级联视距自由空间通信系统的制作方法

文档序号:7718169阅读:204来源:国知局
专利名称:级联视距自由空间通信系统的制作方法
参照的相关申请本申请相关于较早于2001年2月22日提交的美国临时专利申请No.60/270,200,其名称为“级联视距自由空间通信系统”,并且要求该申请的优先权,该美国临时专利申请全文引用在此作为参考。
本发明的背景技术I、本发明的领域本发明总体上涉及无线通信系统,更具体地说,涉及一种使用自由空间通信的光学网络。
II、相关技术的描述电信系统调度中的最大挑战之一是最大化数据通信的速度和带宽给最大数量的目的地。每种通信技术都有其优点和缺点。有时,为了向各种用户提供通信服务,必然需要通信技术的结合。
有线通信系统具有可靠性,但是其配置代价高,并且在某些地理区域不可能配置。光纤通信系统引人注目,这种系统是有线通信系统的变型,具有更高的速度,但是在某些区域配置的代价还是非常高。另一方面,射频通信不需要象有线通信系统一样多的物理结构用于配置,但是由于某些地理区的干扰和衰减状况而使其可靠性差。人们最近研究自由空间光学通信,作为有线和无线通信技术的代替方案。然而,到目前为止还没有出现一种成本合算及可靠的自由空间光通信系统。
因此,人们期望提出一种通信系统和部件,其成本合算和配置灵活,并且能够向任何类型的目的地提供高带宽/数据速率的通信。
本发明概述简短地说,根据本发明的一个方面,提供一种通信系统,该通信系统包括自由空间光学网络。该自由空间光学网络包括至少两个彼此连接的光学转发器装置和至少一个与所述光学转发器装置之一连接的网关装置。所述光学转发器装置具有至少两个光学端口,每个光学转发器装置检测在一个光学端口的入射自由空间光信号,并将出射自由空间光信号转发到该端口或另一个光学端口。网关装置包括光学接口单元,该单元转接自由空间光学网络的自由空间光信号与电信号。
根据本发明的另一个方面,提出光学转发器装置的若干方案。所选择的光学转发器装置的类型取决于它在光学网络中的位置,以及网络中该位置处所需要的功能。光学转发器装置的一种基本方案包括两个连接在所述两个端口之间的光学转发器电路。每个光学转发器电路检测、放大和转发光信号。光学转发器装置的一个高级方案在转发之前采用已检测信号的相位调整。光学转发器装置的另一种高级方案包括光学接口单元(与更简单的光学转发器电路相比)和分组交换器,以便实现数据分组的媒体访问控制(MAC)层寻址。
在该通信系统的配置中,多个光学转发器装置在整个区域内级联以便转发光信号穿过它们将被接入的距离。一个接入装置设置在光学网络中,在其中,它是用来将来自该光学网络的数据分配到其他网络或装置,并收集来自其他网络或装置的数据以将其在所述光学网络上传送。该接入装置实质上是最高级光学转发器装置的增强方案,由此在该接入装置中的分组交换器被用来转接该光学网络装置和与该分组交换器上之接入端口连接的其他网络或装置之间的数据。
本发明的通信系统是成本非常合算的和灵活的。在该光学网络的任何位置处,一个网关装置可以被配置以接入该光学网络。而且,当期望分路该光学网络装置到几个其他网络(电、光、射频等)或装置时,一个接入装置被。该通信系统可以连接任何其他网络或装置,其利用普通电信号格式(光学网络的光信号与其相互转换)和另一网络或装置之物理媒体类型之间的适当接口。
该光学转发器装置更加基本的方案的一个可选特征是在光学转发器电路之间设置一个交换器,以便回送电信号,结果所述光学转发器电路之一中的光电检测器变得不起作用。这防止了信号的终止,并且便于通过该网络中另一个路径改道发送,使得数据能够到达其目的地。
本发明的另一个方面是在光学转发器装置的光学端口处使用的光学透镜系统。光学透镜系统包括用于接收和聚焦多个入射光束的入射透镜组件和出射透镜组件。入射透镜组件和出射透镜组件被设计为彼此配合如在彼此通信的光学转发器装置之间。入射透镜组件包括一个主物镜和一个或多个附加透镜、以及用来检测由入射透镜组件聚焦的光并且产生至少一个代表所述光的电信号的光电检测器。出射透镜组件产生多个光束,这些光束由另一个光学转发器装置上的入射透镜组件接收。出射透镜组件包括分束器,用于将出射光束分成多个相同的光束;多个光电检测器,每一个用于检测所述多个相同光束之一并且产生表示该光束的电信号;多个放大器,每一个与出射透镜组件中的光电检测器相联,用于放大光电检测器输出的电信号;多个驱动电路,每一个与放大器相联,用于产生每个放大电信号的驱动信号;多个光发射体,每一个与放大器相联,用于根据驱动信号产生光束;和多个物镜,每一个与光发射体相结合,以聚焦由此发射的光束用于自由空间发射。
参照下面结合附图的描述,本发明的目的和优点将更加清楚。
附图的简述参照下面结合附图的详细描述,将对本发明及其许多伴随的优点有更加完整的了解。


图1示出了根据本发明的基本自由空间光学通信系统;图2是说明光学转发器块的基本方案(ORB-I)的示意方框图;图3是说明光学转发器块的增强方案(ORB-II)的示意方框图;图4是说明光学转发器块的另一个增强方案(ORB-III)的示意方框图;图5是说明根据本发明的用户端设备的示意方框图;图6是根据本发明的扩展光通信系统;图7是说明根据本发明的接入装置的示意方框图;图8A是说明传统电物理媒体接入单元的示意方框图;图8B是说明传统RF物理媒体接入单元的示意方框图;图9是显示根据本发明的基本光学透镜单元的示意方框图;和图10是说明根据本发明的增强光学透镜单元的示意方框图。
典型实施例的详细描述参照图1-10,可以更好地理解本发明的典型实施例及其优点,相同的标号用来表示附图中相同或相应的部分。
图1说明了根据本发明的基本光通信系统10,用于穿过自由空间光学网络无线发射和转发光信号。具体地说,两个或多个以级联方式彼此连接的光学转发器块(ORB)装置12形成一个光学网络。每个ORB装置具有至少两个或多个光学端口,并在一个光学端口检测入射自由空间光信号以及在该光学端口或另一个光学端口转发出射自由空间光信号。
通过将相应网关装置(GD)14设置于到ORB装置的直接视距中,就可以从其他常规的有线或无线网络输入和检索数据。还可以在ORB装置12之间增加一个或多个附加的ORB装置,在如图1中虚线双向箭头所示。
图2-4描述了ORB装置12的三个典型方案(也就是,ORB-I、ORB-II、ORB-III)。ORB装置12的所有方案都具有两个彼此相同的信号路径,但是它们处理沿相反方向或信道传播的信号。如图2所示,一种基本ORB装置12′包括在每个信道内,光学转发器电路16,其包括用于接收自由空间光信号和产生代表该光信号的电信号的光电检测器18;与光电检测器18连接的跨阻抗放大器(TIA)20和后置放大器22,用于放大电信号的电平;与后置放大器22连接的驱动电路24,用于将放大的电信号转换成驱动信号,和与驱动电路24连接的光发射体(例如,激光二极管)26,用于发射代表驱动信号的光信号。在信道之间连接了交换器28,其理由如下所述。更具体地说,光电检测器18是一个转换器(例如,光电二极管或雪崩光电二极管),它检测光信号和产生代表该光信号中相同信息的电信号。TIA20和后置放大器22放大电信号的强度,所述电信号然后被传送到驱动电路24以激励光发射体26。交换器28连接在光学转发器电路之间、每个光学转发器电路16中的后置放大器22的输出端和另一个光学转发器电路16中驱动电路24输入端之间的位置上,如果光电检测器18之一未能接收到光信号,交换器28允许放大的电信号从一个光学转发器电路回送到另一个光学转发器电路的驱动电路之输入端。换句话说,交换器28连接到每个光学转发器电路16中的光电检测器18,以便在相应的光电检测器未能检测到入射自由空间光信号时、为放大器的输出确定路由。
在图3中示出了ORB装置12的增强方案,称为ORB-II12″。每个光学转发器电路16″与图2中示出的光学转发器电路16′类似,但是还包括至少一对并串转换器/串并转换器(SER/DES)30、锁相环电路32、和基准时钟34。第一SER/DES30连接到后置放大器22的输出端,用于将串行数据转换为并行数据,第二SER/DES30连接到第一SER/DES30的输出端和驱动电路24的输入端,用于将并行数据转换为串行数据。锁相环电路32连接在第一SER/DES30的并行输出端之间,以便使进入第二SER/DES30的数据与由光信号传送的重新定时(re-time)数据的耦合相对于来自基准时钟34的基准信号同步。换句话说,锁相环(PLL)32相对于来自基准时钟34的基准信号维持一个固定相位,它使每个光学转发器装置的处理信道内的比特分组的组合和分解同步。
在图4所示的ORB-III12中,两个光学接口单元(OIU)36之每一个都被集成或连接到模块分组交换器38,并且每个OIU36包括光电检测器18,用于接收入射自由空间光信号和将该光信号转换成代表该光信号的电信号TIA20和后置放大器22,用于放大电信号;连接到放大器的SER/DES30,用于将放大器输出的串行数据转换成并行数据、和将并行数据转换成串行数据;连接到SER/DES30的驱动电路24,用于接收SER/DES30输出的串行数据信号和产生驱动信号;和连接到驱动电路的光发射体,用于根据驱动信号发射光信号。总之,这两个OIU的每一个连接到光学端口,并且每个OIU在相联的光学端口检测入射自由空间光信号,并通过相联的光学端口转发出射自由空间光信号。
分组交换器38具有至少两个输入端口,用于转接来自及送至每个光学接口单元36内的SER/DES30的并行数据。分组交换器38还执行光学转发器装置接收的数据之分组的基于媒体访问控制(MAC)层地址的路由选择。一种典型类型的分组交换器使用称为透明桥接的系统,以产生地址检查表格。该透明桥接具有五种不同的特性(也就是,学习、分洪、过滤、转送,和老化),特别是使分组交换器能够学习它需要了解的任何关于网络节点位置的事情。其它类型的分组交换器可以包括但不局限于以下电路之一个或多个收发信机电路、媒体访问控制电路、分组数据访问路径电路、分组数据存储装置、分组交换器引擎电路、排队引擎电路、和媒体访问控制地址表格记忆存储器电路。
图5所示的GD14由与图4中所示光学接口单元相类似的光学接口单元(OIU)36和物理媒体访问单元(PMAU)40组成。该PMAU40根据与之通信或连接的媒体或网络接口的具体类型配置。也就是,PAMU在OIU36的电信号与特殊物理媒体格式(诸如射频、光或电媒体)的信号之间进行转接。此外,在一种典型配置中,当PMAU40是可以将来自OIU36的电信号按照其他服务器或网络(如广域网或因特网)的要求转换为一种具体物理格式的电子收发信机时,OIU36向光学网络发送出射光信号和接收来自光学网络的入射光信号。或者,以类似于图4所示的方式在GD14中设置模块分组交换器38。
图6描述了一种扩展(也就是,级联视距)光学通信系统40,用于以无线方式发射和转发光信号穿过自由空间。如图6所示,GD14用来充当到有线或无线本地区域和/或广域网(如互联网)的智能连接装置。GD14能够根据各种物理或逻辑协议在2层(数据链路层)和3层(网络层)内解释国际标准化组织(ISO)开放系统互联参考模型(OSI-RM)。从GD14发出的光信号然后由类型I、II、III的ORB装置12(也就是,ORB-I、ORB-II、ORB-III)之一接收,该ORB装置12对光进行放大、重定向或沿不同方向转向。
更具体地说,如图7所示的AD44通过整形、重新定时、和重新构造在其中转换的相应数字信号,接收和转发光信号。然而,AD44还可以与其他装置(如GD14或ORB装置12)通信,如通过连接OIU36。例如,通过将光收发信机连接或集成到AD44,带有数据的光信号可以从OIU36接收或提供给OIU36。分组交换器具有至少两个输入端口,用于转接来自每个光学接口单元内的SER/DES的并行数据及向其发送的并行数据;和至少一个接入端口,用于转接并行数据至另外的装置。特别是,分组交换器执行由该接入装置接收的数据的分组的基于媒体访问控制(MAC)层地址的路由选择,以便为通过该光学网络和来自连接到该至少一个接入端口的装置以及送至该装置的数据分组选择路由。
从用户的角度,AD44是用于数据通信业务的入径或出径,用以进入或退出本发明的光学通信系统。GD14或PMAU40提供用户的接入点并且充当业务的分界点(demarcation point)。然而,它不包括在用户端设置的终端和相关设备及内部布线。
通过增加磁体(未示出)到ORB装置12和GD14,用户端可以具有未受干扰地安装在其中的ORB装置12和GD14。例如,通过利用透明的窗口使光学类型的GD14和ORB装置14彼此面对,安装在其中的磁铁将向其提供结构、数据和功率支持。
在图8A和8B中示出了传统PMAU的典型类型。图8A示出了电PMAU40′,该电PMAU40′典型地包括由磁铁44环绕和激励的电连接器42、和SER/DES30,用于将串行数据转换成并行数据,反之亦然。图8B示出了由RF PMAU46组成的无线接入点装置40″,该无线访问点装置40″可以实现任何无线通信协议,如IEEE802.11B或蓝牙。
图9示出了一种基本光学透镜系统52,该基本光学透镜系统52可以在用于已增强光的检测和传送的ORB装置的光学端口使用。光学透镜系统52具有周边聚焦透镜54,用于接收通过其中的聚焦接收光。此外,光学透镜系统52具有入射透镜组件,该入射透镜组件包括主物镜56,用于接收来自例如ORB装置12的入射光;次级透镜58和用于聚焦通过其中的光的聚焦透镜60。该光的波长随后由波长带通滤波器62处理。然后光信号由光电检测器18(例如,雪崩光电二极管)检测并且被转换成电信号。这些电信号由驱动电路24所激励的光发射体(例如,激光二极管或垂直腔表面发射激光器(VSCEL))26又转换为光信号,并且被输出到另一个ORB装置12。
图10示出了具有两个或多个光发射信道的增强光学透镜系统52′。光学透镜系统52′在每个信道内还具有光电检测器18,用于通过例如光纤分束器64接收来自例如ORB装置12的光信号。接收的光信号被转换成电信号并且由放大器66放大。一个或多个光发射体(例如,激光二极管或垂直腔表面发射激光器(VSCEL))26产生用于通过周边物镜54的每一个输出光信号的相干光。除了主物镜56之外,光学透镜系统52′还具有用于接收入射光的次级透镜56,该入射光然后由聚焦透镜58聚焦并且通过波长带通滤波器60被滤波。然后光信号由另一个光电检测器62(例如,雪崩光电二极管)检测并且被转换成电信号。这些电信号被由驱动电路激励的另一个光发射体64转换成光信号,并且输出到ORB装置12。
换句话说,增强光透镜系统52′具有入射透镜组件,用于接收和聚焦多个入射光束。该入射透镜组件具有主物镜56和一个或多个附加透镜,光电检测器18检测由入射透镜组件聚焦的光并且产生至少一个表示所述光的电信号。增强光透镜系统52′还具有出射透镜组件,该出射透镜组件具有分束器64,用于将出射光束分成多个相同的光束;光电检测器18,每一个用于检测该多个相同光束之一和产生表示该光束的电信号;放大器66,每一个与出射透镜组件中的光电检测器相联,用于放大光电检测器18输出的电信号;分别对应于各放大器66的驱动电路26,用于产生每个放大电信号的驱动信号;分别对应于各放大器66的若干个光发射体,用于根据驱动信号产生光束;以及分别对应于光发射体26的物镜,用以聚焦由此发出的光束用于自由空间发射。
用于本发明上述通信系统10的基础结构可以通过以视距和级联方式设置光学装置的每一个而构造。大量数据可以在自由空间的城镇之间以光学方式高速传送,从而以每个用户的较低成本提供真正的宽带业务。这种类型的基础结构与现有通信网络(如互联网、SONET(同步光纤网)等)兼容且互补。
因此,可以看出本发明的系统及其各种实施例完全能够实现本发明上述目的和优点,尽管不是每个实施例需要满足每个目的和优点。
很明显,本发明许多修改和变型可以根据上述内容实现。因此应该理解的是,上述典型的实施例的描述仅仅是为了举例说明的目的而非限制的目的。实际上,在所附的权利要求书的范围内,本领域技术人员可以作出许多其他的修改和变型。附图也应认为是说明性的而非限制性的。然而,很明显的是,可以在没有背离如权利要求书中所述本发明更宽的精神和范围的情况下做出各种修改和改变。
权利要求
1.一种通信系统,包括自由空间光学网络,包括至少两个彼此连接的光学转发器装置和与所述光学转发器装置之一连接的至少一个网关装置,该网关装置包括光学接口单元,用于实现该自由空间光学网络的自由空间光信号与电信号的转接,其中,每个光学转发器装置具有至少两个光学端口和两个连接在每个光学端口之间的光学转发器电路,每个光学转发器电路检测一个光学端口处的入射自由空间光信号,并且转发出射自由空间光信号。
2.如权利要求1所述的系统,其中,光学转发器装置内的每个光学转发器电路检测一个光学端口处的入射自由空间光信号,并且在另一个光学端口处转发出射自由空间光信号。
3.如权利要求1所述的系统,其中,在所述光学转发器装置内的每个光学转发器电路包括光电检测器,用于接收自由空间光信号和产生代表该光信号的电信号;放大器,连接到所述光电检测器,用于放大所述电信号的电平;驱动电路,连接到所述放大器,用于将放大的电信号转换成驱动信号;和光发射体,连接到所述驱动电路,用于发射代表所述驱动信号的光信号。
4.如权利要求3所述的系统,其中,所述光学转发器装置之每一个还包括交换器,该交换器连接在光学转发器电路之间、每个光学转发器电路中的放大器的输出端和另一个光学转发器电路中的驱动电路输入端之间的位置上,以便从一个光学转发器电路向另一个光学转发器电路的驱动电路的输入端耦合放大的电信号。
5.如权利要求4所述的系统,其中,所述交换器连接到每个光学转发器电路中的光电检测器,以便在相应的光电检测器未能检测到入射自由空间光信号时、为此光学转发器电路中的放大器的输出选择路由。
6.如权利要求3所述的系统,其中,在至少一个光学转发器装置中的每个光学转发器电路还包括第一和第二并串转换器/串并转换器(SER/DES)和锁相环电路,第一SER/DES连接到放大器的输出端,用于将串行数据转换成并行数据,第二SER/DES连接到第一SER/DES的输出端,用于将并行数据转换到串行数据,该串行数据被耦合到驱动电路的输入端,其中,该锁相环电路连接在第一SER/DES的并行输出端之间,以便使进入第二SER/DES的数据与光信号传送的重新定时数据的耦合相对于基准时钟信号同步。
7.如权利要求1所述的系统,其中,该网关装置还包括物理媒体访问单元,该物理媒体访问单元对光学接口单元的电信号与特殊物理媒体格式的信号进行转接。
8.如权利要求7所述的系统,其中,该网关装置的物理媒体访问单元接口对光学接口单元的电信号与从由射频、光或电组成的组中选择的至少一个或多个物理媒体类型的信号进行转接。
9.如权利要求1所述的系统,还包括连接到光学转发器装置的接入装置,该接入装置充当相对于该光学网络的分配/集合点,其中,该接入装置包括两个光学端口、一个分组交换器、和两个光学接口单元,每个光学接口单元都连接到一个光学端口,每个光学接口单元检测在相联的光学端口处的入射自由空间光信号,并且通过相联的光学端口转发出射自由空间光信号,每个光学接口单元包括光电检测器,用于接收入射自由空间光信号和将该光信号转换成表示该光信号的电信号;放大器,连接到所述光电检测器,用于放大所述电信号;并串转换器/串并转换器(SER/DES),连接到所述放大器,该SER/DES将该放大器输出的串行数据转换成并行数据,并且将并行数据转换成串行数据;驱动电路,连接到所述SER/DES,用于接收所述SER/DES输出的串行数据信号并且产生驱动信号;和光发射体,连接到所述驱动电路,用于根据所述驱动信号发射光信号;其中,该分组交换器具有至少两个输入端口,用于转接来自每个光学接口单元内的SER/DES的并行数据及发送至该SER/DES的并行数据;和至少一个接入端口,用于转接并行数据至另外的装置,其中,该分组交换器对由该接入装置接收的数据的分组执行基于媒体访问控制(MAC)层地址的路由选择,以便为通过该光学网络和来自连接到该至少一个接入端口的装置以及送至该装置的数据分组选择路由。
10.一种通信系统,包括自由空间光学网络,包括至少两个彼此连接的光学转发器装置、和与所述光学转发器装置之一连接并包括光学接口单元的至少一个网关装置,该光学接口单元对该自由空间光学网络的自由空间光信号与电信号进行转接,每个光学转发器装置具有两个光学端口,并检测在一个光学端口处的入射自由空间光信号,以及转发出射自由空间光信号;至少一个光学转发器装置,位于该自由空间光学网络中,包括两个光学接口单元,每一个连接到光学端口,以及一个分组交换器,每个光学接口单元检测在相联光学端口处的入射自由空间光信号,并且通过相联的光学端口转发出射自由空间光信号,每个光学接口单元包括光电检测器,用于接收入射自由空间光信号和将该光信号转换成代表该光信号的电信号;放大器,连接到所述光电检测器,以放大所述电信号;并串转换器/串并转换器(SER/DES),连接到所述放大器,该SER/DES将该放大器输出的串行数据转换成并行数据,并且将并行数据转换成串行数据;驱动电路,连接到所述SER/DES,以接收所述SER/DES输出的串行数据信号并产生驱动信号;光发射体,连接到所述驱动电路,以根据所述驱动信号发射光信号;和其中,该分组交换器具有至少两个输入端口,用于对来自每个光学接口单元内的SER/DES的并行数据以及送至该SER/DES的并行数据进行转接,其中,该分组交换器对由该光学转发器装置接收的数据的分组执行基于媒体访问控制(MAC)层地址的路由选择。
11.如权利要求10所述的系统,其中,该网关装置还包括物理媒体访问单元,该物理媒体访问单元对该光学接口单元的电信号之间与特殊物理媒体格式的信号进行转接。
12.如权利要求11所述的系统,其中,该网关装置的物理媒体访问单元对该光学接口单元的电信号与从由射频、光或电组成的组中选择的至少一个或多个物理媒体类型的信号进行转接。
13.一种用于自由空间光学网络中的光学转发器装置,它传送和接收自由空间光信号,该光学转发器装置包括至少两个光学端口,每个光学端口用于接收入射自由空间光信号和发送出射光信号;和至少两个光学转发器电路,连接在每个光学端口之间,每个光学转发器电路检测在一个光学端口处的入射自由空间光信号,并且转发出射自由空间光信号,每个光学转发器电路包括光电检测器,用于接收自由空间光信号和产生代表该光信号的电信号;放大器,连接到所述光电检测器,用于放大所述电信号的电平;驱动电路,连接到所述放大器,用于将放大的电信号转换成驱动信号;和光发射体,连接到所述驱动电路,用于发送代表所述驱动信号的光信号。
14.如权利要求13所述的光学转发器装置,在光学转发器电路之间、每个光学转发器电路中的放大器的输出端和另一个光学转发器电路中的驱动电路输入端之间的位置上连接一个交换器,以便将来自一个光学转发器电路的放大电信号耦合到另一个光学转发器电路的驱动电路的输入端。
15.如权利要求14所述的光学转发器装置,其中,所述交换器连接到每个光学转发器电路中的光电检测器,以便在相应的光电检测器未能检测到入射自由空间光信号时、为此光学转发器电路中的放大器的输出进行路由选择。
16.如权利要求13所述的光学转发器装置,其中,每个光学转发器电路还包括第一和第二并串转换器/串并转换器(SER/DES)以及锁相环电路,第一SER/DES连接到该放大器的输出端,用于将串行数据转换成并行数据,第二SER/DES连接到第一SER/DES的输出端,用于将并行数据又转换为被耦合到该驱动电路之输入端的串行数据,其中,该锁相环电路连接在第一SER/DES 的并行输出端之间,以便使进入第二SER/DES的数据与由光信号传送之重新定时数据的耦合相对于基准时钟信号同步。
17.如权利要求13所述的光学转发器装置,其中,在每个光学端口处还包括一个光学透镜系统,该光学透镜系统包括入射透镜组件,用于接收和聚焦多个入射光束,该入射透镜组件包括一个主物镜和一个或多个附加透镜;光电检测器,用于检测由该入射透镜组件聚焦的光并且产生至少一个代表所述光的电信号;出射透镜组件,包括分束器,用于将出射光束分成多个相同的光束;多个光电检测器,每一个用于检测所述多个相同光束之一和产生代表该光束的电信号;多个放大器,每一个与该出射透镜组件中的光电检测器相联,用于放大光电检测器输出的电信号;多个驱动电路,每一个与一个放大器相联,以产生每个放大电信号的驱动信号;多个光发射体,每一个与一个放大器相联,用于根据所述驱动信号产生一个光束;多个物镜,每一个与一个光发射体相结合,以聚焦由此发出的光束用于自由空间发射。
18.一种用于自由空间光学网络中的光学转发器装置,它发送和接收自由空间光信号,该光学转发器装置包括两个光学端口、每一个都连接到一个光学端口的两个光学接口单元、以及一个分组交换器,每个光学接口单元检测在相联的光学端口处的入射自由空间光信号,并且通过该相联的光学端口转发出射自由空间光信号,每个光学接口单元包括光电检测器,用于接收入射自由空间光信号和将该光信号转换成代表该光信号的电信号;放大器,连接到所述光电检测器,用于放大所述电信号;并串转换器/串并转换器(SER/DES),连接到所述放大器,该SER/DES将该放大器输出的串行数据转换成并行数据,并且将并行数据转换成串行数据;驱动电路,连接到所述SER/DES,用于接收所述SER/DES输出的串行数据信号并产生驱动信号;光发射体,连接到所述驱动电路,以根据所述驱动信号发射光信号;及其中,该分组交换器具有至少两个输入端口,用于对来自每个光学接口单元内的SER/DES的并行数据以及送至该SER/DES的并行数据进行转接,其中,该分组交换器对由该光学转发器装置接收的数据的分组执行基于媒体访问控制(MAC)层地址的路由选择。
19.如权利要求18所述的光学转发器装置,其中,在每个光学端口处还包括一个光学透镜系统,该光学透镜系统包括入射透镜组件,用于接收和聚焦多个入射光束,该入射透镜组件包括一个主物镜和一个或多个附加透镜;光电检测器,用于检测由该入射透镜组件聚焦的光并且产生代表所述光的至少一个电信号;出射透镜组件,包括分束器,用于将出射光束分成多个相同的光束;多个光电检测器,每一个用于检测所述多个相同光束之一和产生代表该光束的电信号;多个放大器,每一个与该出射透镜组件中的光电检测器相联,用于放大光电检测器输出的电信号;多个驱动电路,每一个与一个放大器相联,用于产生每个放大电信号的驱动信号;多个光发射体,每一个与一个放大器相联,用于根据所述驱动信号产生光束;多个物镜,每一个与一个光发射体相结合,用于聚焦由此发出的光束用于自由空间发射。
全文摘要
一种在自由空间内运行的级联视距无线通信系统,该系统为用户提供了宽带接入,允许跨城市或城镇进行高速无线数据通信。所述系统具有自由空间光学网络,该光学网络包括至少两个光学转发器成块装置(12),用于接收、放大、和转发光信号;以及网关装置(14),它连接到所述光学转发器成块装置之一。所述系统为级联方式的模块化结构,以便有效地以无线方式转发数据信号穿过该系统。特别是,所述宽带接入甚至在有自然或人为障碍的情况下也不受影响。
文档编号H04B10/10GK1462518SQ02801356
公开日2003年12月17日 申请日期2002年2月15日 优先权日2001年2月22日
发明者邱运输, 斯科特·雷夫 申请人:数字大西洋公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1