图象摄取设备的制作方法

文档序号:7957450阅读:122来源:国知局
专利名称:图象摄取设备的制作方法
技术领域
本发明的领域本发明涉及用于摄取一个对象图象的图象摄取设备。
相关的
背景技术


图1显示了一种传统的固态图象摄取元件的设置的一个例子,其中具有光电转换单元的象素得到两维排列。参见图1,一个象素101具有诸如光电二极管的光电转换单元。用于摄取一个对象图象的一个象素区100通过以两维的方式排列这样的象素而形成。
来自一个象素的信号被输出到一个纵向信号线103。一个保持电容器104暂时存储输出至纵向信号线103的信号。一个传送MOS晶体管105把输出至纵向信号线103的该信号传送到保持电容器104。一个传送MOS晶体管106把来自保持电容器104的一个信号传送到一个水平信号线107。
一个纵向扫描电路108进行控制,以通过沿着水平方向依次每次扫描一行的象素,而从至纵向信号线的各行上的象素读出信号。一个水平扫描电路109,通过控制传送MOS晶体管106,依次从至水平信号线107的保持电容器104读出信号。一个复置MOS晶体管110对水平信号线进行复置。一个恒定输出电流源107与包括在该象素中的晶体管一起形成了一个源跟随器。
以下描述这种传统固态图象摄取元件的滤色器的设置。图2显示了这种设置的一个例子,它包括一个透射红光的第一滤色器201、一个透射绿光的第二滤色器202、以及一个透射蓝光的第三滤色器203。与两维排列的象素相应地,第一和第二滤色器在从第一列开始的奇数列中交替地排列,且第二和第三滤色器在从第二列开始的偶数列中交替地排列。第二滤色器被这样地设置,即它们在奇数和偶数列中沿着水平方向不彼此相邻。
一般地,如图3所示,与各个象素相应的微透镜被用来提高固态图象摄取元件的灵敏度。图3显示了其上形成有微透镜的固态图象摄取元件的一个单元象素的断面结构。一个单元象素300(对应于图1中的一个象素101)包括一个光电转换单元301、绝缘层302、互连层303和304、遮光层305、钝化层306、平整层307和309、滤色器层308、以及微透镜310。每一个微透镜都具有直径a和厚度b。这种微透镜改善了入射光的聚焦效率,以实现高灵敏度。
以下结合图4描述微透镜的一种通用制造方法。滤色器层408的上层覆有透明树脂409以使表面平整。所产生的表面随后被覆上用一种有机树脂制成的微透镜材料410。该微透镜材料被形成图案以借助一种掩膜进行曝光。各个图案具有尺寸a’。该微透镜材料具有厚度b’。如图4所示,通过显影形成了用于分隔微透镜的间隔411。所产生的结构通过加热处理而被流化和固化,从而形成所希望的微透镜。
如上所述,根据这种传统的固态图象摄取元件,在象素101中设置有多个滤色器,如图2所示。
然而,根据这种方法,在具有象素节距为10μm的640(水平)象素×480(纵向)象素的固态图象摄取元件中,用于提供标准视场角的各个透镜的焦距为8mm,它等于固态图象摄取元件的宽度。
因而,如果利用这样的固态图象摄取元件制造诸如数字摄象机的图象摄取设备,设备的厚度的减小受到了不利的限制。
可获得的有一种传统的固态图象摄取元件,其中为具有光电二极管并被形成在一个单个的芯片上的各个象素形成了微透镜,来自获得对象的光通过相应的微透镜而被聚焦在光电二极管上,且来自各个象素的输出信号受到一种图象处理单元的处理,从而形成一个图象。
图5是显示一种传统CCD图象摄取元件的一个光电二极管和微透镜的周边部分的剖视图。图6显示了用硅等制成的一个基底21、形成在基底21上的一个光电二极管22、形成在形成有光电二极管22的基底21上的一个氧化层29、用多晶硅制成的一个三层互连23-用于传送光电二极管22所转换的电荷的一个时钟信号被传送到该互连、用钨等制成的遮光层24-它主要遮蔽射向形成在互连23之下的一个电荷传送纵向CCD寄存器VCCD的光、一个用SiO2等制成的第一钝化层25和一个用SiON基材料等制成的第二钝化层30-它们保护光电二极管22等不受外界空气(O2、H2O)和杂质离子(K+,Na+)等的影响、用一种有机材料制成并用于减小第二钝化层30上的凹下/突出的平整层26、以及形成在平整层26上并用于把来自一个对象的光会聚到光电二极管22上的一个微透镜27。
在图5所示的固态图象摄取元件中,光电二极管22通过离子注入等而被形成在基底21上,且三层互连23用介电中间层构成。遮光层24也用介电中间层形成。在此情况下,遮光层24覆盖了互连23从而防止光照射到纵向CCD寄存器VCCD上。
随后,第一钝化层25被形成在遮光层24上,以保护光电二极管22不受外界空气和水份的影响。第二钝化层30随后被形成在第一钝化层25上。由于根据遮光层24的形状而在第二钝化层30上形成了具有约7000埃的高度差的凹下/突出部分,平整层26被形成以减小这些凹下/突出部分。更具体地说,第二钝化层30的上表面覆有一种有机材料,且该有机材料通过借助热量的回流(reflow)而被平整化,从而形成了相对于第二钝化层30的突出部分具有约1μm的厚度的平整层26。
以此方式形成的平整层26的上表面与光电二极管22的上表面之间的距离约为4至6μm。微透镜27随后被形成在平整层26上,从而制成了如图5所示的固态图象摄取元件。
图6是显示一种MOS图象摄取元件的光电二极管和微透镜的周边部分的剖视图。参见图6,一个悬浮扩散区32是光电二极管22所转换的电荷的传送目的地,一个传送栅极31控制着光电二极管22所转换的电荷的传送,且一个可选的氧化层33得到形成以与相邻的图象摄取元件相隔离。
在图6中,与图5中相同的标号表示相同的部分。在此元件中,形成了一个单层的互连23,且遮光层24用铝制成。该固态图象摄取元件用与图5所示的元件相同的过程制成。
然而,根据传统的CCD图象摄取元件,从遮光层的上表面至氧化层的上表面的距离长达7000埃。因而,如果光倾斜地入射到微透镜上,在某些情况下这些光被聚焦到遮光层上而不是光电二极管上。如果光未被微透镜聚焦到光电二极管上,光电二极管的光灵敏度会恶化,或者会发生遮光。
传统MOS图象摄取元件的象素尺寸比CCD图象摄取元件的大,因而允许增大光电二极管的一边的宽度。因而即使光倾斜入射到微透镜上,这些光也被聚焦到光电二极管上。然而,由于近来减小CMOS检测器的象素的尺寸的要求,正在形成尺寸比传统的光电二极管小的光电二极管。更具体地说,光电二极管的各边的长度已经从约3μm减小至1.5μm。随着光电二极管尺寸的减小,如在CCD图象摄取元件中,光被微透镜聚焦到遮光层上。这会造成光电二极管的灵敏度的恶化和光遮蔽的发生。
为了实现上述目的,根据本发明的一个范围,提供了一种图象摄取设备,它包括多个象素区,这些象素区被设置在一个单个的半导体芯片上以便以一个预定的间隔彼此相邻,每一个象素区都具有两维排列的象素,每一个象素都具有一个光电转换单元;以及,多个用于对光进行成象的微透镜,其中该多个微透镜被形成在该多个象素区上并且还被形成在该多个象素区之间的预定间隔中。
本发明的第二个目的,是防止光电转换单元的灵敏度的恶化和光遮蔽的发生。
为了实现上述目的,根据本发明的另一个范围,提供了一种图象摄取设备,它包括一个光电转换区,用于把光转换成电荷;一个钝化层,用于保护该光电转换区;以及,与该钝化层相接触地形成的微透镜,用于把入射光会聚到光电转换区上,其中钝化层的表面被平整化,且微透镜被形成在该平整化的表面上。
从以下结合附图的详细描述,本发明的上述和其他的目的、特征和优点将变得显而易见。
最佳实施例的描述图7是显示根据本发明的第一实施例的一种固态图象摄取元件的剖视图。
一个固态图象摄取元件1借助CMOS处理等而被形成在一个单个的半导体芯片上并具有以下的设置。
象素区2a至2d用于摄取一个对象图象。在各个象素区中,象素以两维方式排列。为各个象素区提供了成象系统(透镜),这些成象系统得到适当设计以摄取相同的对象图象(见将要在以下描述的图5)。各具有主要透射绿光的频谱透射性质的滤色器(以下被称为G滤色器)3a和3c),被形成在象素区2a和2c的前方。具有主要透射蓝光的频谱透射性质的一个滤色器(以下称为B滤色器)3b被形成在象素区2b之前。具有主要透射红光的频谱透射性质的一个滤色器(以下称为R滤色器)3d被形成在象素区2d之前。
不同的彩色信号从相应的象素区得到输出。通过结合这些信号而形成一个彩色图象。
在象素区的周边区域(包括象素区之间的区域)以及在这些象素区中,形成有一个区3,在区3形成有滤色器。为各个象素提供有一个微透镜。在象素区之间的区域中和在象素区的周边区域中以及在这些象素区中,形成有一个区4,在区4中形成有微透镜。
以下结合图8详细描述上述多个象素区2a至2d和它们的周边区域。
一个象素10(将要在以下详细描述)包括诸如一个光电二极管的光电转换单元。一个信号通过一条纵向信号线11而被从一个象素读出。例如,一个纵向扫描电路12,复置和选择沿着水平方向的一条线上的象素,并沿着纵向方向依次扫描一条线。一个控制线13被用来把复置脉冲、选择脉冲等从纵向扫描电路12传送到象素。一个负载电流源14与一个MOS晶体管(将要在以下描述)一起形成了一个源跟随器,用于放大和读出包含在一个象素中的信号。一个保持电容器15存储来自一条线上的象素的信号。一个传送MOS晶体管16用于把一个信号从一个象素传送到该保持电容器。一个传送MOS晶体管17把一个信号从该保持电容器传送到一个水平信号线18。一个水平扫描电路19对传送MOS的传送进行控制,以把信号从保持电容器依次传送到水平信号线18。一个放大器20放大和输出来自一个水平信号线的信号。一个复置MOS晶体管21提供一个复置电平以对水平信号线进行复置。
根据该实施例,相邻的象素区中的最外的象素之间的距离被设定为大于各个象素区中的象素的节距。
图9用于详细说明图8中的象素。
这种象素包括诸如一个光电二极管的一个光电转换单元31;一个源跟随器输入MOS晶体管32,用于通过一个栅极接收来自该源跟随器输入MOS晶体管32的一个信号并在对该信号进行放大之后从一个源极将其输出;一个复置MOS晶体管33,用于向该MOS晶体管的栅极提供一个复置电平;一个传送MOS晶体管34,用于把一个信号从光电转换单元31提供至该MOS晶体管的栅极;以及,一个选择MOS晶体管35,用于把一个预定电压提供到该MOS晶体管的漏极,从而向一条输出信号线输出与复置MOS晶体管33的栅极的信号电平相应的一个信号电平。
以下描述结合图8描述的固态图象摄取元件的操作。
首先,在多个象素区中的象素10按照线而被复置。随后,信号按照线而从包括在象素10中的光电转换单元31被传送到保持电容器15,且存储在保持电容器15中的信号被水平扫描电路19依次读出到水平信号线18。
结果,象素区2d的一条线的一个信号(R信号由通过主要透射红光的一个滤色器的光信号产生的信号)首先被从放大器20读出。象素区2c的一条线的一个信号(G信号由通过主要透射绿光的滤色器的光信号所产生的信号)随后被读出。随后,这样的操作被依次重复。
在上述操作被重复之后,象素区2a的一条线的信号(G信号由通过主要透射绿光的的一个滤色器的光信号所产生的信号)首先被从放大器20读出。象素区2b的一条线的一个信号(B信号由通过主要透射蓝光的滤色器的光信号产生的信号)随后被读出。随后,这样的操作被依次重复。
在上述实施例中,一个图象摄取元件被这样设置,即包括了一个纵向扫描电路。然而,本发明不限于这样的设置。相反地,可为象素区2a和2b设置一个纵向扫描电路且可为象素区2c和2数据设置另一个纵向扫描电路。根据这种设置,各个纵向扫描电路可以独立地得到扫描。另外,通过以这样的方式进行扫描,即象素区2c和2d的每一个的第一条线的信号被读出,且依次地象素区2a和2b的第一条线的信号被读出,则在各个象素区的相同的线(例如象素区2a至2d的第一条线)中的光-电荷的累积时间之间的差可以得到减小,因而能够获得质量更高的图象。
另一方面,各自由元件16至21构成的两个读出部分可被分别设置在例如象素区2a和2b一侧和象素区2c和2d一侧。这种设置也能够减小在各个象素区的相同的线(例如象素区2a至2d的第一条线)中的光-电荷的累积时间之间的差,从而提供质量更高的图象。
图10是沿着图8中的线10-10取的剖视图。
这种部分包括一个光电转换单元41、互连层42、绝缘层43、遮光层44、钝化层45、平整层46、G滤色器47、R滤色器48、和微透镜49。
如从图10可见,微透镜被形成在象素区2a与象素区2b之间的周边区域中。形成这些微透镜的理由如下。
图8中显示的象素区之间的距离b大于一个象素节距a。然而,如果距离b过度增大,固态图象摄取元件的芯片面积也过度增大。因而距离b不能增大得太多。
在周边区域中形成微透镜,防止了具有至象素区2b的入射角的光射到象素区2a。即,通过在周边区域中形成微透镜,以上述入射角入射到周边区域上的光在周边区域中被下向会聚。这使得可以阻止这些光进入象素区2a。
另外,滤色器和微透镜在周边区域中的形成,阻止了滤色器与在滤色器之间的边界部分的不均匀对象素区的影响,从而防止了灵敏度的恶化和灵敏度的反常。
图11显示了上述固态图象摄取元件与用于把来自一个对象的光形成为该固态图象摄取元件上的一个图象的透镜之间的关系。
一个透镜51a被用来在象素区2a上形成一个对象图象。一个透镜51b被用来在象素区2b上形成一个对象图象。一个透镜51c被用来在象素区2c上形成一个对象图象。一个透镜51d被用来在象素区2d上形成一个对象图象。
如上所述,根据本实施例,一个对象图象被分成多个对象图象,且这些对象图象在相应的象素区上得到摄取。因此,在此实施例中的各个象素区小于具有传统设置的一个固态图象摄取元件的象素区,且各个透镜的焦距能够得到减小。这使得可以形成具有减小的厚度的诸如数字摄象机的图象摄取设备。
上述的实施例示例性地显示了一个例子的结构。然而,可以采用另一种设置。例如,可以采用利用MOS晶体管以外的元件的一种设置。
另外,可以采用CCD来代替上述CMOS检测器。
在此实施例中,其中形成有微透镜和滤色器的区域是彼此相同的。然而,它们不一定要相同。
滤色器不限于上述的在芯片上的滤色器,且可以与半导体芯片分开地得到设置。滤色器的设置不限于上述的情况。例如,可以采用互补滤色器。
上述象素区没有光学黑象素。然而,可以象素区可包括光学黑象素。
该实施例示例性地显示了具有四个象素区的设置。然而,一个固态图象摄取元件可以具有三个象素区,即一个用于G滤色器的象素区、一个用于B滤色器的象素区、以及一个用于R滤色器的象素区。
图12是剖视图,显示了根据本发明的第二实施例的一种固态图象摄取元件的一个光电转换单元(诸如一个光电二极管)和微透镜的周边部分。图12所示的结构包括用硅等制成的一个基底21、形成在基底21上的一个光电二极管22、一个悬浮扩散区32,用作光电二极管22转换的电荷的传送目的地;一个传送栅极31,用于控制光电二极管22转换的电荷;一个选择氧化层33,用于与一个相邻的MOS图象摄取元件相隔离;形成在基底21上的一个氧化层29;用多晶硅或铝制成的一个互连23,用于传送光电二极管22转换的电荷等;用铝等制成的一个遮光层24,用于为晶体管遮光,并遮蔽悬浮扩散区32、选择氧化层33、用无机材料(无机化合物,诸如SiO2)制成的一个第一钝化层25并保护光电二极管22等不受外界空气、水份和杂质离子(诸如K+、Na+和H2O的杂质污染物)的影响;用诸如SiN和SiON的无机材料(无机化合物)制成的一个第二钝化层30,用作一个钝化层;以及,形成在第二钝化层30上的一个微透镜27,用于把来自一个对象的光会聚到光电二极管22上。
图12所示的固态图象摄取元件具有遮光层24,用于阻止光射到悬浮扩散区32、选择氧化层33和MOS晶体管上。因而,如果第一钝化层25被形成在遮光层24上,在遮光层24上形成了具有约7000埃的高度差的凹下/突出部分。
为了把微透镜27设置在一个平坦的表面上,形成了具有平坦上表面的第二钝化层30。更具体地说,第一钝化层25的上表面上覆有一种SiON基的材料,且所形成的表面借助CMP(化学机械抛光)而得到平整处理,从而形成了具有距第一钝化层25的突出部分约2000埃的厚度和距第一钝化层25的凹下部分约9000埃的厚度的第二钝化层30。
从以此方式形成的第二钝化层30的上表面至光电二极管22的上表面的距离约为2.5至3.5μm。微透镜27随后被形成在第二钝化层30上,以制造如图1所示的固态图象摄取设备。
如上所述,根据本实施例,由于第二钝化层30由SiO基材料制成,该层通过CMP而得到平整处理以把倾斜入射的光会聚到光电二极管22上而不形成任何平整层。
图13是显示根据本发明的第三实施例的一种固态图象摄取元件的的微透镜和光电二极管的周边部分的剖视图。参见图13,一个第三钝化层28由诸如一种SiO基材料的无机材料(无机化合物)制成。在图13中,与图12中相同的标号表示相同的部分。
根据图13所示的固态图象摄取元件,与图12中所示的元件一样,首先形成一个第一钝化层25,且随后在第一钝化层25上形成具有例如约2000埃的厚度的一个第二钝化层30。在第二钝化层30上形成第三钝化层28。更具体地说,第二钝化层30的上表面覆有一种SiON基材料,且所形成的表面通过CMP而得到平整处理,从而形成具有距第二钝化层30的突出部分约2000埃的厚度和距第二钝化层30的凹下部分约9000埃的厚度的第三钝化层28。
从以此方式形成的第三钝化层28的上表面至光电二极管22的上表面的距离约为2.7至3.7μm。随后在第三钝化层28上形成微透镜27,从而形成如图13所示的固态图象摄取元件。
如上所述,根据该实施例,通过借助CMP而形成第三钝化层28,倾斜入射到具有边长为1.5μm的光电二极管22的固态图象摄取元件上的光被会聚到光电二极管22上。
实际中,第一和第二实施例中采用的SiON或SiO基材料包括Si3N4、SiO2、等离子体SiON、等离子体SiN、等离子体SiO等。
图14是显示根据第四实施例的一种固态图象摄取元件的示意图,它具有对于根据第二和第三实施例的固态图象摄取元件特别有效的一种设置。图14所示的固态图象摄取元件被形成在一个单个的半导体芯片上。参见图14,这种元件包括象素905,它具有光电转换单元和图象摄取区901至904,即R、G1、G2和B图象摄取区,其中象素905以两维方式得到设置且图象被形成在其上。四个图象摄取区901至904以两维方式得到设置。图11显示了透镜与固态图象摄取元件之间的位置关系。
参见图14,纵向移位寄存器906a至906d控制着控制信号被提供至在相应的图象摄取区901至904中设置的相应象素905的时序,以根据来自各象素905的电荷而读出放大的信号。一个水平信号线909用于向各个象素905提供控制信号。一个纵向信号线912用于传送从各个象素905读出的放大信号。水平移位寄存器911a至911d控制着读出至各图象摄取区901至904的纵向信号线912的放大信号至一个外部处理电路的依次传送。
注意,R、G1、B和G2图象摄取区901至904在光学上被这样设计,即使得例如具有一个R滤色器的R图象摄取区901和具有一个B滤色器的B图象摄取区904被沿着对角线设置,且具有G1滤色器的G1图象摄取区902和具有G2滤色器的G2图象摄取区903被沿着对角线设置。
图15是显示各象素905的设置的等效电路图。图12和13是各象素905的剖视图。参见图15,一个光电二极管(光电转换单元)921对入射光进行光电转换。一个传送开关922把一个电信号传送到悬浮扩散区。一个复置开关924复置该悬浮扩散区中的电荷。一个MOS晶体管923被用来获得一个放大信号。一个选择开关925被用来从该MOS晶体管有选择地读出一个放大信号。
上述传送开关、复置开关、MOS晶体管、以及选择开关都受到从纵向移位寄存器906提供的信号的控制。
以下描述图14和15所示的设置的操作。首先,对象图象被一个图象摄取透镜分成四个图象,这四个图象随后被聚焦到相应的图象摄取区901至904上。当光入射到设置在相应图象摄取区901至904中的相应位置上的各光电二极管921时,产生了电荷。当各个传送开关922被接通时,各光电二极管921中的电荷被传送到各个悬浮扩散区。借助这种操作,各个MOS晶体管923的栅极通过这些电荷所导通。
当选择开关925的栅极-错助它放大信号的读出得到选择-被通过相应的水平信号线909而来自纵向移位寄存器906a至906d的控制信号所导通时,MOS晶体管923所获得的放大信号被读出至相应的纵向信号线912。注意在从其已经读出了放大信号的各个象素905中,复置开关924被导通以复置悬浮扩散区和光电二极管921的电位。
读出至相应纵向信号线912的放大信号,在各水平移位寄存器911的控制下,按照例如R图象摄取区901中的象素905、G1图象摄取区902中的象素、B图象摄取区904中的象素、以及G2图象摄取区903中的象素的顺序,被依次传送到处理电路(未显示)。
如图14所示,根据本实施例的固态图象摄取元件具有为各图象摄取区901至904设置的纵向移位寄存器906a至906d和水平移位寄存器911a至911d。在此设置中,控制信号从纵向移位寄存器906a至906d被同时提供至在相应位置的象素905,且从各象素905读出的放大信号通过水平移位寄存器911a至911d而被传送到处理电路。在此实施例中,分别形成在图象摄取区901至904中的滤色器位于微透镜之上(比微透镜更接近入射光侧),并与其上形成有微透镜的微透镜芯片分开设置。
如上所述,根据第二至第四实施例,由于通信与平整化的钝化层相接触地形成,各个微透镜与相应的光电二极管之间的距离能够得到减小。这种使得可以防止光电二极管的灵敏度的恶化和光遮蔽的发生。
图16是框图,显示了采用根据第一至第四实施例之一的固态图象摄取元件的、作为第五实施例的图象摄取设备的设置。参见图16,一个阻挡部分1001保护一个透镜并作为一个主开关。一个透镜1002(对应于根据第一和第四实施例的图11中的透镜51a至51d)用于形成一个固态图象摄取元件1004的一个对象的光学图象。一个光圈1003改变通过透镜的光量。一个固态图象摄取元件1004接收透镜1002形成的对象图象并输出一个图象信号。一个图象摄取信号处理电路1005进行诸如各种校正的处理并对从固态图象摄取元件1004输出的图象信号进行箝位。一个A/D转换器1006对从固态图象摄取元件1004输出的图象信号进行模拟/数字转换。一个信号处理单元1007对从A/D转换器1006输出的图象数据进行各种校正并压缩数据。一个时序发生器1008向固态图象摄取元件1004、图象摄取信号处理电路1005、A/D转换器1006和信号处理单元1007输出各种时序信号。一个系统控制和操作单元1009控制各种计算和一个总体静止/视频摄象机。一个存储单元1010对图象数据进行临时存储。一个记录介质控制I/F单元1011被用来把数据记录到一个记录介质上或从该记录介质读出数据。一个可分离记录介质1012是一个半导体存储器等等,数据被记录到其上或从其读出。一个外部接口(I/F)单元1013用于与一个外部计算机等进行通信。
以下描述图16中的设备的操作。当阻挡部分1001被打开时,主电源被接通,且控制系统的电源随后被接通。诸如A/D转换器1006的图象摄取电路的电源也被接通。为了控制曝光量,系统控制和操作单元1009打开光圈1003,且从固态图象摄取元件1004输出的一个信号通过图象摄取信号处理电路1005而被输出到A/D转换器1006。A/D转换器1006对该信号进行A/D转换并把所产生的数据输出到信号处理单元1007。信号处理单元1007根据该数据通过利用系统控制和操作单元1009而计算曝光量。
亮度根据这种光度计量的结果而得到确定,且系统控制和操作单元1009根据该结果对光圈进行控制。系统控制和操作单元1009通过从由固态图象摄取元件1004输出的信号提取高频分量而计算至对象的距离。随后,透镜受到驱动并检查透镜是否形成聚焦。如果判定透镜偏离聚焦,透镜再次受到驱动且距离测量被再次进行。
在确认处于聚焦状态之后,曝光得到开始。在曝光完成之后,从固态图象摄取元件1004输出的图象信号在图象摄取信号处理电路1005中受到校正等并被A/D转换器1006进行A/D转换。系统控制和操作单元1009通过信号处理单元1007把所产生的数据存储在存储单元1010中。随后,存储在存储单元1010中的数据,在系统控制和操作单元1009的控制下,通过记录介质控制I/F单元1011,而被记录在诸如半导体存储器的可取下记录介质1012中。这种数据可通过外部I/F单元1013而被直接输入到一个计算机等中,以受到图象处理。
在不脱离本发明的精神和范围的前提下,可以构成本发明的很多非常不同的实施例。应该理解的是,本发明不限于在本说明书中描述的具体实施例,而只由所附的权利要求书确定。
权利要求
1.一种图象摄取设备,包括设置在一个单个的半导体芯片上并以预定的间隔彼此相邻的多个象素区,各个所述象素区都具有两维排列的象素,每一个象素都具有一个光电转换单元;以及多个微透镜,用于对光进行成象,其中所述多个微透镜被形成在所述多个象素区上和在所述多个象素区之间的该预定间隔中。
2.根据权利要求1的设备,进一步包括适合于选择包括在该象素区中的一个象素的一个扫描电路,所述扫描电路被形成在该半导体芯片上该象素区不与其他象素区相邻的一边上。
3.根据权利要求1的设备,其中所述多个象素区包括至少第一、第二、和第三象素区,所述第一象素区接收来自一个对象的一种第一彩色分量,所述第二象素区接收来自该对象的一个第二彩色分量,且所述第三象素区接收来自该对象的一个第三彩色分量。
4.根据权利要求3的设备,其中该第一彩色分量是红色分量,所述第二彩色分量是绿色分量,且该第三彩色分量是蓝色分量。
5.根据权利要求1的设备,进一步包括用于对光进行成象的多个透镜,所述透镜与所述各个象素区相应地得到设置。
6.根据权利要求1的设备,进一步包括一个信号处理单元,它适合于通过对分别从所述多个象素区输出的信号进行合成而形成一个图象;一个时序发生器,它适合于驱动所述多个象素区和所述信号处理单元;以及一个控制和操作单元,它适合于对所述信号处理单元和所述时序发生器进行控制。
7.一种图象摄取设备,包括一个光电转换区,用于把光转换成电荷;一个钝化层,用于保护所述光电转换区;以及与所述钝化层相接触地形成的一个微透镜,用于把入射光会聚到所述光电转换区上,其中所述钝化层的一个表面得到平整化,且所述微透镜被形成在该平整化的表面上。
8.根据权利要求7的设备,其中所述钝化层用一种无机材料制成。
9.根据权利要求7的设备,其中所述钝化层通过化学机械抛光而得到平整化。
10.根据权利要求7的设备,其中所述钝化层用允许化学机械抛光的材料制成。
11.根据权利要求7的设备,其中所述钝化层用一种SiON基材料或SiO基材料制成。
12.根据权利要求7的设备,其中包括所述光电转换区的所述图象摄取元件是一个MOS图象摄取元件。
13.根据权利要求7的设备,进一步包括距一个光入射侧比所述微透镜更近的一个滤色器。
14.根据权利要求7的设备,进一步包括一个光学系统,它适合于把光成象到所述光电转换区上;以及一个信号处理电路,它适合于对来自所述光电转换区的一个输出信号进行处理。
全文摘要
提供了一种图象摄取设备,其中的每一个象素区都具有两维排列的象素,且每个象素都具有一个光电转换单元。该多个象素区被设置在一个单个的半导体芯片上从而通过一个预定的间隔而彼此相邻,且多个微透镜被形成在多个象素区上并在多个象素区之间的该预定间隔中。
文档编号H04N3/15GK1349120SQ0113576
公开日2002年5月15日 申请日期2001年10月17日 优先权日2000年10月17日
发明者板野哲也, 高桥秀和, 野田智之 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1