芯片型压电谐振元件的制作方法

文档序号:7531820阅读:326来源:国知局
专利名称:芯片型压电谐振元件的制作方法
技术领域
本发明涉及一种适合于例如以表面安装的方式安装在一个基底上的芯片型压电谐振元件,更详细地说,本发明涉及一种应用一种能量陷阱型的压电谐振器的芯片型压电谐振元件。
一般来说,应用下述的一种谐振器作为一种用于KHz(千赫)波段的谐振器利用一个角形压电板的一种伸缩振动模式的谐振器、利用一个条型压电体的一种长度振动模式的谐振器或一种压电调谐叉型谐振器。
在这样一种压电谐振器中,当加上一个电压时,一个谐振部分产生振动。因此为了形成作为一个实际元件的压电谐振器,有必要把该压电谐振器支撑起来以使谐振能进行。由于一种能量陷阱型压电谐振器的振动能量被限制在其谐振部分内,故可以用机械方式在其谐振部分以外的区域内固定该种压电谐振器。因此,考虑到要应用于一种产品,该种能量陷阱型压电谐振器优于其它类型的压电谐振器,因此对于一种用于KHz波段的压电谐振器来说也希望采用一种能量陷阱型的谐振器。
但是在利用一种伸缩振动模式或利用一种长度振动模式的谐振器(该种谐振器被认为是一种通用的KHz波段的压电谐振器)内,把振动能量限制在一个范围内是不可能的。因此,如在

图1中所示,通过弹性端192和193来夹住利用一个长度振动模式的一个压电谐振器191,该弹性端192和193夹住在其间的振动节点。在利用一种伸缩振动模式的、不能使能量限制在一个范围内的一种角形板型的压电谐振器中,也在弹性端间夹住该谐振器的节点。因此,在利用伸缩和长度振动模式的、用于KHz波段的压电谐振器中,该种元件的结构是如此复杂,以致要形成微型芯片型的、可以采用表面安装方式的元件是非常困难的。
另一方面,在一种如图2所示的压电调谐叉型谐振器196中,能量被限制在其振动部分内。该谐振器196包括一个压电板194,该压电板194沿其厚度方向被极化并且具备狭缝194a至194c和振动电极195a(未示出在一个背部表面的振动电极),如图2所示,在该压电板194的二个主表面上围绕中心狭缝194b形成上述振动电极。因此,由于当例如在靠近该压电板194的边缘194d和194e的部分内固定该谐振器196时,其特性保持不变,故可把该谐振器196形成为一种可进行表面安装的芯片元件。
但在该压电调谐叉型谐振器196中,虽可把其能量限制在一个范围内,但由于它的振动模式的限制,可保证的频带宽度只有其谐振频率的约2%。另一方面,在市场上也很需要工作于KHz波段的一种宽带的压电谐振器。该压电调谐叉型谐振器196不能满足这种需要。
本发明的一个目的是提供可应用于KHz波段的、具有较宽的频带特性的一种能量陷阱芯片型压电谐振元件。
为了达到上述目的,本发明提供一种芯片型压电谐振元件,该压电谐振元件包括一个基底;一个直接或间接地固定在该基底上的压电谐振器,该谐振器具备一个具有矩形截面形状的压电谐振部分,该压电谐振部分有一对短边和一对长边,把该短边和长边的边长的比值设置在满足下式的一个值的附近约±10%的范围内b/a=n(-1.47σ+1.88)…(1)(n整数)假设a和b分别表示短边和长边的长度,σ表示形成该压电谐振器的材料的泊松(Poisson′s)比;以及一个固定到该基底上的,用于密封闭定到该基底上的压电谐振器的顶盖部件。
也就是说,本发明的目的是制成一种芯片型压电谐振元件,该元件应用一种具有一个其比值b/a在上述特定范围内的压电谐振部分的压电谐振器,这一点从下面的实施例的描述中可得到清楚的了解。该具备一个其比值b/a在上述特定范围内的压电谐振部分的压电谐振器以一种如下面描述的宽度伸缩模式谐振,并且其振动节点位于短侧表面的大致中心部分和矩形表面的中心。因此当在任一节点处用机械方式支撑该压电谐振器时,可把振动能量有效地限制在该压电谐振部分内。因而可把该压电谐振器用作一种能量陷阱型压电谐振器。故在该按照本发明的芯片型压电谐振元件中,把振动能量有效地限制在该压电谐振器的压电谐振部分内,由此在使该压电谐振部分的振动能进行的同时可容易地把该压电谐振器固定到该基底上。这样一来,通过把该压电谐振器与该基底和该顶盖部件结合在一起可容易地形成上述芯片型压电谐振元件。
在本发明中,在使上述压电谐振器具备一个其比值b/a被设置在上述范围内的压电谐振部分的情况下,可形成上述压电谐振器使之具有一种适当的形状。也就是说,可只由该压电谐振部分来形成该压电谐振器,或者把支撑部分连接到该压电谐振器的短侧表面的大致中心部分。在另一种方式下,可把该支撑部分连接到该压电谐振部分的两短侧表面的中心处。
再者,在可以激励宽度伸缩模式的振动的情况下,可在该压电谐振部分的任何位置内形成谐振电极,这一点从下面的实施例的描述中可得到清楚的了解。举例来说,可在形成该压电谐振部分的二个矩形主表面上形成谐振电极。另一方面,当以一个矩形板的形式提供该压电谐振部分且该矩形板的极化方向是平行于该矩形板表面时,可在一个主表面上或在二个主表面上形成一对谐振电极,使其以一个规定距离相互对向设置。
压电谐振部分可以由一种诸如压电陶瓷、晶体的适当的压电材料或一种压电单晶制成。在另一种方式下,压电谐振部分可以由一种合成材料制成。也就是说,可通过把一个压电薄膜叠合在一个金属板或一个半导体板上来形成该压电谐振部分。至于出现在上述式(1)中的泊松比σ,当该压电谐振部分由该合成材料构成时,有必要考虑该总体的合成材料的有效的泊松比。
基底可由一种如一个陶瓷板或一个合成树脂板的材料构成,该材料具有适合于形成一个芯片型元件的强度。在该基底上至少形成一个端电极是较为可取的。也就是说,可通过形成端电极来构成可在一个印刷电路板等上进行表面安装的一种芯片型压电谐振元件。
在按照本发明的芯片型的压电谐振元件中,通过一个规定厚度的一个间隙把该压电谐振器的压电谐振部分固定到该基底上是较为可取的。因而,该芯片型压电谐振元件还包括用于形成该间隙的间隙形成装置是较为可取的。
例如可由一种用于把该压电谐振器固定到该基底的胶粘剂来作为该间隙形成装置。也就是说,通过该胶粘剂可以确定间隙,即通过控制其厚度能确定该间隙。在另一种方式下,在一种具有一个在该基底上提供的端电极的结构中,可通过一种导电胶粘剂把压电谐振器固定到基底上,以使压电谐振器与在基底上提供的端电极进行电连接。
再者,芯片型压电谐振元件可以包括一个用于使在基底上形成的端电极与压电谐振器进行连接的金属端,在这种情况下,可由该金属端确定间隙形成装置。也就是说,可以这样来选择该金属端的长度,使得在该压电谐振器的压电谐振部分与该基底之间可确定一个规定厚度的间隙。
按照本发明,除了固定在该基底上的压电谐振器外,还可再叠合至少一个谐振器。在这种情况下,可通过多个压电谐振器形成一个滤波器电路,由此来提供一个芯片型压电滤波器。
在本发明中,可通过焊料或一种导电胶粘剂或通过诸如电阻焊接之类的焊接把该压电谐振器直接或间接地固定到基底上。术语“间接地”的意思是通过例如另一个压电谐振器或一个介质衬底之类的另一个部件把压电谐振器固定到基底上。因此按照本发明,可把一个利用一种宽度伸缩模式的压电谐振器直接地固定在基底上,或通过另一个部件间接地把压电谐振器固定在基底上。
按照本发明的芯片型压电谐振元件采用能量陷阱型压电谐振器,该压电谐振器具备利用一种宽度伸缩模式的、其比值b/a被设置在上述特定范围内的压电谐振部分。在该压电谐振器中,把振动能量有效地限制在该压电谐振部分内,而使振动节点位于压电谐振部分的主表面的中心处和短侧表面的大致中心部分处,由此当在上述部分的任一处用机械方式支撑该压电谐振器时,可以可靠地把振动能量限制在该压电谐振部分内。
因此,可通过连接到该振动节点的支撑部分把该压电谐振器固定到该基底上。在另一种方式下,可通过上述振动节点把只由一个压电谐振部分形成的一个压电谐振器固定在基底上。在上述哪一种方式下,都可在使压电谐振部分的振动能进行的同时,把压电谐振器固定到基底上。这样一来,可通过把顶盖部件固定在基底上以密封压电谐振器,来形成一个能量陷阱芯片型压电谐振元件。
因而就可实现与一个常规的芯片型压电谐振元件相比更宽的频带特性,由此提供一个可特别有效地应用于KHz波段的芯片型压电谐振元件。
当把支撑部分连接到压电谐振部分时,可通过支撑部分把压电谐振器固定在基底上,故可选择该支撑部分的尺寸使其符合上述固定过程的要求。这样一来,在使该压电谐振元件的振动能进行的同时,可提供一种在机械强度方面性能良好的能量陷阱芯片型压电谐振元件。
提供上述间隙形成装置的方式是便于该压电谐振部分的振动这一点是较为可取的,由此可提供一种具有更稳定的特性的芯片型压电谐振元件。
通过下述结合附图对于本发明的详细描述,本发明的上述的和其它的目的、特征、方面和优点将变得更明显。
图1是说明一个常规的由弹性端支撑的压电谐振器的一个透视图;图2是显示一个常规的调谐叉型压电谐振器的一个平面图;图3是显示一个利用一种宽度伸缩模式的压电谐振器的一个透视图;图4是说明一个正方形板的一种伸缩模式的一个典型平面图;图5是说明一种宽度伸缩模式的一个典型的平面图;图6是说明一种宽度模式的一个典型的平面图;图7A和7B分别是显示通过一种有限元法分析的、当激励一种宽度伸缩模式的振动时位移分布的一种状态的一个典型的平面图和用于说明在图7A中的坐标系统的一个图;图8说明沿图7A中的X轴的位置与位移量之间的关系;图9说明比值b/a与泊松比σ之间的关系;图10说明比值b/a与相对位移量D之间的关系;图11说明泊松比σ与比值b/a之间的关系;图12A和12B分别是显示利用一种宽度伸缩模式的一个典型的压电谐振器的一个平面图和一个侧视垂直剖面图;图13是显示利用一种宽度伸缩模式的另一个典型的压电谐振器的一个平面图;图14是显示利用一种宽度伸缩模式的又一个典型的压电谐振器的一个平面图;图15是显示按照本发明的第一实施例的一种芯片型压电谐振元件的一个分解透视图16A和16B分别是显示在该第一实施例中应用的一个压电谐振器的一个平面图和穿过一个压电板显示一个下部电极形状的一个典型的平面图;图17是显示按照该第一实施例的芯片型压电谐振元件的一个透视图;图18是说明按照本发明的一个第二实施例的一种芯片型压电谐振元件的一个分解透视图;图19说明按照该第二实施例的芯片型压电谐振元件的一个等效电路;图20是显示按照该第二实施例的芯片型压电谐振元件的一个透视图;图21是说明按照本发明的一个第三实施例的一种芯片型压电谐振元件的一个分解透视图;图22是显示按照该第三实施例的芯片型压电谐振元件的外貌的一个透视图;图23说明按照该第三实施例的芯片型压电谐振元件的一个等效电路;图24是说明本发明的一个第四实施例的一种芯片型压电谐振元件的一个分解透视图;图25说明按照该第四实施例的芯片型压电谐振元件的一个等效电路;图26是说明本发明的一个第五实施例的一种芯片型压电谐振元件的一个透视图;图27是显示通过金属端进行固定的一种压电谐振器的一个改型的一个透视图;图28是显示通过金属端进行固定的一种压电谐振器的另一个改型的一个透视图;图29是显示通过金属端进行固定的一种压电谐振器的又一个改型的一个透视图;图30是说明在图29中示出的改型中的一个金属端部分的一个局部分割放大剖面图;图31是说明按照本发明的一个第六实施例的一种芯片型压电谐振元件的电路结构的一个图;图32是说明按照本发明的第六实施例的该芯片型压电谐振元件的分解透视图;图33是说明按照本发明的第七实施例的一种芯片型压电谐振元件的一个分解透视图;图34是说明在该第七实施例中应用的一个金属端的一个放大透视图;图35是说明按照本发明的第八实施例的一种芯片型压电谐振元件的一个分解透视图;图36A和36B分别是说明在该第八实施例中应用的金属端的透视图;图37是说明固定到一个利用一种长度振动模式的压电谐振器上的金属端的一个透视图;以及图38是通过按照该第八实施例的芯片型压电谐振元件形成的一种梯形滤波器的一个电路图。
以下描述本发明的非限制性的实施例。
首先描述一种利用一种在本发明中应用的宽度伸缩模式的压电谐振器。
图3是说明在本发明中应用的一种能量陷阱型压电谐振器205中的一个压电振动部分的一个透视图。在该压电谐振器205中,在一个矩形压电陶瓷板206的二个主表面上形成电极207和208,该压电陶瓷板206的极化方式是把极化轴调整到沿该板的厚度方向。假设a和b分别表示该压电陶瓷板206的短边和长边的长度,选择比值b/a使其在上述的特定的范围内,由此如下面所描述的那样会很强地激励宽度伸缩模式的振动。从现在起描述,当把该比值b/a设置在上述的特定范围内时很强地激励该宽度伸缩模式的振动的情况。
图4至6分别是显示说明伸缩模式、宽度伸缩模式和宽度模式的振动器的振动状态的示意平面图。本发明人通过一种有限元法已分析了具有各种不同的短边和长边的长度的矩形板型振动器的振动状态。当长边的长度b对于短边的长度a的比值b/a是1时,即当一个振动器201的形状是一个正方形板时,如图4中所示,会很强地激励伸缩模式的振动。也就是说,在一个具有如图4中所示的一种正方形面的形状的振动器201中,使振动在由虚线A所示的状态与由单点链线B所示的状态之间重复,由此来很强地激励伸缩模式的振动。
当使用该比值b/a远大于1时,即当b/a>1时,如图6中所示,一个矩形振动器在由虚线A所示的状态与由单点链线B所示的状态间振动,由此很强地激励宽度模式的振动。
另一方面,当该比值b/a大于1并小于很强地激励上述宽度模式的振动的一个值时,如在关于一个振动器203的图5中所示的,很强地激励在由单点链线A所示的状态与由虚线B所示的状态间的振动,即宽度伸缩模式的振动。已经按这种方式命名了该“宽度伸缩模式”,由该命名可想到它是在大家熟知的伸缩和宽度模式之间的一种中间的振动模式。
在上述的认识的基础上,通过具有被选择为特定值的比值b/a的压电陶瓷板来制成在图3中示出的压电谐振器205的样品。
在具有各种不同的比值b/a的上述压电谐振器205的样品中激励了上述宽度伸缩模式的振动,由此已证实当该比值b/a满足等式b/a=-1.47σ+1.88时可最强地激励上述宽度伸缩模式的振动。图7A显示在压电谐振器205的样品中的位移分布的结果,该结果是由一种有限元法分析得出的。
在由一种有限元法分析得出的位移分布中,在如图7B中示出的关于压电谐振器205的任一主表面的中心O确定X和Y轴的同时,测量了各个部分的位移状态,由此得到如图8中所示的一个结果。由图可知,在沿X轴激励上述宽度伸缩模式的振动的压电谐振器205中,在中心O和图7B中的一个位置X1处,即任一短边的中心处,位移量最小,在上述二个位置的中间部分处,位移量最大。这意味着在利用一种宽度伸缩模式的压电谐振器205中节点处于主表面的中心和短边的中心处。这样一来,通过由其它支撑部件来支撑主表面的中心或短边的中心,在使上述宽度伸缩模式的振动能进行的同时,可支撑压电谐振器205。
再者,已证实上述比值b/a与压电谐振器205的泊松比有关。对于各种不同的泊松比的振动器测量了激励上述宽度伸缩模式的振动的比值b/a,并对比值b/a作图,从而得到在图9中示出的结果。因此,正如在图9的直线中示出的,已认识到,通过选择满足下述等式的比值b/a可以可靠地激励宽度伸缩模式的振动。
b/a=-1.47σ+1.88…(2)再者,也已认识到,不但当比值b/a满足等式(2)时,而且当比值b/a稍微偏离等式(2)时,都可很强地激励宽度伸缩模式的振动。在变动比值b/a的同时通过对于具有泊松比σ为0.324的一个压电陶瓷板的多个样品的测量证实了该宽度伸缩模式的激励的存在与否。就是说,假设在宽度伸缩模式的振动中,D(X1)表示图7B中的点X1处的位移量,D(C)表示在点C处的最大的位移量(见图7),测量了点X1对于点C的相对位移量D(X1)/D(C)。图10示出该结果。
从图10可清楚地了解到,当比值b/a在1.26至1.54的范围内时,对于该泊松比σ为0.324的情况来说,相对位移量在±10%的范围内。因而,制成了许多类型的如图3中所示的压电谐振器205的样品,使其比值b/a在该最佳值附近的±10%的范围内,并且为了测量谐振特性把支撑部件连接到上述谐振器的短边的中心部分。其结果是,已证实了当相对位移量如上面所描述的在±10%的范围内时,可很好地把宽度伸缩模式的振动限制在一个范围内。
因此,正如图11中示出的,当把比值b/a设置在满足等式(2)的一个值附近±10%的范围内时,可很好地激励上述宽度伸缩模式的振动。也已认为到当该比值b/a是n乘以(-1.47σ+1.88)(n整数)时同样可很好地激励上述宽度伸缩模式的振动。
图12A和12B分别是显示一个典型的压电谐振器211的一个平面图和一个正视垂直剖面图。谐振器211利用一种宽度伸缩模式,该谐振器211是在上述认识(即第一种类型的压电谐振器)的基础上制成的。该压电谐振器211具有作为一个矩形板型振动器的一个压电振动部分212。该压电振动部分212具有一个矩形面形状,并包括一个压电陶瓷板213(沿该陶瓷板的厚度方向使该板均匀地极化)和谐振电极214和215(在该压电陶瓷板213的全部二个主表面上形成该谐振电极214和215)。再者,把支撑部件216和217连接到该压电振动部分212的短边的中心,该中心在以一种宽度伸缩模式进行激励时是节点。此外,把固定部分218和219分别连接到该支撑部分216和217的外缘部分。
把支撑部件216和217与固定部分218和219与该压电陶瓷板213形成一个整体。也就是说,通过制成该矩形压电陶瓷板213并对其进行机械加工使之具有图12A中示出的形状来形成上述这些元件。在另一种方式下,可通过用一种诸如粘结的适当的方法把与该压电振动部分212无关的部件如图12A中所示地连接到压电振动部分212上来形成支撑部件216和217与固定部分218和219。
通过在支撑部件216和217的第一表面上形成的引线导电部分214a和215a把上述谐振电极214和215分别电连接到在固定部分218和219的第一主表面上形成的引线电极220和221。
当在压电谐振器211中的引线电极220和221间加一个交变电压时,以一种宽度伸缩模式激励压电振动部分212。在这种情况下,该压电振动部分212的短边的中心部分几乎不振动而且形成振动节点,因此不管是否与支撑部件216和217连接都几乎不抑制该宽度伸缩模式的振动。因此可有效地把基于上述宽度伸缩模式的振动限制在支撑部件216和217之间。
当由压电陶瓷板213形成的压电振动部分212的宽度是2.5mm且长度是3.5mm时,谐振频率是800KHz,当上述压电振动部分212的宽度是1.0mm且长度是1.4mm时,谐振频率是2MHz,因此可形成适合应用于800KHz至2MHz的波段内的一种能量陷阱型压电谐振器。
至于上述谐振频率,当压电振动部分212由另一种材料制成时,可容易地改变有效的频带。因此,通过从各种不同的压电材料制成压电振动部分212可得到适合应用于各种不同的频带的能量陷阱型压电谐振器211。
图13显示利用一种宽度伸缩模式的另一种典型的能量陷阱型压电谐振器231。压电谐振器231具有作为一个矩形板型振动器的压电振动部分232。在该压电振动部分232中,在压电板232a的一个上表面上沿长边边缘形成一对谐振电极232b和232c。使该压电板232a沿图13中的箭头P(即在谐振电极232b指向谐振电极232c的方向上)的方向极化。在该例子中,也把压电振动部分232的长边的长度b对于短边的边长a的比值b/a设置在满足等式(1)的一个值附近±10%的范围内。
因此,当在谐振电极232b和232c间加上一个交变电压时,压电振动部分232以一种宽度伸缩模式振动。在这种情况下,压电振动部分232的位移方向平行于所加的电场方向,因此,该压电谐振器231利用一种压电纵向效应。
在该例子的压电谐振器231中,也把支撑部件236和237连接到以上述宽度伸缩模式谐振的压电振动部分232的振动节点处,同时把固定部分238和239分别连接到支撑部件236和237的外缘部分。参照图13,数字234a和235a表示引线导电部分,数字240和241表示引线电极。
从图13中示出的例子可清楚地了解到,按照本发明的利用一种宽度伸缩模式的谐振器不但可适用于利用压电横向效应的谐振器,而且可适用于利用压电纵向效应的谐振器。
图14是显示又一个在本发明中应用的、利用一种宽度伸缩模式的典型的能量陷阱型压电谐振器251。在图14中示出的谐振器251的特征在于提供动态阻尼器252和253以及连接部分254和255,而在其它方面该谐振器251与在图12中示出的能量陷阱型压电谐振器211是类似的。因而就用相同的参照数字来表示相同的部分,以省略多余的描述。
把连接到支撑部件216和217的外缘的动态阻尼器252和253形成垂直伸展的条型部分。分别在动态阻尼器252和253的外侧与固定部分218和219之间形成连接部分254和255。
把支撑部件216和217连接到一个压电谐振部分212的振动节点,因此朝向支撑部件216和217的振动的漏曳是非常小的。但在该例子中,动态阻尼器252和253由于轻微地漏曳出来的振动而产生谐振,因此可抑制此种轻微地漏曳出来的振动。因而可有效地把振动能量限制在直到动态阻尼器252和253的部分内。这样一来,可形成一种更小型化的压电谐振器。
本发明的目的是制成一种芯片型的压电谐振部件,该压电谐振部件采用一种利用上述宽度伸缩模式的能量陷阱型压电谐振器。以下在参照图15至32的情况下描述这样一种芯片型压电谐振部件的实施例。
第一实施例图15是显示按照本发明的一个第一实施例的一种芯片型压电谐振元件的一个分解透视图。按照该实施例的芯片型压电谐振元件1包括一个基底2,一个固定在该基底2上的压电谐振器3和一个固定到该基底2用于密封该压电谐振器3的顶盖部件4。
由一种氧化铝等的绝缘陶瓷板或一种合成树脂板形成的基底2具有一个如图15中所示的矩形板的形状。在该基底2的一个上表面上沿其短边边缘形成端电极5a和5b。再者,在该基底2的短侧表面的中心内形成槽口6a和6b,以使该端电极5a和5b分别到达这些槽口6a和6b的内缘表面。形成该端电极5a和5b使之也到达该基底2的一个下表面(未示出)。在另一种方式下,该端电极5a和5b可以不到达该基底2的下表面。
压电谐振器3具有一个矩形板型的压电谐振部分7和通过连接部分8a和8b分别连接到该压电谐振部分7的支撑部分9和10。从现在起在参照图16A和16B的情况下详细描述该压电谐振器3。
图16A和16B分别是说明该压电谐振器3的一个电极形状的一个平面图和穿过该压电陶瓷板显示一个下电极形状的典型的平面图。
在该压电谐振器3中,压电谐振部分7具有一个矩形板形状,以使该矩形板的长边的长度b对于短边的边长a的比值b/a在满足上述等式(1)的一个值附近±10%的范围内。
再者,在该压电谐振器3中,通过对一个压电陶瓷板进行机械加工把压电谐振部分7、连接部分8a和8b以及支撑部分9和10形成为一个整体。在另一种方式下,可彼此独立地形成压电谐振部分7、连接部分8a和8b以及支撑部分9和10,并通过胶粘剂等使其相互连接并结合成一个整体。
在该压电谐振部分7的一个上表面上形成一个第一谐振电极11,同时在其下表面上形成一个第二谐振电极12使之与该第一谐振电极对向设置。把该谐振电极11和12电连接到分别在支撑部分9的一个上表面上和在支撑部分10的一个下表面上形成的引线电极13和14。
在压电谐振部分7中,使压电陶瓷板沿其厚度方向极化。因而当在谐振电极11和12间加一个交变电压时,以一种宽度伸缩模式激励压电谐振部分7,这一点与图12中示出的压电谐振器211的情况类似。再者,把连接部分8a和8b连接到压电谐振部分7的短边的大致中心部分,这一点也与图12中示出的压电谐振器211的情况类似。因而把该宽度伸缩模式的振动能量限制在该压电谐振部分7内,使其几乎不向连接部分8a和8b漏曳。
在图16A和16B中示出的压电谐振器3中,不在压电谐振部分7的全部主表面上形成谐振电极11和12,而是在周边留出规定宽度的区域15和16。但在该压电谐振部分7中,把长边的长度对于短边的长度的比值设置在上述范围内,由此以宽度伸缩模式激励该压电谐振部分7,这一点与压电谐振器211(图12)的情况类似。
再参照图15,分别通过导电胶粘剂17a和17b在支撑部分9和10处把压电谐振器3固定到基底2。也就是说,导电胶粘剂17a和17b分别把引线电极13和14电连接到端电极5a和5b。再者,导电胶粘剂17a和17b把支撑部分9和10固定到基底2上。形成导电胶粘剂17a和17b使之分别延伸到支撑部分9和10的下表面,由此在通过一个规定厚度的一个间隙与基底2的上表面分离的状态下把压电谐振部分7固定到基底2上。这样一来,把压电谐振器3固定到基底2上的方式是使压电谐振部分7的振动能进行。
按照本实施例,把顶盖部件4固定到基底2(上述压电谐振器3固定其上的基底2)上。把由一种如合成树脂的绝缘材料或一种对一个金属表面进行绝缘处理得到的材料制成的顶盖部件4通过一种绝缘胶粘剂粘结/固定到基底2。以一种具有一个开口的下部的矩形平行六面体的形式提供顶盖部件4,其尺寸能把压电谐振器3密封在其内。
图17是显示按照该实施例的芯片型压电谐振元件1的一个透视图,该压电谐振元件1是通过把顶盖部件4固定在基底2上得到的。在该芯片型压电谐振元件1中,在基底2的上表面上形成端电极5a和5b,而在侧表面内形成槽口6a和6b(见图15),以使该端电极5a和5b到达这些槽口6a和6b的内缘表面。因而可以用表面安装的方式把该芯片型压电谐振元件1安装在一个印刷电路板等上,以使端电极5a和5b容易地与在上述印刷电路板等上提供的电极接触点或布线图形相连接。
在按照本实施例的该芯片型压电谐振元件1中,压电谐振器3利用上述宽度伸缩模式,由此可方便地提供应用一种工作于KHz波段的能量陷阱型的压电谐振器的一种芯片型压电谐振元件。再者,由于应用了上述能量陷阱型压电谐振器3,可通过使用基底2和顶盖部件4的简单的固定结构来形成一种具有所需特性的芯片型压电谐振元件。
第二实施例从现在起在参照图18至20的情况下描述按照本发明的一个第二实施例的一种芯片型压电谐振元件21。按照该第二实施例的芯片型压电谐振元件21适用于具有内在电容的一种三端压电振荡器。
参照图18,按照本实施例的芯片型压电谐振元件21具有一个基底22、一个利用一种宽度伸缩模式的被固定到该基底22上的压电谐振器23和一个顶盖部件24。以与第一实施例的顶盖部件4类似的方式形成顶盖部件24。
由如氧化铝的绝缘陶瓷或一个如合成树脂的绝缘材料制成的基底22具有一个矩形板形状。在该基底22的一个上表面上沿其短边边缘形成端电极25a和25b。在该基底22的一个中心区上与端电极25a和25b相平行地形成另一个端电极25c。再者,在该基底22的长边边缘内形成槽口26a至26c和26d至26f从而便于将压电谐振元件21安装在一个印刷电路板上时的焊料连接。形成端电极25a至25c中的每一个的方式是使其到达槽口26a至26f中的任何二个。
另一方面,在基底22的一个中心区上形成一个介质膜27,使其具有一个矩形形状。在端电极25c上形成介电膜27,该介电膜27不与端电极25a和25b相接触。为了得到静电电容,通过例如应用钛酸钡糊剂或合成树脂糊剂以及将其固化来形成该介电膜27。为了通过该介电膜27与端电极25c形成电容,在该介电膜27的一个上表面上形成电极28a和28b。分别使电极28a和28b与端电极25a和25b进行电连接。
由一个矩形板型压电陶瓷板29形成压电谐振器23,该压电谐振器23只具备一个压电谐振部分。也就是说,使压电陶瓷板29沿其厚度方向极化,并选择比值b/a使其在满足上述等式(1)的一个值附近±10%的范围内(假设a和b表示上表面和下表面的短边长度和长边长度)。
再者,在压电陶瓷板29的上表面上形成一个第一谐振电极30。使该第一谐振电极30与在该压电陶瓷板29的一个短侧表面的一个大致中心部分上形成的一个引线电极31进行电连接。在下表面上也形成一个第二谐振电极(在图18中未示出)使其与该第一谐振电极对向设置。使该第二谐振电极与在另一个短侧表面(该短侧表面在具备引线电极31的短侧表面的对面)的一个大致中心部分上形成的一个引线电极(未示出)进行电连接。
因而当在上表面和下表面上提供的第一和第二谐振电极间加上一个交变电压时,以一种宽度伸缩模式激励压电谐振器23。由于是在振动节点上形成引线电极31和在与其相对的侧表面上的引线电极,故可在使该宽度伸缩模式的振动能进行的同时,通过引线电极31和在与其相对的侧表面上提供的引线电极把压电谐振器23固定到基底22。
按照本实施例,通过导电胶粘剂32和33把压电谐振器23固定在基底22上。也就是说,通过导电胶粘剂32使引线电极31与端电极25a进行电连接,同时在实际上把具备引线电极31的部分固定到基底22上。类似地,通过导电胶粘剂33使在与引线电级31相对的侧表面上提供的引线电极与端电极25b进行电连接,同时在实际上把具备引线电极的部分固定到基底22上。
所使用的导电胶粘剂32和33的厚度应能通过一个规定厚度的一个间隙区把该压电陶瓷板29的下表面与电极28a和28b分离开来。因而,可以使压电谐振器23在固定到基底22上的状态下以宽度伸缩模式振动。为了防止在该压电谐振器23的下表面上形成的第二谐振电极与用于得到电容的电极28a和28b间发生短路,在电极28a和28b上形成一个绝缘层是较为有利的。在这种情况下,在绝缘层与压电陶瓷板29间确定一个规定厚度的间隙以使压电谐振器23的振动能进行也是较为有利的。
通过一种胶粘剂把顶盖部件24固定在基底22上,这一点与实施例1的顶盖部件4的情况类似。这样一来,就形成在图20中示出的芯片型压电谐振元件21。图19说明该芯片型压电谐振元件21的一个等效电路。从图19可清楚地了解到,在本实施例中形成一种具有内在电容的三端压电振荡器,其中端电极25a至25c用作上述的三端。
在第二实施例中,也是通过宽度伸缩模式形成压电谐振器23并通过振动节点将其固定在基底22上,故可提供一种能量陷阱芯片型压电谐振元件,此种压电谐振元件能实现所需要的频率特性,并具有与现有技术不同的一种简单的固定结构。
第三实施例图21是显示按照本发明的一个第三实施例的一种芯片型压电谐振元件41的一个分解透视图。该芯片型压电谐振元件41适用于一种单模式压电滤波器。
在本实施例中,把一组压电谐振器43和44固定在一个基底42上,同时把一个顶盖部件4也固定在该基底42上。
基底42是由类似于第一实施例的基底2的一种材料制成的,在该基底42的短侧表面内具有45a至45c和45d至45f的许多个槽口。在该基底42的一个上表面上,在靠近一个短侧表面的位置内形成端电极46a至46c。以规定的距离形成端电极46a至46c,使其分别到达槽口45a至45c。
另一方面,在靠近另一个短侧表面的位置内形成一个端电极46d,同时在该端电极46d的二边形成连接电极46e和46f。形成端电极46d使之到达槽口45e的内缘表面。再者,也分别在槽口45d和45f的内缘表面上形成电极47a和47b。
由一个矩形板型压电陶瓷板49形成的压电谐振器43采用一种宽度伸缩模式。在该压电谐振器43中,在压电陶瓷板49的上表面和下表面上形成许多个谐振电极,以形成一个滤波器电路。
使压电陶瓷板49沿其厚度方向均匀地极化,同时选择关于其上表面和下表面的一个比值b/a使之在满足上述等式(1)的一个值附近±10%的范围内。
另一方面,在压电陶瓷板49的上表面上以一个规定的距离形成一对矩形谐振电极50和51。再者,在下表面上形成另一对谐振电极52和53,使其分别与谐振电极50和51对向设置。此外,在该压电陶瓷板49的一个短侧表面的大致中心部分上形成电极54a至54c。电极54a与谐振电极50进行电连接。电极54b也电连接到谐振电极50。在短侧表面上形成电极54c使其到达上表面和下表面。电极54c不与谐振电极50和52进行电连接。
在另一侧表面的大致中心部分上类似地形成电极54d至54f。该电极54d不与谐振电极51和53进行电连接。使电极54e电连接到在下表面上形成的谐振电极53。同时使电极54f电连接到在上表面上形成的谐振电极51。
分别通过导电胶粘剂55使电极54a至54c和54d至54f电连接到在该基底42的上表面上形成的端电极46a至46f。所应用的导电胶粘剂55具有规定的厚度,这一点与在第一和第二实施例中应用的胶粘剂的情况类似。这样一来,通过一个规定厚度的一个间隔把压电谐振器43固定在基底42上。
由一个压电陶资板56来形成压电谐振器44,以类似于压电陶瓷49的方式形成压电陶瓷板56。也使压电陶瓷板56沿其厚度方向均匀地极化。
在压电陶瓷板56的一个上表面上形成一对谐振电极57和58,同时在其下表面上形成一个共同的谐振电极59,使其与谐振电极57和58对向设置。
再者,在压电陶瓷板56的一个短侧表面的大致中心部分上形成电极60a和60b,同时在另一个短侧表面的大致中心部分上形成电极60c和60d。分别使电极60a和60b电连接到共同的谐振电极59和谐振电极57。类似地分别使电极60c和60d电连接到共同的谐振电极59和谐振电极58。
通过导电胶粘剂61把压电谐振器44固定在压电谐振器43的上表面上,把该导电胶粘剂61加到具备电极60a至60d的部分。在这种情况下,所应用的导电胶粘剂61具有规定的厚度。这样一来,通过一个规定厚度的一个间隙区把压电谐振器44的一个下表面与压电谐振器43的上表面分离开,由此使压电谐振器43和44能以一种宽度伸缩模式振动。
通过用导电胶粘剂55和61把压电谐振器43和44固定在基底42上和再固定顶盖部件4可得到如图22中示出的芯片型压电谐振部分41。
图23说明按照本实施例的芯片型压电谐振元件41的一个等效电路。从图23可清楚地了解到,按照本实施例形成一种应用二个压电谐振器43和44的单模式双元素连接型压电滤波器。在本实施例中,通过压电陶瓷板49和56形成压电谐振器43和44,该压电陶瓷板49和56的比值b/a也被定在满足上述等式(1)的值附近±10%的范围内,由此来激励一种宽度伸缩模式的振动,同时由于把压电谐振器43和44固定在压电陶瓷板49和56的短边的大致中心部分处,故此种宽度伸缩模式的振动几乎不受固定结构的影响。因此,可方便地形成上述双元素连接型单模式压电滤波器,压电滤波器应用一种利用宽度伸缩模式的能量陷阱型压电谐振器43和44,而且可通过压电谐振器43和44、基底42以及顶盖部件4的较简单的结构来形成该压电滤波器。
第四实施例图24是说明按照本发明的一个第四实施例的一种芯片型压电谐振元件71的一个分解透视图。
按照第四实施例的芯片型压电谐振元件71适用于由四个压电谐振器形成的一种梯形滤波器。
在芯片型压电谐振元件71中,把压电谐振器73至76互相叠合并固定到一个基底72上。再者,安装一个顶盖部件4用于密封压电谐振器73至76的多层结构。用类似于应用在第一实施例中的方式形成该顶盖部件4。
由绝缘陶瓷(如氧化铝)或一种绝缘材料(如合成树脂)制成的基底72具有一个矩形板形状,该矩形板具备如图24中所示的矩形上表面和下表面。
在基底72的一个中心区域上形成一个端电极77,该端电极77在使二个短边相互连接的方向上延伸。在靠近一个短边的一个区域内,在端电极77的二边形成端电极78和79。另一方面,在靠近另一个短边的一个区域内形成电极80和81。再者,在基底72的二个短侧表面上分别形成槽口82a至82c和82d至82f。形成端电极77使之向槽口82b和82e延伸。类似地,形成端电极78和79使之分别到达槽口82a和82c的内缘表面。
再者,分别在槽口82d和82f内形成端电极83和84。
压电谐振器73至76在以下这一点上互相间是共同的它们都具备矩形板型压电谐振部分85和支撑部分88和89,支撑部分88和89分别通过连接部分86和87连接到压电谐振部分85的短侧表面的大致中心部分。但是如下面所描述的,压电谐振器73至76的电极结构互相间是不同的。因而,首先描述压电谐振器73,接着只描述压电谐振器74至76的电极结构。
在压电谐振器73中,通过对一个压电陶瓷板进行加工形成压电谐振部分85、连接部分86和87以及支撑部分88和89。使压电谐振部分85沿其厚度方向均匀地极化,而且对于其上表面和下表面而言把比值b/a设置在满足上述等式(1)的一个值附近±10%的范围内。因而当在二个主表面间加一个交变电压时,以一种宽度伸缩模式激励压电谐振部分85。
在压电谐振器73中,在压电谐振部分85的上表面上形成一个第一谐振电极90,同时在下表面上形成一个第二谐振电极91,使之与该第一谐振电极90对向设置。形成具有矩形面形状的谐振电极90和91,使其面积比该压电谐振部分85的上、下表面的面积小得多。再者,使谐振电极90和91电连接到分别在支撑部分88的一个上表面和支撑部分89的一个下表面上形成的引线电极92和93。在该支撑部分89上以规定的距离形成连接电极94a至94c,以使引线电极93电连接到电极94c。在支撑部分88上,也在一个外侧表面上以规定的距离形成三个连接电极,以使引线电极92电连接到这些连接电极中的一个。
通过加在对应于电极94a至94c的位置上的导电胶粘剂95,实际上把压电谐振器73固定到基底72上,并且使其电连接到在基底72上提供的端电极77等上。所选择的导电胶粘剂95的厚度是通过一个规定厚度的一个间隙区使压电谐振部分85的下表面与基底72分离开。因而当以一种宽度伸缩模式激励固定在基底72上的压电谐振器73的压电谐振部分85时,其振动不受到抑制。
另一方面,在压电谐振器74中,分别在压电谐振部分85的上、下表面上形成第一和第二谐振电极96和97。形成该第一和第二谐振电极96和97的方式是使其尺寸分别占据该压电谐振部分85的上、下表面的大部分区域。也就是说,该第一和第二谐振电极96和97具有与压电谐振器73的第一和第二谐振电极90和91相比较大的面积。因此在该压电谐振器74中,在谐振电极96和97间的静电电容比压电谐振器73的谐振电极90和91间的静电电容大。
再者,使谐振电极96电连接到支撑部分89的一个侧表面上形成的一个连接电极98b。在该连接电极98b的二边形成电极98a和98c。类似地在支撑部分88的一个外侧表面上也形成一个与谐振电极97连接的连接电极。再者,与支撑部分89一侧的情况类似,除了与谐振电极97连接的连接电极之外再形成二个连接电极。
通过导电胶粘剂99把压电谐振器74固定到压电谐振器43上。也就是说,通过导电胶粘剂99把压电谐振器74的连接电极98b电连接到下面的压电谐振器73的一个连接电极94b上。类似地,通过导电胶粘剂99把与谐振电极97连接的连接电极电连接到压电谐振器73的引线电极92上。
所选择的导电胶粘剂99的厚度也是通过一个间隔使压电谐振器74和73的压电谐振部分85彼此分离,这一点与导电胶粘剂95的情况类似。因此,彼此固定在一起的压电谐振器73和74的压电谐振部分85的振动不受到抑制。
除了电极引出部分外,以类似于压电谐振器74的方式形成压电谐振器75。另一方面,除了电极引出部分外,以类似于压电谐振器73的方式形成压电谐振器76。也把这些压电谐振器75至76依次叠合并通过导电胶粘剂100和101互相固定在一起。这样一来,把压电谐振器73至76互相叠合,并把顶盖部件4固定在基底72上用于密封该多层结构,从而提供按照本实施例的芯片型压电谐振元件71。
使压电谐振器73至76互相电连接,从而形成如图25中所示的一种二级梯形滤波器。
因而在按照本实施例的芯片型压电谐振元件71中,通过用导电胶粘剂简单地把利用一种宽度伸缩模式的压电谐振器73至76固定到基底72上,用导电胶粘剂把上述压电谐振器彼此固定在一起并在此之后把顶盖部件4固定到基底72上,可容易地形成一种能显示出所需特性的梯形滤波器。
也就是说,因各个压电谐振器73至76都利用宽度伸缩模式,故如上面所描述的可简化用于压电谐振器73至76的支撑结构并且可容易地把多个压电谐振器73至76互相结合成一个整体。
第五实施例图26是说明按照本发明的一个第五实施例的一种芯片型压电谐振元件111的一个透视图。在该按照本实施例的芯片型压电谐振元件111中,把一个压电谐振器113固定在一个基底112上。在该基底112的一个上表面上形成端电极114和115。形成端电极114使之到达为了便于安装在一个印刷电路板上而设置的槽口112a和112b。类似地形成端电极115使之到达槽口112c和112d。压电谐振器113只由一个矩形板型压电谐振部分形成。也就是说,在一个矩形板型压电陶瓷板116(沿其厚度方向使其极化)的上、下表面上分别形成第一和第二谐振电极117和118。在该压电陶瓷板116中,选择上述比值b/a使之能激励宽度伸缩模式的振动。本实施例的特点在于不但在短侧表面的大致中心部分处而且在下表面的中心处把压电谐振器113固定到压电陶瓷板116上。也就是说,既通过在短侧表面的大致中心部分处的导电胶粘剂119a和119b也通过在下表面的中心处的导电胶粘剂119c把压电谐振器113固定在基底112上。这种可能不起到获得电连接作用的导电胶粘剂119c可以由一种绝缘胶粘剂来代替。
在该实施例中,也把一个顶盖部件固定在基底112上,这一点与第一至第四实施例的情况类似。
从第五实施例可清楚地了解到,不但可在二个短边的中心处而且可以在矩形表面的中心处把利用宽度伸缩模式的压电谐振器113固定到基底112上。在另一种方式下,可以在下表面的中心处用机械方式把压电谐振器113固定到基底112上,以使在二个短边的中心只获得电气连接。
改型尽管在上述第一至第五的每个实施例中都通过胶粘剂把压电谐振器固定到基底上,但在另一种方式下可通过除胶粘剂之外的部件把压电谐振器固定到基底上。
图27是显示一种具有一种通过金属端把一个压电谐振器固定到一个基底上的结构的压电谐振元件121的一个透视图。把一个在结构方面与应用于第五实施例的结构类似的压电谐振器113固定到一个基底112上。通过金属端122和123把该压电谐振器113固定到基底112上。分别使金属端122和123在其下边缘上电连接并固定到端电极114和115上。可以通过焊料等来完成上述固定。另一方面,通过焊料等把靠近其上边缘的金属端112和113的部分电连接到在压电谐振器113的短侧表面的中心处形成的引线电极上。
所选择的金属端122和123的高度是通过一个规定厚度的一个间隙区使压电谐振器113的一个下表面与基底112的一个上表面分离开。
图28说明压电谐振元件121的一个改型,其中让金属端124和125弯曲,从而使其键合到端电极114和115的部分在水平方向上延伸。本改型的其它方面与压电谐振元件121类似。在图28中示出的这个改型中,所选择的金属端124和125的垂直延伸部分的长度也是通过一个规定厚度的间隙区使一个压电谐振器113的下表面与一个基底112的上表面分离开。
图29是显示压电谐振元件121另一个改型的透视图。在图29中示出的结构中应用金属端126和127。正如在图29中以一个局部分割侧视剖面图的方式示出的,金属端126和127的弯曲方式是从一个压电谐振器113的一个上表面向一个下表面延伸,其厚度是通过一个规定厚度的一个间隙区使压电谐振器113的下表面与一个基底112的一个上表面分离开。这个改型的其它方面与压电谐振元件121类似。
第六实施例图32是说明按照本发明的一个第六实施例的一种芯片型压电谐振元件的一个分解透视图。本实施例适用于由四个压电谐振器形成的一种梯形滤波器,通过类似于在图27至30中示出的改型中用的金属端把上述四个压电谐振器固定到一个基底上。
在按照本实施例的芯片型压电谐振元件中,在一个基底132上形成端电极133a至133d和连接电极133e至133f。形成端电极133a至133d使之到达在该基底132内形成的槽口132a至132d,由此来改善用于在一个印刷电路板等上安装该芯片型压电谐振元件的连接部分的可靠性。
首先,把一个压电谐振器134固定在基底132上。
由一个矩形压电陶瓷板135形成压电谐振器134。使压电陶瓷板135沿其厚度方向均匀地极化,并且在其中心处形成一个第一谐振电极136,使之具有一个较小面积的一个矩形形状。另一方面,在该压电陶瓷板135的一个下表面上形成另一个谐振电极137,使其与谐振电极136对向设置。分别使谐振电极136和137电连接到在压电陶瓷板135的二个短侧表面上形成的引线电极138a和138b上。使金属端139和140键合到引线电极138a和138b的中心。金属端139和140的弯曲方式是使其下缘在水平方向上延伸并分别通过焊料或导电胶粘剂键合到基底132的端电极133b和133d上。
也可通过导电胶粘剂或焊料把金属端139和140连接到引线电极138a和138b上。
所选择的金属端139和140的垂直延伸部分的长度是通过一个规定厚度的一个间隙区使压电谐振器135的下表面与基底132的上表面分离开,这一点与在图28中示出的金属端124和125的情况类似。因而,通过金属端139和140被固定到基底132上的压电谐振器135的振动不受到抑制。
把另一个压电谐振器141叠合在压电谐振器135上。压电谐振器141包括一个矩形压电陶瓷板142和在其上、下表面上形成的谐振电极143和144。压电陶瓷板142具有一个被设置在能激励宽度伸缩模式的振动的比值b/a,并沿其厚度方向被均匀地极化。分别使谐振电极143和144电连接到在短侧表面上形成的引线电极145和146。分别使引线电极145和146与金属端147和148进行电连接。换言之,通过导电胶粘剂或焊料使金属端147和148键合到引线电极145和146的中心。
金属端147和148具有叉状前缘,举例来说,让金属端147电连接到在基底132上提供的端电极133b。再者,金属端147和148从二个侧表面稍微向外延伸。然后在压电陶瓷板142的下表面一侧向下弯曲。所选择的金属端147和148的垂直延伸部分的长度是通过一个规定厚度的间隙区使压电陶瓷板142的下表面与压电谐振器134的上表面分离开。换言之,形成金属端147和148使其不与压电谐振器134的电极136以及金属端139和140相接触。
把另外的压电谐振器151和152叠合在压电谐振器141上。压电谐振器151在电极结构方面类似于压电谐振器141。在不与压电谐振器134和141的电极136和143以及金属端139、140、147和148进行电接触的位置上形成该压电谐振器151的金属端153和154。再者,把金属端153和154分别电连接到在基底132上提供的端电极133c和133b上。另一方面,以类似于压电谐振器135的方式形成压电谐振器152。至于键合到压电谐振器152的金属端电极155和156,举例来说,把金属端电极155电连接到端电极133e。
在按照第六实施例的芯片型压电谐振元件中,以上述方式形成压电谐振器134、141、151和152,由此如在图31中示出的通过在基底132上对各个压电谐振器134、141、151和152的金属端139、140、147、148、153、154、155和156进行相互间的电连接可形成一种二级梯形滤波器。
尽管如以上所描述的在第六实施例中通过金属端139、140、147、148、153、154、155和156来固定压电谐振器134、141、151和152。但在另一种方式下可通过导电胶粘剂(与上述第一至第六实施例类似)在基底132上叠合这些压电谐振器134、141、151和152。
虽然在涉及第六实施例时未对顶盖部件进行说明,但是以与第一实施例类似的方式把一个顶盖部件(见图1)固定到基底132上用于密封压电谐振器134、141、151和152的多层结构。
第七实施例图33是说明按照本发明的一个第七实施例的一种芯片型压电谐振元件的一个分解透视图。本实施例适用于一种具有内在电容的三端压电振荡器,该振荡器具备一个利用一种宽度伸缩模式的能量陷阱型压电谐振器和二个电容器。按照本实施例,不把这个利用一种宽度伸缩模式的压电谐振器固定到一个基底上,而是把它固定到一个用于形成电容器的介电衬底上。
参照图33,在由一种绝缘材料制成的一个矩形基底161上形成端电极162a至162c。沿该基底161的短边边缘形成端电极162a和162c,同时在该基底161的一个中心区域上形成平行于短边边缘的端电极162b。再者,在该基底161的侧表面内形成槽口161a至161f。形成端电极162a使之到达槽口161a和161d。类似地,形成端电极162b使之到达槽口161b和161e的内缘表面,同时形成端电极162c使之到达槽口161c和161f的内缘表面。把用于形成电容器的一个介电衬底163固定在基底161上。把一对用于得到静电电容的电容性电极164a和164b以一个规定的距离排列在介电衬底163的一个上表面上。另一方面,在该介电衬底163的一个下表面的一个中心部分上形成另一个电容性电极164c。形成电容性电极164c使其通过介电衬底163与电容性电极164a和164b重叠。这样一来,由电容性电极164a和164c互相相对的部分形成一个第一电容器,而且由电容性电极164b和164c互相相对的部分形成一个第二电容器。
形成电容性电极164a和164b使之从介电衬底163的上表面通过侧表面向下表面延伸。在介电衬底163的下表面上,以规定的离开电容性电极164c的距离排列电容性电极164a和164b,使之与电容性电极164c脱离。
介电衬底163在平面形状方面小于基底161。为了固定介电衬底163,把导电胶粘剂165a至165c加到基底161上。导电胶粘剂165a适合于使在基底161上提供的端电极162a与介电衬底163的电容性电极164a的到达下表面的一部分相键合。类似地,导电胶粘剂165b适合于使端电极162b与电容性电极164c相键合进行电连接。再者,导电胶粘剂165c使到达介电衬底163的下表面的电容性电极164b固定到端电极162c上并与其进行电连接。
导电胶粘剂165a至165c可以由其它的导电粘合剂(如焊料)来代替。
按照本实施例,把一个利用一种宽度伸缩模式的能量陷阱型压电谐振器166固定到介电衬底163上。以类似于在图26中示出的压电谐振器113的方式形成压电谐振器166。也就是说,在一个矩形板型压电衬底167的上、下表面上形成谐振电极168和169,压电衬底167具有能激励宽度伸缩模式振动的一种形状。通过金属端170和171把压电谐振器166固定到介电衬底163上。正如以一种放大了的方式在图34中示出的,金属端170具有一个矩形板型固定部分170a。形成固定部分170a使之具有一定的面积,将其键合到电容性电极164a上。提供一个压电谐振器支撑部分170c使之从固定部分170a的一个侧边开始延伸并且确定一个从侧面看时是U型的空间170b。所选择的空间170b的高度是可以把压电谐振器166容纳在空间170b内并可以使金属端170与在压电谐振器166上提供的谐振电极168进行加压的接触。另一方面,确定固定部分170a的尺寸使其不与在压电谐振器166的下表面上提供的谐振电极169(图33)进行电连接。以与金属端170类似的方式形成另一个金属端171。通过金属端170和171把压电谐振器166固定到介电衬底163上,通过导电胶粘剂分别把金属端170和171键合到电容性电极164a和164b上。在另一种方式下,可把金属端170和171分别焊到电容性电极164a和164b上。
按照本实施例,把介电衬底163和压电谐振器166叠合并固定在基底161上,并且在此之后把一个顶盖部件172安装并固定在基底161上,这一点与第一至第六实施例的情况类似。顶盖部件172可以由一种绝缘材料(如合成树脂)或一种导电材料(如一种金属)制成。当顶盖部件172由一种导电材料制成时,可通过一种绝缘胶粘剂把顶盖部件172固定到基底161上,或通过一个导电胶粘剂将其只键合到一个连接到一个地电位的端电极(如端电极162b)上并将其固定。
第八实施例图35是说明按照本发明的一个第八实施例的一种芯片型压电谐振元件的一个分解透视图。本实施例适用于一种梯形滤波器,该滤波器具有二个利用一种宽度伸缩模式的、作为并联谐振器的能量陷阱型压电谐振器和二个利用一种长度模式的、作为串联谐振器的压电谐振器。在本实施例中,也通过金属端把压电谐振器固定到一个基底上,这一点与第六实施例类似。
在一个基底261上形成端电极261a至261d。再者,在该基底261的一个上表面的角部上形成虚拟电极261e和261f。此外,在该基底的上表面上形成一个连接电极261g。
把利用一种长度模式的压电谐振器262和263通过金属端264a、264b、265a和265b固定到基底261上。图37是显示金属端264a和264b的一个放大的透视图。
利用一种长度模式的压电谐振器262和263中的每一个都包括一个长矩形的压电板和在该板的二个主表面上提供的谐振电极,当在该主表面上提供的谐振电极间加一个交变电压时该压电谐振器产生伸缩振动,这一点在本领域中是大家所熟知的。再者,此种利用一种长度模式的压电谐振器262和263在其中心部分具有振动节点。因而,通过焊料或导电胶粘剂在压电谐振器262和263的纵向中心部分处把金属端264a至265b键合到谐振电极上。
通过焊料或一种导电胶粘剂把金属端264a键合到在基底261上提供的端电极261a上。通过焊料或一种导电胶粘剂把金属端264b键合到连接电极261d上。也通过焊料或一种导电胶粘剂把金属端265a键合到连接电极261d上。再者,通过焊料或一种导电胶粘剂把金属端265b键合到端电极261c上。
如以上所描述的,通过焊料或导电胶粘剂把金属端264a至265b键合到基底261上提供的端电极261a和261c以及连接电极261d上,由此把压电谐振器262和263固定到基底261上并使其与在基底261上提供的电极261a至261d进行电连接。
通过具有规定厚度的金属板来形成金属端264b和265b。因此当把压电谐振器262和263固定到基底261上时,以一个规定的距离把其下表面与基底261的上表面分离开。因而当通过金属端264a至265b固定压电谐振器262和263时,压电谐振器262和263的振动几乎不受到抑制。
另一方面,把利用一种宽度伸缩模式的压电谐振器266和267叠合在压电谐振器262和263上。通过金属端268和269把压电谐振器266固定到基底261上,以使其下表面通过一个规定厚度的一个间隔与压电谐振器262和263的上表面分离开。选择金属端268和269(见图36B)的垂直延伸部分的长度使之确定在压电谐振器266的下表面和压电谐振器262和263的上表面之间的规定厚度的间隔,由此使振动能进行。
至于压电谐振器267,所选择的金属端270和271的垂直延伸部分的长度是在固定到基底261上时使压电谐振器267的一个下表面不与压电谐振器266的上表面接触。
这些压电谐振器266和267在结构方面类似于在图26中示出的上述利用一种宽度伸缩模式的压电谐振器。
如在图36B中所示形成金属端268和269,同时如在图36A中所示形成金属端270和271。
分别将金属端268和269键合到端电极261c和261d上并与其连接。另一方面,分别将金属端270和271键合到端电极261b和连接电极261g上。通过焊料或导电胶粘剂把这些金属端268至271键合到端电极261b至261d和连接电极261g上。这样就把压电谐振器266和267固定到基底261上。
按照本实施例,把一个顶盖部件272固定到基底261上。以与第一至第六实施例中的情况相类似的方式形成顶盖部件272,并以类似方式将其固定到基底261上。
按照第八实施例,以上述方式将四个压电谐振器262、263、266和267电连接到在基底261上提供的端电极261a至261d和连接电极261g。这样一来,由于四个压电谐振器262、263、266和267的此种排列,可使本实施例用作一种如图38中所示出的二级梯形滤波器。
在上述实施例的每一个中,根据具体情况,通过导电胶粘剂或焊料的键合法可以由一种焊接法(如电阻焊接)来代替。
虽然已对本实施例作了详细的描述和说明,但不用说这些只是作为说明和实例,不能被视作限定,本发明的精神和范围只由下面所附的权利要求书的各项来限定。
权利要求
1.一种芯片型压电谐振元件,其特征在于包括一个基底;一个直接地或间接地被固定到所述基底上的压电谐振器,所述压电谐振器具备一个压电谐振部分,所述压电谐振部分具有一种矩形截面形状,所述压电谐振部分的一对短边和一对长边的边长的比值被设置在满足下述等式的一个值附近±10%的范围内b/a=n(-1.47σ+1.88)…(1)(n整数)式中假设a和b分别表示所述短边和长边的长度,σ表示形成所述压电谐振器的材料的泊松比;以及一个被固定到所述基底用于密封被固定到所述基底的所述压电谐振器的顶盖部件。
2.权利要求1中所述的芯片型压电谐振元件,其特征在于所述压电谐振器还包括一个被连接到所述压电谐振部分的支撑部分,所述压电谐振器在所述支撑部分处被固定到所述基底。
3.权利要求1或2中所述的芯片型压电谐振元件,其特征在于,还包括用于通过一个规定厚度的一个间隙把所述压电谐振部分固定到所述基底的间隙形成装置。
4.权利要求3中所述的芯片型压电谐振元件,其特征在于上述间隙形成装置是一种用于把所述压电谐振器固定到所述基底的胶粘剂。
5.权利要求3中所述的芯片型压电谐振元件,其特征在于还包括一个在所述基底上形成的用于与外部连接的端电极,所述间隙形成装置是一个使所述压电谐振器与所述端电极进行电连接的金属端。
6.权利要求4中所述的芯片型压电谐振元件,其特征在于还包括一个在所述基底上形成的端电极,所述胶粘剂是一种使所述端电极与所述压电谐振器进行电连接的导电胶粘剂。
7.权利要求1至6中的任一项中所述的芯片型压电谐振元件,其特征在于把多个所述压电谐振器互相叠合但不互相抑制所述压电谐振部分的振动。
8.权利要求7中所述的芯片型压电谐振元件,其特征在于通过所述多个压电谐振器形成一种滤波器电路。
9.权利要求1中所述的芯片型压电谐振元件,其特征在于把所述压电谐振器固定到一个已固定到所述基底上的平板型部件上,由此把所述压电谐振器间接地固定到所述基底上。
全文摘要
在一种芯片型压电谐振元件中,把一个压电谐振器(3)固定到一个基底(2)上,而且把一个顶盖部件(4)固定到基底(2)上用于密封该压电谐振器(3)。压电谐振器(3)具备上、下表面,该上、下表面的短边和长边的长度a和b的比值被设置在满足下述等式的一个值附近的±10%的范围内b/a=n(-1.47σ+1.88)…(1)(n整数)假设σ表示一种压电材料的泊松比。
文档编号H03H9/125GK1121277SQ9510813
公开日1996年4月24日 申请日期1995年6月29日 优先权日1994年10月17日
发明者开田弘明 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1