确定网络通信连接用的数据传送安全系数的方法和系统的制作方法

文档序号:7674051阅读:227来源:国知局
专利名称:确定网络通信连接用的数据传送安全系数的方法和系统的制作方法
技术领域
本发明涉及一种确定网络通信连接用的数据传送安全系数的方法和系统,在该方法和系统中发射机和接收机之间有网络通信连接的物理长度是已知的。特别是该方法涉及基于铜线线路的网络。
传统的电话网业务、也称为POTS(普通老式电话业务),通常通过互相纽绞的和称为纽绞线对的铜线连接家庭和具有电话网运营商的馈电分站的小企业。原本采用这种方式来保证模拟信号、特别是伴音和语音的传输。但是,这些要求以后随着因特网的出现而变化,并且改变了与此相连的数据流,并且在今天由于需要在家庭和/或办公室可用实时和多媒体进行工作,这些要求就变化更迅猛了。
数据网、譬如内部网和因特网更强烈地以所谓的共享媒体、也即面向分组的LAN(局域网)或WAN(广域网)技术为基础,不仅用于交换机和网关(Switches und Gates)之间的宽带干线,而且也用于带宽窄的本地网络通信连接。使用分组管理系统如桥或路由器已广泛地流行,以便将本地的LAN网与因特网连接。在此,因特网路由器必须有能力在基于不同的协议的情况下、譬如IP(因特网协议)、IPX(因特网分组交换)、DECNET、AppleTALK、OSI(开放系统互连)、SNA(IBM的系统网络体系结构)等等,相应地可传输分组。这种网络为能在世界范围分配分组所出现的复杂性,不仅对业务的供应商而且对所需硬件的制造商都是一种挑战。
常用的LAN系统在数据传送率约100Mbps时工作相当好。超过100Mbps的数据传送率时,在今天的大多数的网络中,为管理带宽的分配和用户访问的分配,网络管理器资源,如分组交换机就不够用了。当然,长期以来已认识到特别在短期的传输高峰时传输数字信息的基于分组交换的网络的可用性。这种网络通常为点-对-点结构,其中分组从一个单个的发送方传送到一个唯一的接收机,方式是通过使每个分组都至少包括宿主地址。对此典型的例子是一个IP数据分组的已知的IP报头。网络对数据分组的反应是进行处理,方式是通过它传送分组到所分配的报头的地址。对此,也可使用基于分组的网络传输需要连续的数据流的数据类型、譬如具有高质量的伴音或音频传输或视频传输。商业上使用网络也特别希望同时将基于分组的传输传到多个端点是可能的。对此有一个例子就是所谓的传输视频数据或音频数据的分组广播。由此,可实现所谓的付费电视、也即通过网络实现进行付费的广播传输视频数据。
在下一代应用中,譬如以其对任何时刻都必须保证的带宽的大得多的需求的实时应用和多媒体应用中,面向分组的网络却面临着其极限。这样,下一代网络应具有动态地重新配置该网络的可能性,以便可始终给用户保证有一个所要求的或统一的QoS参数(业务质量)的预定的带宽。这种QoS包括譬如在所有可能的终端系统之间的存取保证、存取性能、容错、数据安全等等。在此,新技术譬如ATM(异步传输模式)应当帮助在网络长期发展中建立专用内部网以及公共因特网所需的前提条件。这种技术预示着产生一种经济的和标定的解决方案用于这种借助QoS参数保障的高性能的通信连接。
未来系统的变化也特别涉及到数据流。在今天,通常数据流以服务器-客户机-模型为基础,也即数据由许多客户机传输到一个或多个网络服务器上,或从一个或多个网络服务器传输回来。客户机通常不建立直接的数据通信连接,而是它们通过网络服务器彼此通信。此外,这种类型的通信连接也具有其位值(Stellenwert)。尽管如此,可以预期以对等关系传输的数据集在将来会大大增加。因为网络的最终目标,为满足需求将确实是一种分散的结构,在该分散的结构中所有系统不仅作为服务器而且作为客户机起作用,所以数据流通过对等关系的通信连接在增加。由此,网络必须建立更多地直接通信连接通各个同级设备,其中譬如台式计算机通过干线因特网直接连接。
由此很清楚,保证用户有可预定的QoS参数和大的带宽将随着未来的应用而变得越来越重要。
为向终端用户进行数据传输,特别使用传统的公用电话网(PSTN公共交换电话网和/或PLMN公众陆地移动通信网),该传统的公用电话网原本设计的就是进行纯声音传输,并且不传输这种数字数据集。在此,当确定了电话业务的供应商或提供商可向用户保证QoS参数时,所谓的“最后里程”起决定性的作用。在公用电话网最后的分配站与终端用户之间的线段称为最后的里程。最后的里程极少由高效的光纤构成,而大多以通常敷设的铜线电缆如0.4mm或0.6mm芯径的电缆为基础。此外。电缆不是到处都深埋地下成为受保护的埋地线结构,而是也由架设在电线杆上的地上电线构成以及诸如此类。由此形成附加干扰。
确定最大QoS参数时的另一个问题是所谓的串音难题。在将信号调制到线路上时,譬如从终端用户到电话网运营商的分配站以及相反的情况都会出现这样的问题。为调制数字信号,在现有技术中已知采用譬如xDSL(数字用户线)技术,如ADSL(非对称数字用户线)、SDSL(对称数字用户线)、HDSL(高数据率DSL)、或VDSL(甚高速数字用户线)。所提到的串音是调制数据通过铜缆时出现的物理现象。在一根铜缆内的相邻的铜缆线通过电磁交变作用以成对的方式得到由调制解调器产生的分信号。这导致多个在相邻的导线上传输的xDSL调制解调器彼此干扰。应区分近端串音(Next)和远端串音(FEXT),近端串音(Next)说明在一端的发射机的信号对同一端的接收机的信号产生的非人为造成的信号耦合,远端串音(FEXT)说明传输到其它端的接收机上时信号产生的非人为造成的耦合,其中信号在传输时耦合到相邻铜对绞线的信号上,并且在接收机作为噪声出现。
尽管今天对xDSL串音的许多研究是可供使用的,譬如文献TR101830,2000年9月,ETSI(欧洲电信标准委员会)出版的“关于金属接入网的频谱管理;第一部分定义和信号文库”,但是由于串音现象的复杂性和剩余的噪声参数的复杂性,为在网络中对所确定的终端用户确定QoS参数,现在只有一些使用不多、技术上人工操作简单且便宜的辅助装置。在现有技术中,由不同的公司如Acterna公司(WGSLK-11/12/22,Eningenu.A.,)、特伦德(Trend)通信公司(LT2000线性测试器,www,trendcomms.com,英国白金汉希尔)等等,建议采用远程测量系统。在此,借助远程测量系统通过直接测量确定经过最后里程的最大传送率在一个电话网运营商(譬如在瑞士有几千个)的每个本地分配站上都安装一个数字信号处理器。借助该数字信号处理器可进行所谓的“单端测量”,因为用户在最后里程的另一端无须安装设备。但是,所述的测量借助“双端测量”原则上也是可能的。但是在此却必须在线路的两端安装测量设备。
然而,现有技术的缺点是由于在每个本地的分配站必须安装远程测量系统其中造成成本高和测量时不能确切知道测量不准确性或不知道误差等,因为测量只能单端进行并且为确定误差必须在两端测量。可是进行两端测量无论从既耗费人力和耗时,还是从费钱上都是不可行的。同样,在现有技术中,以其硬件或软件实现计算或预测网络通信连接的最大可能的比特率缺少各种算法。在数量很少的中心分配站安装远程测量系统代替本地终端分配站,表明测量带有如此大的不准确性,以致于为确定最大可能的数据通过率,不适合测量到一个终端用户的确定的线路。
本发明的一个任务是建议采用一种新方法、系统和计算机程序产品以确定网络通信连接的、不具有上述缺点的数据传送安全系数。特别是要能为所确定的用户或网络通信终端,快速灵活地确定所述的安全系数和/或最大比特率,无须作出技术上、人员上和财政上的过度的耗费。
按照本发明,特别可通过独立权利要求的部分达到这个目标。此外,其它优选的实施方案可由从属权利要求和说明中给出。
特别是通过本发明采用以下方式来达到这个目标,即为确定用于网络通信连接的数据传送安全系数,其中在发射机和接收机之间有一个需确定的网络通信连接的物理长度是已知的,功率谱在依赖于可能的调制解调器类型的传输频率的情况下借助功率测量装置测量,并且传输到一个计算单元的一个数据载体上,用该计算单元确定网络通信连接的不同物理长度和电缆芯径的衰减,并且在接收机上以衰减及功率谱为基础,将有效信号强度在分配给相应的物理长度和电缆芯径(也即电缆芯的直径)情况下,存储在计算单元的一个数据载体上的第一表中,噪声电平在分配给网络通信连接的相应的物理长度和电缆芯径情况下,存储在计算单元的一个数据载体上的第二表中,其中噪声电平借助计算单元在至少依赖于串音参数和干扰源数量的情况下,以功率谱为基础确定,计算单元借助高斯变换模块,在基于不同的数据传输调制和/或调制编码的第一表内的有效信号强度和第二表格内的相应的噪声电平,来确定用于预定比特率的数据传送安全系数,并在分配给网络通信连接的相应的物理长度和电缆芯径的情况下,存储在计算单元的一个数据载体上,计算单元借助至少一个或多个校正系数以所存储的数据传送安全系数为基础来确定有效的数据传送安全系数,并在分配给网络通信连接的相应的物理长度和电缆芯径的情况下,存储在计算单元的一个数据载体上,其中校正系数包括一个所存储的数据传送安全系数与有效的数据传送安全系数的平均差和/或包括一个用于校正均衡调谐的均衡系数,并且计算单元以所存储的有效的数据传送安全系数为基础,根据在发射机和接收机之间需确定的网络通信连接的已知物理长度,来确定相应的网络通信连接的数据传送安全系数。本发明此外还有优点,即所述的方法和系统第一次允许简单快速地确定数据传送安全系数,无须在此在技术上、人力上和时间上耗费巨大。特别是借助所提到的校正来校正测量不准确性,无须如在测量每个本地分配站中进行远程测量系统测量数据传送安全系数时和/或测量比特率时那样,必须校正在测量时未准确地知道测量不准确性、或未知的误差,那些误差通过一端(单端)是很难估测的,因为要确定误差必须进行两端测量。如上所述,在此与现有技术相比,耗费仍很小。这不仅适用于测量的实施,而且适用于必要装置的安装。
在改进的实施方案中,在依赖于ADSL-和/或SDSL-和/或HDSL-和/或VDSL调制解调器类型的传输频率情况下测量功率谱。可能的SDSL调制解调器类型在此可包括至少一个G.991.2调制解调器类型和/或ADSL调制解调器类型包括至少一个G9.992.2调制解调器类型。借助高斯变换模块可确定至少用于数据传输调制为2B1Q(2二进制、1四进制)和/或CAP(无载波幅度/相位调制)和/或DMT(离散多频音)和/或PAM(脉辐调制)的数据传送安全系数。还有,借助高斯变换模块可确定至少用于格式结构调制编码的数据传送安全系数。这个改进的实施方案其中所具有的优点是在xDSL调制解调器类型中,所提到的数据传输调制和格式结构调制编码中都使用常用的标准技术,该标准技术在市场上便于获得,并且不仅在欧洲而且在美国等国家都广泛应用。
在另一个改进的实施方案中,校正系数表达有关物理长度和/或电缆芯径的非线性关系,也即校正系数通过非线性函数譬如一个级数大于1的多项式函数表示。这个改进的实施方案其中还具有的优点是,用此可考虑和校正比用线性校正系数更复杂的关系。
另一个改进的实施方案包括一个计算机程序产品,该计算机程序产品可直接装在数字计算机的内部存储器内,并且包括,当所述的程序产品在计算机上运行时,用于执行按照前述的改进的实施方案步骤的软件代码段。这个改进的实施方案具有的优点是它允许本发明在技术上实现可简单地进行人工操作和无须安装大量设备就可使用。
特别是为确定网络通信连接的比特率其中在发射机和接收机之间一个网络通信连接的物理长度是已知的,在依赖于可能的调制解调器类型的传输频率的情况下借助功率测量装置测量功率谱,并且传输到一个计算单元的一个数据载体上,用所述的计算单元确定网络通信连接的不同物理长度和电缆芯径的衰减,并且在接收机上,以衰减及功率谱为基础将有效的信号强度在分配给相应的物理长度和电缆芯径的情况下,存储在计算单元的一个数据载体的第一个表中,噪声电平在分配给网络通信连接的相应的物理长度和电缆芯径的情况下,存储在计算单元的一个数据载体上的第二个表中,其中借助计算单元在至少依赖于串音参数和干扰源数量的情况下,以功率谱为基础确定噪声电平,借助高斯变换模块计算单元在基于不同的数据传输调制和/或调制编码的第一表内的有效信号强度和第二表内的相应的噪声电平来确定用于预定的数据传送安全系数的比特率,并在将该比特率在分配给网络通信连接的相应的物理长度和电缆芯径情况下,存储在计算单元的一个数据载体上,计算单元借助至少一个或多个校正系数以所存储的比特率为基础来确定有效的比特率,并将该比特率在分配给网络通信连接的相应的物理长度和电缆芯径的情况下,存储在计算单元的一个数据载体上,其中校正系数包括所存储的比特率与有效的比特率的平均差,和/或包括一个用于校正均衡调谐的均衡系数,并且计算单元以所存储的有效的比特率为基础,根据在发射机和接收机之间应确定的网络通信连接的已知物理长度,来确定用于相应的网络通信连接的比特率。这个改进的实施方案其中具有的优点,就是所述的方法和系统第一次允许简单快速地确定比特率,无须在此在技术上、人力上和时间上耗费巨大。特别是借助所提到的校正系数来校正不准确性,无须如由远程测量系统在本地每个分配站上,测量数据传送安全系数和/或比特率时那样,必须在测量时校正未准确地知道的、不同的不准确性、或未知的误差,那些误差通过一端(单端)测量是很难估测的,因为要确定误差必须进行两端测量。
在改进的实施方案中,在依赖于ADSL-和/或SDSL-和/或HDSL-和/或VDSL调制解调器类型的传输频率情况下,测量功率谱。可能的SDSL调制解调器类型在此可包括至少一个G.991.2调制解调器类型和/或ADSL调制解调器类型包括至少一个G.992.2调制解调器类型。借助高斯变换模块可确定用于至少数据传输调制2B1Q和/或CAP和/或DMT和/或PAM的数据传送安全系数。还有,借助高斯变换模块可确定用于至少为格式结构调制编码的数据传送安全系数。这个改进的实施方案其中所具有的优点是在xDSL调制解调器类型中、所提到的数据传输调制和格式结构调制编码中都使用常用的标准技术,该标准技术在市场上便于获得,并且不仅在欧洲而且在美国等国家都广泛应用。
在另一个改进的实施方案中,校正系数包括关于物理长度和/或电缆芯径的非线性关系,也即校正系数可通过非线性函数譬如一个级数大于1的一个多项式函数表示。这个改进的实施方案其中还具有的优点是,用此可考虑和校正比用线性校正系数更复杂的关系。
在另一个改进的实施方案中,借助高斯变换模块确定用于3dB和9dB之间的数据传送安全系数的比特率。这个改进的实施方案其中还有优点是,在3和9dB之间的范围允许接收满足最大要求的QoS参数。特别是所述的在3和9dB之间数据传送安全系数的范围允许其它的QoS参数的比特率达到最佳化。
在另一个改进的实施方案中,借助高斯变换模块确定用于数据传送安全系数为6dB的比特率。这个改进的实施方案其中还有相同的优点,如前面所述改进的实施方案那样。特别是如上述那样,6dB的数据传送安全系数允许其它的QoS参数比特率达到最佳化。
又另一个改进的实施方案包括一个计算机程序产品,该计算机程序产品可直接装在数字计算机的内部存储器内,还包括当所述的程序产品在一个计算机上运行时,用于执行按照前述的改进的实施方案的步骤的软件代码段。这个改进的实施方案具有的优点是它允许本发明在技术上实现可简单地进行人工操作和无须安装大量设备就可使用。
在此应确认,本发明除本发明所述的方法以外还涉及到实施该方法的系统和计算机程序产品。
下面将结合实例说明本发明的改进的实施方案。实施例通过下面的



图1示出了一个方框图,以方框图形式示出了按照本发明所述的系统的改进的实施方案的体系结构,以确定具有发射机10和接收机11之间的所确定的物理长度13的网络通信连接12的数据传送安全系数或比特率。
图2以方框形式示出了与近端串音(Next)51的串音相互作用,该近端串音(Next)51说明了在一端发射机10的信号50与在同一端接收机11上的信号50进行非人为造成的耦合,还示出了与远端串音(FEXT)52的串音相互作用,该远端串音(FEXT)52说明了在传输到其它端的接收机11时与信号50进行非人为造成的耦合,其中信号50在传输时与相邻的纽绞对铜线的信号50相耦合,并且信号50在接收机11上作为噪声出现。
图3以方框图形式在依赖于ADSL调制解调器的传输速率(比特率)的情况下,示出了网络通信连接的传输距离,如它用本发明所述的系统获得那样。在此,标记号码60和61标示不同的噪声环境。
图4以方框图形式示出了公用电话网(PSTN公用交换电话网)的所谓的最后的里程,如它典型地处于通向家庭的终端用户和通过公用电话网可达到的一个网络之间那样。
图1说明实现本发明所使用的体系结构。在采用所述的方法和系统确定网络通信连接用的数据传送安全系数和/或比特率的这个实施例中,在发射机10和接收机11之间具有需确定的网络通信连接12的物理长度13是已知的。把此物理长度可看成是有效的电缆长度、也即不是如所述的在发射机10和接收机11之间的空中距离。网络通信连接12应由一个模拟媒介物,如由铜线布缆组成。譬如在这个实施例中使用具有芯径为0.4或0.6mm的铜缆、如在公用电话网(PSTN公用交换电话网)的所谓的最后的里程典型地使用的铜缆那样。最后的里程在图4中以方框形式示出。标记号码70在此标志为通向一个网络的路由器,该路由器通过譬如10BT以太网77和公用交换电话网(PSTN)72与一个具有调制解调器的终端服务器71连接。调制解调器终端服务器71是一个DSL接入多路复用器(DSLAM)。如所提到的,标记号码72是一个公用交换电话网(PSTN),调制解调器终端服务器71譬如通过光纤78连接在该公用交换电话网(PSTN)上。还有,公用交换电话网79或者(rsp)调制解调器终端服务器71以典型方式通过同轴电缆79和通过电话盒73与个人计算机(PC)75的调制解调器74连接。在此,标记号码79是从电话网运营商的分配站到终端用户的上述所提到的所谓的“最后的里程”。由此,终端用户70用其PC可借助所述的通信连接直接访问路由器70。常用的电话铜线譬如可由2-2400对铜线组成。可是,还可设想有其它的模拟媒介物、特别是具有譬如其它芯径的铜缆。还必须明确地指出,网络通信连接12不仅分别可具有不同的直径或粗细度114、142、143、144,而且单个的网络通信连接由具有不同的芯径或粗细度的电缆组合构成,也即网络通信连接包括具有不同芯径的电缆的多根分电缆。
功率谱PSDModem(f)可借助功率测量装置20在依赖于可能的调制解调器类型101、102、103、104的传输频率f的情况下进行测量,并且转移到计算单元30的一个数据载体上。功率谱也称为功率谱密度(PSD),并且对于连续频谱所确定的带宽表示所确定的频率带宽的总能量除以所确定的带宽。用带宽相除相当于规一化。由此,PSD是一个依赖于频率f的函数,并用标准化方式以每赫兹瓦特标示。为在接收机11上借助功率测试装置20测量功率,譬如使用了简单的A/D变换器,其中在电阻上加电压。为了在譬如从终端用户到电话网运营商的分配站的线路12上调制数字信号和过程相反,都可使用不同类型的调制解调器。在现有技术中,譬如已知有xDSL技术(数字用户线),其两个主要代表性技术是ADSL(非对称数字用户线)和SDSL(对称数字用户线)。xDSL技术的其它的代表性技术有HDSL(高数据速率DSL)和VDSL(甚高速数字用户线)。xDSL技术是高度发展的调制样式,以便调制铜线上的数据或其它模拟传输媒体。xDSL技术有时也称为“最后里程技术”,正是因为它通常用来使最后的电话网分配站与办公室或家里的终端用户连接,并不用在各个电话网分配站之间连接。就此而言xDSL类似ISDN(综合业务数字网),以致于它可通过现有的铜线运行,两者都需要有一段通向电话网运营商的最近的电话网分配站的相当短的距离。但是,xDSL却提供比ISDN更高的传输速率。xDSL的数据传输速率可达32Mbps(bps比特/秒)的下行速率(在接收数据时的传输速率、也即在调制时的传输速率),并且可达从32kbps到6Mbps的上行速率(在发射数据时,也即解调时的传输速率),而ISDN在每个信道上支持数据率为64kbps.ADSL是一种最近很普及的技术用来通过铜线调制数据。ADSL支持数据传输速率为下行速率0-9Mbps、上行速率0-800kbps。ADSL称为非对称的DSL,因为它支持不同的上行速率和下行速率。与此相反,SDSL或对称的DSL称为对称的,因为它支持相同的上行速率和下行速率。SDSL允许传输数据达2.3Mbps。ADSL在铜缆的高频范围发射数字脉冲。由于这些高频在标准的声音传送时在听力范围(譬如说话声)是不使用的,所以ADSL譬如可通过同一条铜缆同时传输电话通话。ADSL在北美广泛流行,而SDSL是首先在欧洲发展起来的。ADSL象SDSL那样需要专门为此装设的调制解调器。HDSL是一种用于对称的DSL(SDSL)的代表性技术。对称的HDSL(SDSL)的标准现在为G.SHDSL,称为G.991.2,正象它作为国际标准由ITU(国际电信联盟)的CCITT(国际电报电话咨询委员会)开发的那样。G.991.2支持通过一条简单的扭绞线双绞铜线用192kbps和2.31Mbps之间的传输速率,接收和发射对称的数据流。G.991.2如此发展,以致于它包括ADSL和SDSL特性,并且支持标准协议如IP(因特网协议)、特别是IETF(因特网工程部任务组)的当前版本IPv4和IPv6或IPng,以及TCP/IP(传输控制协议)、ATM(异步传输模式)、T1、E1和ISDN.作为xDSL技术的最新的技术在这里VDSL(甚高速数字用户线)是应提到的。VDSL在短距离(通常为300-1500m)通过双绞线铜缆在13-55Mbps范围内传输数据。在VDSL中有效的是,距离越短,传输速率越高。作为网络的连接装置,VDSL将用户的办公室或家与相邻的光纤网络单元,所说的光纤网络转换单元(ONU)连接,该光纤网络单元可典型地与譬如一个公司的光纤干线网(干线)连接。VDSL允许用户通过标准的电话线路,访问具有最大带宽的网络。VDSL标准尚未确定。于是,就有一种具有基于DMT(离散的多频音)的线性编码模式的VDSL技术,其中DMT是一种与ADSL技术很相似的多载波系统。其它的VDSL技术还有一种基于正交幅度调制(QAM)的、与DMT相反很便宜的、所需能量少的线性编码模式。对于这种实施例,调制解调器类型包括ADSL-和/或SDSL-和/或HDSL-和/或VDSL调制解调器类型(101、102、103、104)。特别是,可能的SDSL调制解调器类型(101、102、103、104)包括至少一个G.991.2调制解调器类型,和/或ADSL调制解调器类型(101、102、103、104)包括至少一个G.992.2调制解调器类型。但是很清楚,列举的这些绝不限于本发明的保护范围,而是相反还可设想有其它的调制解调器类型。
用计算单元30可确定网络通信连接12的不同的物理长度13和电缆141、142、143、144的芯径譬如0.4mm或0.6mm的衰减H,并且基于衰减H(f)以及功率谱PSD(f),接收机11上的有效信号强度S(f),在分配给相应的物理长度13和电缆芯径D141、142、143、144的情况下,存储在计算单元30的一个数据载体上的第一表中。在此,衰减H(f、L、D)象有效的信号强度S(f)那样是一个与频率f有关的函数。由此,由发射机10发射的信号是PSDModem(f),而在接收机上还可得到一个有效的信号强度S(f)=PSDModem(f)H2(f、L、D)。噪声电平N(f)40在分配给网络通信连接12的相应的物理长度13和电缆芯径D141、142、143、144的情况下,存储在计算单元30的一个数据载体上的第二表中,其中噪声电平N(f)40借助计算单元30在至少依赖于串音参数Xtalktype类型和干扰源A数量的情况下,以功率谱PSD为基础来进行确定,也即N(f)=Σi,XtalktypePSDSModen(d)(f)Hxp(f,L,XtalktypeAi)]]>所述的总和其在网络通信连接的并行的通信连接上起作用的、与其Xtalktype有关的、随附标i对经过所有干扰调制(SModem)的求和。PSDModem(i)是第i个SModem调制解调器的功率谱。Hxp是依赖于串音的衰减。如上所述,串音问题是一个在调制数据时经过铜缆出现的物理现象。在铜缆内的相邻的铜线通过电磁变交作用成对地得到由调制解调器产生的分信号。这就导致在相邻的线上传输的xDSL调制解调器彼此干扰。作为物理效应的串音对于ISDN(频率范围达120kHz)是几乎可忽略的,但是对譬如ADSL(频率范围达1MHz)却是重要的,并且对VDSL(频率范围达12MHz)是一个决定性的因素。如所述,通常的电话铜导线由2-2400铜线组成。为了譬如可使用4对,在发射机上的数据流被分成多重并联数据流,并且在接收机处重新组合,这提高了有效的数据通过率达3倍。这将允许数据传输达100Mbps。在4对铜线的情况下,可对此附加地使用同样的4对铜线,以在相反的方向上同时传输相同的数据量。通过每对铜线进行的双向数据传输使可传递的信息容量加倍。在这种情况下,这与常规传输相比使数据传送率增加7倍,在常规传输中分别一个方向使用2对。如上所述,对于数据传输来说,串音噪声是一个很强的有限制性因素。作为串音卡(talktype)要区分近端串音(NEXT)51和远端串音(FEXT)52,该近端串音(NEXT)51说明从一端的发射机10的信号50到在相同一端的接收机10处的信号50进行的非人为造成的信号耦合,并且该远端串音(FEXT)52说明在另一端在传输到接收机11时信号50的非人为造成的耦合,其中信号50在传输时耦合到相邻铜线对的信号50上,并且在接收机11上作为噪声出现(参见图1)。一般出发点是NEXT 51只具有一个近端干扰源。由此,Xtalktype取决于地点和数据流(上/下行),也即Xtalktype(数据流/地点)。如果具有的铜线超过2条,通常就是这种情况(典型的是在2和2400线之间),则这不再适合上述成对地耦合。譬如对同时使用4对线的情况而言,所以现在有3个非人为造成的干扰源,该干扰源以其能量耦合到信号50上。在这种情况下,对A适用A=3。同样的情况也适用于FEXT串音52。
计算单元30借助高斯变换模块31在基于第一表上的有效信号强度S(f)和基于第二表上的相应的噪声电平R(f)情况下,对采用预定的比特率进行不同的数据传输调制和/或调制编码,来确定数据传送安全系数,并且计算单元30将数据传送安全系数在分配给网络通信连接12的相应的物理长度13和电缆芯径141、142、143、144的情况下,存储在计算单元30的一个数据载体上。利用第一表的有效信号强度S(f)和利用噪声电平N(f)可借助计算单元30确定信号S与噪声R的信噪比SNR,其中SNR≅exp(T∫-1/2T1/2Tln(Σn|S(f+n/T)|2ΣnN(f+n/T))df)]]>这个表达式只适用于CAP、2B1Q和PAM调制,但不适用于DMT调制。在下面将详细说明DMT。在此,T是符号间隔或奈奎斯特(Nyquist)频率的倒数的一半。奈奎斯特频率是尚能准确地取样的最可行的频率。奈奎斯特频率是半个取样频率,因为当对其频率大于半个取样频率的信号进行取样时,会产生非人为造成的频率。n是求和的指数。在实践中通常n从-1到1就够了。如果不够,则其它的最大值0、±1/T、±2/T等等可用于此,直到达到所需要的精度为止。此外,如上所述,数据传送安全系数取决于数据传输调制和/或调制编码。在这个实施例中,作为ADSL DMT调制(离散多频音技术)的例子,指出了譬如用于HDSL-调制解调器2B1Q(2二进制、1四进制)调制和CAP(无载波幅度/相位调制)调制的关系,和有关用于格式结构编码信号的调制编码的关系。但是也很清楚,本发明所述的方法和系统毫无困难也适用于其它的数据传输调制和/或调制编码譬如PAM(脉辐调制)等等。不仅2B1Q调制而且CAP调制在HDSL-调制解调器中得到应用,并具有一个预定的比特率。DMT调制在ADSL调制解调器中得到应用,并相反具有一个可变的比特率。CAP和DMT都使用相同的基本的调制技术QAM(正交幅度调制),尽管这种技术以不同的方式得到使用。QAM使两个数字载波信号占用同一个传输带宽。在此,使用两个独立的所谓的消息信号,以便调制两个载波信号,该两个载波信号频率等同,但幅度和相位不同。QAM接收机可区分是否需要数量小的和数量大的幅态和相态,以便将噪声和干扰譬如在铜线对上避开。已知2B1Q调制也称为“4电平脉幅调制”(PAM)。它用两个电压电平用于信号脉冲,不象譬如AMI(交替传号反转)使用一个电平。通过为此进行正和负电平的区分,就可得到一个4电平信号。最后,半比特按各两个组合在一起,每对对应于一个电压电平(因此为2比特)。由此,为发射相同的比特率如在双极性AMI那样在2B1Q中使所需的信号频率为一半。在用2B1Q或CAP调制的HDSL调制解调器中,具有数据传送安全系数与SNR的如下关系式Mc=SNRξ]]>在关系式中ξ可依赖于误码率(符号差错率)εs确定。对于LAN(IP)来说通常误码率εs=10-7就够了,也即每隔107比特平均传递出错。一些公司对其公司网络典型地要求达到εs=10-12。如果εs譬如达到传输的数据分组量(譬如10-3)的数量级,这就意味着相反每个分组平均必须传递两次,直到正确地到达为止。对于2B1Q调制来说,以下公式适用于εs譬如ϵs=2(1-1M)·Gc(3*ξM2-1)]]>用于非编码信号,和ϵs=2(1-1M/2)·Gc(3*ξ*100.4(M/2)2-1)]]>
用于格式结构编码信号,而以下适用于CAP调制ϵs=4(1-1M)·Gc(3ξM2-1)]]>用于非编码信号,和ϵs=4(1-1M/2)·Gc(3(ξ100.4)M2/2-1)]]>用于格式结构编码信号。
Gc对于两种编码来说用以下公式是互补的高斯函数具有Gc(x):=∫x∞12πe-x′2/2dx′]]>并且M对于2B1Q调制来说是一个用于2B1Q的具有M=4的瞬时值,而对于CAP调制来说M是一个组合量(Konstellationsgrsse)M×M。T如上那样是符号间隔或奈奎斯特频率的倒数的一半。对于具有DMT调制的ADSL调制解调器来说关系式不同。如所述,ADSL具有一个可变的比特率。这同样在Mc中显示出来了。适合于下式Mc=xref2(∫log2(1+ξ(f)xrefΓ)df)/Δf-12D/Δf-1]]>其中ξ(f)是信噪比S(f)/N(f)。Xref是在这个实施例中典型地选作为6dB的参考安全系数,也即Xref=100.6。可是还有作为参考安全系数Xref的其它值是可想象的。Δ(f)是用于传输的一个全频宽或全频带。积分对频率运算。D是比特率譬如以b/s(比特/秒)表示。Г是校正系数。在这个实施例中,Г譬如是Г=9.55。在这个实施例中,积分是对频率f实施运算的。类似于此,积分也可对时间或一个其它的物理量来实施运算,其中上面表达式必须相应地匹配。
一般来说,上述所获得的数据传送安全系数与实验不一致。因此,计算单元30借助至少一个校正系数在基于所存储的数据传送安全系数情况下确定有效的数据传送安全系数。对这个实施例来说,校正系数可如此选择,以致于在所获得的数据传送安全系数和有效的数据传送安全系数之间达到足够的。被认为是足够的一致,对这里譬如假定+/-3dB,其中也可设想其它的值。为获得这个最大的差+/-3dB,应确定两个参数。Mimp考虑通过制造商调制解调器是便于实现或不易实现。Mimp根据这样的事实引入,即具有可比较的硬件和相同的数据传输调制和/或调制编码的相同的调制解调器却可由不同的制造商在将模拟信号变换成数字信号时或相反,提供不同的结果,这对一个确定的网络通信连接来说涉及到其最大的比特率或其最大的作用距离。这就必须对数据传送安全系数进行校正。作为第二个参数还引入了Nint。Nint考虑了在调制解调器(模/数变换)中的量化噪声,以及考虑了在传输时均衡器的匹配可能不佳。如果在发射机10和接收机11之间实现了传输,则在调制解调器中均衡器使传输速率与网络通信连接的条件譬如线路衰减、相位失真等等都可借助训练序列进行匹配,该训练序列在两个通信连接的调制解调器之间送来送去。均衡器匹配不佳会导致结果失真和必须校正。对于线性均衡器譬如可使用下面的表达式SNRLinearEq=(T∫-1/2T1/2TdfXs(f))-1]]>与Xs(f)=Σn|Se(f+n/T)|2Ne(f+n/T)+1]]>其中SNRlinearEq是信噪比,Se是均衡器获得的信号,Ne是噪声,并且f是频率。对于判定反馈均衡器(DFE)譬如可使用如下表达式SNRDFE=exp(T∫-1/2T1/2Tln(Xs(f))df)]]>与Xs(f)=Σn|Se(f+n/T)|2Ne(f+n/T)+1]]>其中SNRlinearEq还是信噪比,Se如上所述是均衡器获得的信号,Ne是噪声,并且f是频率。计算单元30为确定SNRDFE譬如可使用下面近似公式
SNRDFE≅exp(T∫-1/2T1/2Tln(Σn|Se(f+n/T|2ΣnNe(f+n/T))df)]]>由此,有效的数据安全系数如下S(f)=PSDModem(f)H2(f、L、D)。噪声校正如下式N(f)=ΣlPSDSModem(i)(f)·Hxp2(f,L,D,xtalktypei,ni)+Nint]]>校正可在计算单元30中以硬件和软件方式在一个模块中实现。在此重要的是应指出在基于校正系数Nint情况下,用一个这样的模块引入一个可变的噪声系数,该可变的噪声系数譬如可考虑均衡调谐等等。这在现有技术中还尚未发现,并且其中还属于本发明的主要优点。通过如上所提到的附加到Nint的Eeff=Me-Mimp,考虑有效的数据传送安全系数Meff。Me和Nint的正确值可通过计算单元30与实验数据比较来得到。典型地计算单元30必须为此可访问不同实验的数据,以便在所要求的误差之内可正确地确定参数。借助因此包括所存储的数据传送安全系数与有效的数据传送安全系数相比的平均差的校正系数,如上所述,可确定有效的数据传送安全系数,并且同样在分配给网络通信连接12的相应的物理长度13和电缆芯径D141、142、143、144的情况下,存储在计算单元30的一个数据载体上。在此,要指出校正系数并非必须绝对是线性系数、也即常数,而同样也可包括具有非线性关系的校正函数。由此,各接应用也可考虑实验数据的复杂的差。借助具有数据传送安全系数的所存储的矩阵,根据发射机10和接收机11之间需确定的网络通信连接12的已知的物理长度13,最后在基于所存储的有效的数据传送安全系数的情况下,计算单元30确定所确定的网络通信连接12的数据传送安全系数。该数据传送安全系数如多次提到的是以dB给出的。值>0dB时,调制解调器典型地运行,而当值<dB时不运行。为保证良好、可靠地工作,选择作为下限譬如6dB是有意义的。可是,一般来说用其它数据传送安全系数作为下限譬如在3dB和9dB之间的值也是适用的。通过同一个装置用于ADSL调制解调器如从上述数据所得出的那样,代替具有数据传送安全系数的矩阵可相应地确定不同的网络通信连接譬如用于数据传送安全系数为6dB的比特率的矩阵。由此,为确定比特率的矩阵得出6dB=Meff。在HDSL调制解调器中,就此而言这并无意义,因为在HDSL中编码譬如2B1Q和CAP用恒定的比特率,在此譬如用2.048Mb/s工作。这种与ADSL调制解调器不同的原因在于,设计的HDSL系统只用于较高比特率的连接,并且只对安全性(SNR)感兴趣。
图3示出在依赖于ADSL调制解调器的传输速率(比特率)情况下,网络通信连接的传输距离。在此,标记号码60和61标志着不同的噪声环境。比特率如上所述以所存储的矩阵或表为基础来表示。
权利要求
1.确定用于网络通信连接的数据传送安全系数的方法,其中在发射机(10)和接收机(11)之间有一个需确定的网络通信连接(12)的物理长度(13)是已知的,其特征在于,功率谱在依赖于可能的调制解调器类型(101、102、103、104)的传输频率的情况下借助功率测量装置(20)进行测量,并且传输到一个计算单元(30)的一个数据载体上,用计算单元(30)确定网络通信连接(12)的不同的物理长度(13)和电缆芯径(141、142、143、144)的衰减,并且在接收机(11)上以衰减及功率谱为基础,将有效的信号强度在分配给相应的物理长度(13)和电缆芯径(141、142、143、144)情况下,存储在计算单元(30)的一个数据载体上第一表中,噪声电平(40)在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元的一个数据载体上的第二表中,其中噪声电平(40)借助计算单元(30)在至少依赖于串音参数和干扰源数量的情况下,以功率谱为基础来确定,计算单元(30)借助高斯变换模块(31)在基于不同的数据传输调制和/或调制编码的第一表内的有效信号强度和第二表内的相应的噪声电平来确定用于预定比特率的数据传送安全系数,并在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)情况下,存储在计算单元(30)的一个数据载体上,计算单元(30)借助至少一个校正系数以所存储的数据传送安全系数为基础来确定有效的数据传送安全系数,并且在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元(30)的一个数据载体上,其中校正系数包括所存储的数据传送安全系数与有效的数据传送安全系数的平均差,和/或包括一个用于校正均衡调谐的均衡系数,并计算单元(30)以所存储的有效的数据传送安全系数为基础,根据在发射机(10)和接收机(11)之间需确定的网络通信连接(12)的已知物理长度(13)来确定相应的网络通信连接(12)的数据传送安全系数。
2.按照权利要求1所述的方法,其特征在于,校正系数表达有关物理长度(13)和/或电缆芯径(141、142、143、144)的非线性关系。
3.按照权利要求1或2之一所述的方法,其特征在于,功率谱在依赖于ADSL-和/或SDSL-和/或HDSL-和/或VDSL调制解调器类型(101、102、103、104)的传输频率情况下进行测量。
4.按照权利要求3所述的方法,其特征在于,可能的SDSL调制解调器类型(101、102、103、104)包括至少一个G.991.2调制解调器类型,和/或ADSL调制解调器类型(101、102、103、104)包括至少一个G.992.2调制解调器类型。
5.按照权利要求1-4之一所述的方法,其特征在于,借助高斯变换模块(31)确定至少用于数据传输调制2B1Q和/或CAP和/或DMT和/或PAM的数据传送安全系数。
6.按照权利要求1-5之一所述的方法,其特征在于,借助高斯变换模块(31)确定至少用于格式结构调制编码的数据传送安全系数。
7.计算机程序产品,该产品可直接装在数字计算机内部存储器内,并且包括当该产品在计算机上运行时用于执行按照权利要求1-6之一步骤的软件代码段。
8.确定用于网络通信连接的比特率的方法,其中在发射机(10)和接收机(11)之间一个网络通信连接(12)的物理长度(13)是已知的,其特征在于,功率谱在依赖于可能的调制解调器类型(101、102、103、104)的传输频率的情况下借助功率测量装置(20)进行测量,并且传输到一个计算单元(30)的一个数据载体上,用计算单元(30)确定网络通信连接(12)的不同的物理长度(13)和电缆芯径(141、142、143、144)的衰减,并且在接收机(11)上,以衰减及功率谱为基础,将有效的信号强度在分配给相应的物理长度(13)和电缆芯径(141、142、143、144)情况下,存储在计算单元(30)的一个数据载体上第一表中,噪声电平(40)在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元的一个数据载体上的第二表中,其中噪声电平(40)借助计算单元(30)在至少依赖于串音参数和干扰源数量的情况下,以功率谱为基础来确定,计算单元(30)借助高斯变换模块(31)在基于不同的数据传输调制和/或调制编码的第一表内的有效信号强度和第二表内的相应的噪声电平来确定用于预定的数据传送安全系数的比特率,并且将该比特率在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元(30)的一个数据载体上,计算单元(30)借助一个校正系数以所存储的比特率为基础来确定有效的比特率,并且在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,有效的比特率存储在计算单元(30)的一个数据载体上,其中校正系数包括所存储的比特率与有效的比特率的平均差,和/或包括一个用于校正均衡调谐的均衡系数,并且计算单元(30)以所存储的有效的比特率为基础,根据在发射机(10)和接收机(11)之间需确定的网络通信连接(12)的已知物理长度(13)来确定用于相应的网络通信连接(12)的比特率。
9.按照权利要求8所述的方法,其特征在于,借助高斯变换模块(31)确定用于3dB和9dB之间的数据传送安全系数的比特率。
10.按照权利要求8所述的方法,其特征在于,借助高斯变换模块(31)确定用于数据传送安全系数6dB的比特率。
11.按照权利要求8-10之一所述的方法,其特征在于,校正系数表达有关物理长度(13)和/或电缆芯径(141、142、143、144)的非线性关系。
12.按照权利要求8-11之一所述的方法,其特征在于,功率谱在依赖于ADSL-和/或SDSL-和/或HDSL-和/或VDSL调制解调器类型(101、102、103、104)的传输频率情况下进行测量。
13.按照权利要求12所述的方法,其特征在于,可能的SDSL调制解调器类型(101、102、103、104)包括至少一个G.991.2调制解调器类型,和/或ADSL调制解调器类型(101、102、103、104)包括至少一个G.992.2调制解调器类型。
14.按照权利要求8-13之一所述的方法,其特征在于,借助高斯变换模块(31)确定至少用于数据传输调制2B1Q和/或CAP和/或DMT和/或PAM的比特率。
15.按照权利要求8-14之一所述的方法,其特征在于,借助高斯变换模块(31)确定至少用于格式结构调制编码的比特率。
16.计算机程序产品,该产品可直接装在数字计算机内部存储器内,并且包括当该产品在计算机上运行时用于执行按照权利要求8-15之一步骤的软件代码段。
17.确定用于网络通信连接的数据传送安全系数的系统,其中在发射机(10)和接收机(11)之间有一个需确定的网络通信连接(12)的物理长度(13)是已知的,其特征在于,所述的系统包括用于在依赖于可能的调制解调器类型(101、102、103、104)的传输频率的情况下,测量功率谱的一个测量装置(20),以及包括可将功率谱存储在其上的计算单元(30)的数据载体,计算单元(30)包括用于确定网络通信连接(12)的不同物理长度(13)和电缆芯径的(141、142、143、144)衰减的装置,其中在接收机(11)上,以衰减及功率谱为基础,将有效的信号强度在分配给相应的物理长度(13)和电缆芯径(141、142、143、144)情况下,存储在计算单元(30)的数据载体第一表中。计算单元(30)包括用于在至少依赖于串音参数和干扰源数量情况下,在频谱功率的基础上确定噪声电平(40)的装置,其中噪声电平(40)在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元的一个数据载体上的第二表中,计算单元(30)包括高斯变换模块(31),以在基于不同的数据传输调制和/或调制编码的第一表内的有效信号强度和第二表内的相应的噪声电平情况下,来确定用于预定的比特率的数据传送安全系数,其中数据传送安全系数在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元(30)的一个数据载体上,计算单元(30)包括一个校正模块,该校正模块借助至少一个校正系数以所存储的数据传送安全系数为基础来确定有效的数据传送安全系数,并且在分配给网络通信连接(12)的相应的物理长度(13)和电缆芯径(141、142、143、144)的情况下,存储在计算单元(30)的一个数据载体上,其中校正系数包括所存储的数据传送安全系数与有效的数据传送安全系数的平均差,和/或一个用于校正均衡调谐的均衡系数。
全文摘要
本发明涉及确定网络通信连接用的数据传送安全系数和/或比特率的方法和系统,其中在发射机(10)和接收机(11)之间有一个需确定的网络通信连接(12)的已知物理长度(13)。功率谱在依赖于可能的调制解调器类型(101、102、103、104)的传输频率的情况下借助功率测量装置(20)进行测量。为网络通信连接(12)的不同物理长度(13)和电缆芯径(141、142、143、144),确定衰减和由此而产生的有效的信号强度。此外,至少在依赖于串音参数、干扰源数量和均衡器系数的情况下,以功率谱为基础来确定噪声电平。借助高斯变换模块(31)在基于不同的数据传输调制和/或调制编码的有效信号强度和相应的噪声电平的情况下,来确定用于预定比特率的数据传送安全系数。数据传送安全系数借助校正系数进行校正,其中校正系数包括所存储的数据传输安全系数与有效的数据传送安全系数相比所得到的平均差。最后,以所存储的有效的数据传送安全系数为基础,根据在发射机(10)和接收机(11)之间的需确定的网络通信连接(12)的已知的物理长度(13),来确定相应的网络通信连接(12)的数据传送安全系数。
文档编号H04L1/20GK1613222SQ01823789
公开日2005年5月4日 申请日期2001年11月15日 优先权日2001年11月15日
发明者F·皮托德 申请人:瑞士电信固网公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1