底层,设置接地导体的状态,在上述各磁性片之间,交替地叠置有传送线路和接地导体,通过按照贯穿上述各磁性片的方式设置的贯穿线路,将多层的传送线路串联。
3.根据权利要求2所述的噪声滤波器,其特征在于上述传送线路呈具有折回部的基本圆弧状,或コ字形,通过它们的全部,相对厚度方向,呈螺旋状。
4.根据权利要求1或2所述的噪声滤波器,其特征在于上述传送线路呈弯折的蛇形。
5.根据权利要求1或2所述的噪声滤波器,其特征在于上述磁性片由具有磁特性的陶瓷材料形成。
6.根据权利要求1或2所述的噪声滤波器,其特征在于上述磁性片由混入有磁性粉的树脂材料形成。
7.根据权利要求3所述的噪声滤波器,其特征在于上述磁性片呈四边形状,在该磁性片的长度方向两端侧,设置有与上述传送线路的两端连接的信号用电极,在该磁性片的长度方向的中间位置,设置有与上述接地导体连接的接地用电极。
8.一种噪声滤波器,该噪声滤波器包括重合的多个磁性片,在该各磁性片的最顶层和最底层,设置接地导体的状态,在上述各磁性片之间,交替地叠置有传送线路和接地导体,多层的传送线路的一端与相互不同的信号输入用电极连接,多层的传送线路的另一端与相互不同的信号输出用电极连接。
9.根据权利要求8所述的噪声滤波器,其特征在于上述传送线路呈弯折的蛇形。
10.根据权利要求8所述的噪声滤波器,其特征在于上述传送线路呈螺旋状。
11.根据权利要求1、2或8所述的噪声滤波器,其特征在于截止频率在200MHz~2GHz的范围内,当上述磁性片的比透磁率由μr表示,上述传送线路的长度由L(mm)表示时,则满足4≤μr≤30,L/(μr-1)]]>≥3mm的条件。
12.根据权利要求1、2或8所述的噪声滤波器,其特征在于上述接地导体的厚度小于上述传送线路的厚度。
全文摘要
一种有效用作下述噪声滤波器,该噪声滤波器能够防止噪声的共振,整体尺寸较小,价格较低,特别是用于信号频率大于100MHz的电子设备。在噪声滤波器中,在将磁性片叠置,并且对它们进行烧制而形成的叠层体内部,接地导体设置于最外层上,并且传送线路与接地导体按照交替地,夹持磁性片的方式设置。在该叠层体的外表面上,形成有与传送线路连接的信号用电极,以及与接地导体连接的接地用电极。由此,在将接地导体接地的状态,使信号通过传送线路,由此,可采用磁性片的热损耗,将高频的噪声衰减。
文档编号H03H1/00GK1465131SQ02802186
公开日2003年12月31日 申请日期2002年6月12日 优先权日2001年6月21日
发明者山本秀俊, 内田胜之, 石田康介 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1