模块化的全光连接的制作方法

文档序号:7726470阅读:266来源:国知局
专利名称:模块化的全光连接的制作方法
技术领域
本发明总的来说涉及波分多路复用光通信系统,具体地说,涉及可用在波分多路复用光学通信系统中的模块化全光交叉连接。
背景技术
波分多路复用(WDM)已开发为一种用于增强光纤网络对高速增长的数据和语音业务应用支持的能力。WDM系统使用多个光学信号通道,每个通道都分配了特定的通道波长。在WDM系统中,信号通道被生成、多路复用,并经过单个波导管发射,又被解多路复用,将每个通道的波长单独地路由到目标接收机。通过使用诸如掺杂光纤放大器的光学放大器,可将多个光学通道同时直接放大,为在远距离光学系统中使用WDM系统带来便利。
近来,提供一定程度的可重配置的交换元件已经可获得。这些可重配置光元件可以根据需要动态地改变给定波长沿着其进行路由的通路来,从而有效地重构网络的拓扑结构来适应所要求的改变,或者恢复关于网络失效的服务。可重配置光元件的例子包括光增加/撤出多路复用器(OADM)和光交叉连接(OXC)。使用OADM来从WDM信号中分离和撤出一个或多个波长分量,WDM信号随后被引导到不同的通路上。在一些情况下,撤出的波长被引导到公共光纤通路,而在其他的情况下,每一个撤出的波长被引导到它自己的光纤通路。与OADM相比OXC更加灵活,其可以在任何实际的配置中重新分配多个WDM输入信号的分量到任何数目的输出端口中。图1示出具有两个输入端口1011和1012以及输出端口1031和1032的常规交叉连接100,每个端口可传送具有N个通道或波长λ1-λN的WDM信号。每个WDM输入和输出端分别与解多路复用器相连。特别地,交叉连接100包括解多路复用器1051和1052,及多路复用器1071和1072。交叉连接100还包括MxM交换器光纤109,其中M等于N乘以WDM输入/输出端口的个数(m)。在图1所示例子中,M等于2N。交换器光纤109传统上是诸如数字交叉连接的电子交换器核,但是在当今的高容量光纤系统中它已被光学交换器系统所取代。
不幸的是,由于现有的OXC光纤交换器的插入损耗相对较高,因此它们要求进入交叉连接和从交叉连接出来的光-电接口和再生成器。在这些再生成器解决了插入损耗,以及在信号通过交换器光纤时允许有效波长变换问题的同时,由于在网络中所使用的每个和全部的波长都需要再生成器,它们实际上增加了已经昂贵的交换器光纤的成本。
前述传统的OXC的另外一个限制是,在OXC已经首先安装好并运行后,又需要增加额外的容量时,难于增加输入和输出端口的数量。为了提供这样的模块性(modularity),初始安装的光纤109必须包含最大的预计容量,因为损耗和连接数量增加得太快。换句话说,提供本身为模块化的MxM交换器光纤是不现实的。通过将MxM交换器光纤外部的解多路复用器和监视检测器封装在可以逐步安装的模块中可以将这个限制降到较小的程度,但是,由于交换器光纤是OXC中最昂贵的器件,提供传统的已经模块化OXC的优点受到限制。
因此,希望提供低损耗的光交叉连接,其中可以相对容易和低廉的方式提供模块化的功能块。

发明内容
根据本发明,提供了一种全光学的光学交叉连接,所述交叉连接包括第一和第二多个多端口光学设备。第一多个多端口光学设备中的每一个具有至少一个输入端口,用于接收WDM光学信号;以及多个输出端口,用于有选择地接收光学信号中的多个波长分量的一个。第二多个多端口设备中的每一个具有多个输入端口,用于有选择地接收光学信号的多个波长分量中的一个分量;以及至少一个输出端口,用于有选择地接收光学信号的多个波长分量中的一个分量。第一和第二多个多端口光学设备中的至少一个是全光学交换器,其可以独立于其它所有波长分量来路由每个波长分量。第二多个多端口光学设备的多个输入端口与第一多个多端口光学设备的多个输出端口的相应端口光学连接。
根据本发明的一个方面,两个多个多端口光学设备都是可以独立于所有其它波长分量来路由每个波长分量的全光学交换器。可选地,多个多端口设备中的一个可以是光学连接器。
根据本发明的另一方面,全光学交换器包括多个波长选择元件,每个元件从在输入端口处接收到的多个波长中选择一个通道波长。多个光学元件分别与多个波长选择元件相关。每个光学元件独立于其它所有通道波长,将由相关的波长选择元件所选择的波长分量中的一个引导到输出端口中的任意一个端口。
根据本发的再一个方面,提供了一种全光学、光学交叉连接,其包括第一组m个可重配置全光学交换器,其中m3。每个可重配置交换器具有至少(m+1)个用于接收WDM光学信号的一个或多个波长分量的预配置端口。可重配置交换器有选择地将任意波长分量从预配置端口中的一个端口引导到余下的预配置端口中的一个,而与所有其它波长分量无关。还提供了第二组m个可重配置的全光学交换器,每个可重配置交换器具有至少(m+1)个特定端口,用于接收WDM光学信号中的一个或多个波长分量。第二组中的可重配置交换器将任意波长分量从特定端口中的一个端口引导到余下的特定端口的一个,而与所有其它波长分量无关。第一组交换器中的每个可重配置交换器的每一个预配置端口与第二组交换器中的不同的可重配置交换器的一个特定端口光学连接。


图1示出常规的光学交叉连接;图2示出可用于本发明中的可重配置的全光学交换器的示例;图3示出根据本发明构造的全光学、光学交叉连接;图4示出根据本发明的体系,其中图1和3中的光学交叉连接各自需要数量很小的用于各种通道数量的内部光学连接。
图5比较了当每个交叉连接包括2,4和8个WDM输入端口时,图1的常规光学交叉连接和图3的有创造性的全光学OXC的不同数量的通道所需要的内部光学连接的数量。
图6示出了有创造性的光学交叉连接,其中可使用扩展的端口,用于通过增加额外的可重配置光学交换器以模块方式增加交叉连接容量。
具体实施例方式
根据本发明,提供了一种全光学,模块化的OXC,其采用可重配置的交换器元件,所述交换器元件是可以执行多路复用/解多路复用功能和波长选择路由功能的全光学交换器元件。因此,本发明不需要区分如前所述的常规OXC要求的多路复用/解多路复用元件和交换器元件。因为本发明使用这样一种可重配置交换器元件,可以模块方式增加OXC的容量。此外,全光学可重配置交换器可以配置成具有比前述常规OXC更小的插入损耗和更低廉的OXC。
各种全光可重配置光交换器的例子在美国专利申请[PH-01-00-01]中公开,在此通过引用的方式将该专利申请结合进来,尤其是引用了该文献的图2-4部分。在其中公开的交换器部件能够有选择地将来自任何输入端口的任何波长分量引导到任何输出端口,而与其它波长的路由无关,不需要进行任何电-光转换。其它提供附加功能的全光可重配置光交换器在美国专利申请[PH-01-00-02]中公开,在此通过应用其全文结合进来。该文献公开了一种光交换器,其中,每个波长分量可以被从任何给定端口引导到任何其它端口,而没有什么限制。特别地,与大多数光交换器不同,这种交换器并不限于在输入端口的子集和输出端口的子集之间提供连接,或反之亦然。事实上,这种交换器还可以在相同的子集(输入或输出)的两个端口之间提供连接。虽然本发明可以采用上述任何的可重配置的光交换器,在美国专利申请[PH01-00-02]中公开的光交换器将作为示例可重配置光交换器,因而,结合图2在下面提供有关该交换器的详细论述。当然,本领域普通技术人员应当认识到,本发明等同于使用任何可重配置光学交换器的全光学模块化OXC,在所述OXC中可以独立于其它任何波长的路由,将任意输入端口上接收到的任何波长分量有选择地引导到任意输出端口。
图2中,可重配置光交换器300包括光透明基底308,多个电介质薄膜滤光器301,302,303和304,多个校准透镜对3211,和3212,3221和3222,3231和3232,3241和3242,多个可倾斜反射镜315,316,317,和318以及多个输出端口3401,3402,...,340n。第一滤光器阵列由薄膜滤光器301和303组成,而第二滤光器阵列由薄膜滤光器302和304组成。校准透镜对321-324以及可倾斜反射镜315-318中的各对与薄膜滤光器的每一个相关。每一个薄膜滤光器,以及它的相关的校准透镜对和可倾斜反射镜有效地形成了窄波段,自由空间交换器,即沿着不同的通路路由各个波长分量的交换器。可倾斜反射镜是诸如MEMS(微电子机械系统)反射镜的微反射镜。另外,可以采用其它的机制来控制反射镜的位置,例如采用压电驱动器(piezoelectricactuator)。
在工作中,由不同的波长λ1,λ2,λ3和λ4组成的WDM光信号被从光输入端口312引导到校准透镜314。WDM信号穿过基底308,并且被薄膜滤光器301接收。根据薄膜滤光器301的特性,带有波长为λ1的光成分通过薄膜滤光器301,而其它的波长分量被反射并且经基底308被引导到薄膜滤光器302。通过薄膜滤光器301传送的波长分量λ1被校准透镜3211会聚到可倾斜反射镜315上。可倾斜反射镜315被如此安装,使得波长分量λ1被经薄膜滤光器302-304从反射镜反射到输出端口3401-340n中的选择的一个,薄膜滤光器都反射波长成分λ1。被选择来接收波长分量的特定输出端口将确定反射镜315的特定朝向。
如上所述,余下的波长分量λ2,λ3,和λ4经透镜3212被薄膜滤光器301反射到基底308中,并且被引导到薄膜滤光器302。波长分量λ2被经薄膜滤光器302和透镜3221传送,并且被可倾斜反射镜316经薄膜滤光器303-304引导到选择的输出端口,薄膜滤光器303-304都反射波长分量λ2。类似地,所有其它的波长分量被薄膜滤光器303-304依次分离开,并且被可倾斜反射镜317-318引导到选择的输出端口。利用适当驱动可倾斜反射镜,每一个波长分量可以被引导到独立于所有其它的波长分量而选择的输出端口。
参见图3,示出了根据本发明的模块化的全光mxm交叉连接400的一个实施例。OXC 400可以将在其m个输入端口412的任意一个上接收到的任意波长独立于其它波长路由到它的m个输出端口422的任意一个端口。图3中仅为示例目的,m描述为等于8。应当注意,在此使用的术语“路由”指的不仅是有选择地沿给定路径引导选出的一个或多个波长的能力,还指具有阻止没有沿相同路径引导传送其它任何波长的能力。
交叉连接400包括第一系列的可重配置光交换器4101,4102...410m和第二系列可重配置光交换器4201,4202...420m。可重配置的光交换器410和420可以是图2中所示类型。第一系列的可重配置的光交换器410的每个都具有输入端口412和m个输出端口414。例如,图3中,可以清楚地看到,交换器4101具有一个输入端口4121和输出端口41411,41412,......4141m。第一系列中剩下的交换器也被进行相似的配置。类似地,第二系列的光交换器420的每个具有一个输出端口422和m个输入端口424。例如,图3中,可以清楚地看到,交换器420m具有一个输出端口422m和输入端口424m1,424m2,......424mm。在第一和第二系列的交换器中的可重配置光交换器以如下方式互连。在第一系列中的每个交换器的输出端口顺序地与第二系列中的交换器的输入端口连接。例如,如可从图3中看到,交换器4101的输出41411-4141m分别与交换器420m-4201相连的输入端口424m1-42411。以这种方式,第一系列交换器的m2个输出与第二系列交换器的m2个输入相连,于是形成m2个内部光连接。应当注意,依赖于上面所使用的交换器相对于光放大器的成本,系列交换器的输入或输出可以用1xm无源耦合器代替。如果输入交换器用无源耦合器代替,它会将所有输入光纤的所有波长的复制本(copy)路由到第二系列交换器,在这里仅选择所希望的信号进行传递。可选地,在第一系列交换器中可以选择合适的信号,在这里,用波长基准将波长切换到用于给定输出光纤的特定无源耦合器波长上。所述耦合器被动地将来自每一个交换器的波长合并到单个输出光纤上。虽然无源耦合器远远比光交换器低廉,但它显著地增加损耗,而这反过来需要昂贵的放大器。因此,最佳的配置将取决于交换器、光放大器,和要进行交叉连接的WDM光纤的数量(即m)的成本。
图3示出的全光OXC相比图1中所示OXC一个重要优点是,当使用大量的WDM通道时,图3的OXC中的内部光连接的数量远远少于图1中所示的OXC的数量。近年来,光发射系统中所使用的WDM通道数量已从16增加到32,最近的系统甚至向上到160个通道时,这成为持续增长的重要因素。例如图1中所示OXC中,内部连接的数量是2mN,其中m是输入和输出端口的数量,在所述输入和输出端口上WDM信号发往或从OXC传来,N是WDM信号中的最大通道数。相比之下,图3中所示的有创造性的OXC具有m2个内部连接。换言之,本发明中,内部连接的数量与WDM的输入和输出端口的数量,而非通道的数量成比例(scale)。
对于给定具有N个通道和m个WDM输入和输出端口,图4示出了这样的体系,其中图1和3中的每个OXC需要数量较少的光连接。特别地,当WDM的输入和输出端口比通道的总数的两倍少时,现有发明的OXC会需要数量较少的光连接,从而降低成本减少OXC所占用的物理空间。物理空间的减少通常对通信设备尤其重要,所述设备必须置于特定的设施中,这在基于方形尺寸下获取是很昂贵的。图5示出在现有网络中使用时,两个OXC之间连接数量上的差距可可以有多大,在此通道数量比WDM输入和输出端口数量的增加快得多。图5中示出了对于不同数量的通道,常规OXC和本发明的用于2,4和8个WDM输入端口的全光OXC通道所需要的内部连接数量。例如,具有4个WDM输入和输出的常规32通道OXC需要四个多路复用器和四个解多路复用器,每个都被设计来分别多路复用和解多路复用32个通道,以及128×128个数字交换器光纤,产生总共256个内部光连接。相比之下,本发明的全光OXC可以用有8个可重配置的光交换器,产生总共16个内部连接就获得相同的功能。进而,本发明的OXC更小,更易制造,并可能提供更低的损耗。
图3所示的全光OXC相比图1中所示的OXC的另一个重要优点是,它可以模块的方式安装和升级。特别地,如果OXC预备了“x”个WDM输入和输出端口,并且因此使用“2x”个可重配置的光交换器,WDM的输入和输出端口的数量通过增加(m-x)个额外的可重配光交换器,可以扩展到m个(其中x<m)。当然,这假设原有的x个光交换器开始预备了m个输出端口(在第一系列光交换器连接到WDM输入端口的情况下)和m个输入端口(在第二系列光交换器连接到WDM输出端口的情况下)。当需要这样的额外容量时,这些额外增加的(m-x)个端口用作可以连接到额外的(m-x)个可重配置光交换器的扩展端口。例如图6示出根据本发明所构造的OXC开始预备了4个WDM输入和输出端口。如所示,当需要将额外的可重配置交换器并入OXC时,可重配置光交换器610和620具有可使用的扩展端口630。
提出本发明所提供的模块化功能是因为仅需要为任何给定的WDM输入端口和任何给定的WDM输出端口之间的每个和所有通道建立起一条内部连接。例如,总共具有9个端口的可重配置光交换器可以保留一个作为WDM输入或输出到OXC的端口,同时剩下的端口可以用于建立到OXC中其它光交换器的内部光连接。由于具备这种能力,当需要额外的容量时,本发明提供了可以通过增加额外可重配置的光交换器进行扩展的模块化OXC。以这种方式,不会产生大多数的与额外容量相关的主要成本,除非确实需要额外的容量。反之,当OXC初始安装时,图1所示的OXC需要与增加的容量相关的全部成本的主要部分。
权利要求
1.一种全光的光交叉连接,包括第一和第二多个多端口光设备,所述第一多个多端口光设备具有至少一个输入端口,用于接收WDM光信号;和多个输出端口,用于有选择地接收光信号的多个波长分量中的一个波长分量,所述第二多个多端口光设备具有多个输入端口,用于有选择地接收光信号的多个波长分量中的一个;和至少一个输出端口,用于有选择地接收光信号的多个波长分量中的一个波长分量,所述第一或第二多个多端口光设备中的至少一个是可以独立于所有其它波长分量来路由每个波长分量的全光交换器;和其中,所述第二多个多端口光设备的多个输入端口与第一多个多端口光设备的多个输出端口的每个端口分别光连接。
2.如权利要求1的所述光交叉连接,其中所述第一或第二多个多端口光设备的其它设备是可独立于其它的波长分量而路由每个波长分量的全光交换器。
3.如权利要求1的所述交叉连接,其中所述其它第一或第二多个多端口光设备的其它设备是耦合器。
4.如权利要求1的所述交叉连接,其中所述全光交换器包括多个波长选择元件,每个元件从在至少一个输入端口处接收到的多个波长分量中选择一个通道波长;和多个光元件,分别与所述多个波长选择元件相关,每个所述光元件将由相关的波长选择元件进行选择所选出的波长分量中的一个引导到输出端口中的任意一个,而与所有其它通道波长无关。
5.如权利要求2的所述交叉连接,其中,每一个所述全光交换其包括多个波长选择元件,每一个从在至少一个输入端口处接收到的多个波长分量中选择出一个通道波长;和分别与所述多个波长选择元件相关的多个光元件,每一个所述光元件将由相关的波长选择元件所选择而选出的波长分量引导到所述输出端口的任何一个,而与所有其它的波长分量无关。
6.如权利要求4的所述交叉连接,其中,每一个所述光元件包括一个可倾斜镜。
7.如权利要求4的所述交叉连接,进一步包括在所述输入端口和所述波长选择元件之间放置的自由空间区域。
8.如权利要求4的所述交叉连接,其中,所述光元件回射所述通道波长。
9.如权利要求4的所述交叉连接,其中,所述波长选择元件是薄膜滤光器,每一个薄膜滤光器传送所述波长分量中的不同的一个分量,并且反射余下的通道波长。
10.如权利要求4的所述交叉连接,其中,所述光元件是反射镜,它们可以在多个位置中有选择地倾斜,使得在每一个位置,所述反射镜将入射到其上的波长分量反射到所述输出端口的选择的任何一个输出端口。
11.如权利要求10的所述交叉连接,其中,所述反射镜是微电子机械(MEM)反射镜组件的部分。
12.如权利要求11的所述交叉连接,其中,所述反射镜组件是回射光组件。
13.如权利要求10的所述交叉连接,其中,所述反射镜是回射光组件的部分。
14.如权利要求10的所述交叉连接,其中,每一个所述反射镜包括压电驱动器。
15.如权利要求7的所述交叉连接,其中,所述自由空间区域包括具有第一和第二平行表面的光透明基底,所述波长选择元件包括在分别沿着第一和第二平行表面延伸的第一和第二阵列中布置的多个波长选择元件。
16.如权利要求15的所述交叉连接,其中,所述光透明基底包括作为光信号在其中传播的介质的空气。
17.如权利要求15的所述交叉连接,其中,所述光透明基底是硅玻璃。
18.如权利要求15的所述交叉连接,其中,所述第一和第二阵列彼此相对侧向偏置。
19.如权利要求15的所述交叉连接,其中,在第一阵列中布置的每一所述选择元件将所选择的波长元件引导到在第二阵列中布置的另一个所述波长选择元件。
20.如权利要求4的所述交叉连接,进一步包括在所述波长选择元件中的一个以及与之相关的光元件之间放置的校准透镜,每一个所述光元件位于相关的透镜的焦点处。
21.一种全光的光交叉连接,其包括第一组m个可重配置全光交换器,其中m∞3,每一个所述可重配置交换器具有至少(m+1)各预配置端口,用于接收WDM光信号的一个或多个波长分量,所述可重配置交换器有选择地将任何波长分量从一个预配置的端口引导到余下的任何一个预配置端口,而与每一个其它的波分量量无关;第二组m个可重配置全光交换器,每一个具有至少(m+1)个特定端口,用于接收WDM光信号的一个或多个波长分量,所述可重配置交换器将任何波长分量从所述特定端口中的一个引导到所述特定端口的余下的端口,而与每一个其它波长分量无关;和其中,在第一组交换器中的每一个可重配置交换器的每一个预配置端口光耦合到在第二组交换器中的不同可重配置交换器的特定端口。
22.如权利要求21的所述光交叉连接,其中,在第一组交换器中的所述m个可重配置交换器的每一个具有至少(m+2)个预配置端口,且在第二组交换器中的所述m个可重配置交换器具有至少(m+2)个特定端口。
23.如权利要求21的所述光交叉连接,其中,每一个所述全光交换器包括多个波长选择元件,每个元件从在一个输入端口处接收到的WDM光信号的多个波长分量中选择一个波长分量;和多个光元件,分别与所述多个波长选择元件相关,每个所述光元件将由相关的波长选择元件进行选择所选出的波长分量中的一个引导到输出端口中的任意一个,而与所有其它通道波长无关。
24.如权利要求23的所述光交叉连接,其中,每一个所述光元件包括一个可倾斜镜。
25.如权利要求23的所述光交叉连接,进一步包括在所述输入端口和所述波长选择元件之间放置的自由空间区域。
26.如权利要求23的所述光交叉连接,其中,所述光元件回射所述通道波长。
27.如权利要求23的所述光交叉连接,其中,所述波长选择元件是薄膜滤光器,每一个薄膜滤光器传送所述波长分量中的不同的一个分量,并且反射余下的波长分量。
28.如权利要求23的所述光交叉连接,其中,所述光元件是反射镜,它们可以在多个位置中有选择地倾斜,使得在每一个位置,所述反射镜将入射到其上的波长分量反射到所述输出端口的选择的任何一个输出端口。
29.如权利要求28的所述光交叉连接,其中,所述反射镜是微电子机械(MEM)反射镜组件的部分。
30.如权利要求29的所述光交叉连接,其中,所述反射镜组件是回射光组件。
31.如权利要求28的所述光交叉连接,其中,所述反射镜是回射光组件的部分。
32.如权利要求28的所述光交叉连接,其中,每一个所述反射镜包括压电驱动器。
33.如权利要求25的所述光交叉连接,其中,所述自由空间区域包括具有第一和第二平行表面的光透明基底,所述波长选择元件包括在分别沿着第一和第二平行表面延伸的第一和第二阵列中布置的多个波长选择元件。
34.如权利要求33的所述光交叉连接,其中,所述光透明基底包括作为光信号在其中传播的介质的空气。
35.如权利要求33的所述光交叉连接,其中,所述光透明基底是硅玻璃。
36.如权利要求33的所述光交叉连接,其中,所述第一和第二阵列彼此相对侧向偏置。
37.如权利要求36的所述光交叉连接,其中,在第一阵列中布置的每一所述选择元件将所选择的波长元件引导到在第二阵列中布置的另一个所述波长选择元件。
38.如权利要求23的所述光交叉连接,其中,进一步包括在所述波长选择元件中的一个以及与之相关的光元件之间放置的校准透镜,每一个所述光元件位于相关的透镜的焦点处。
全文摘要
本发明公开了一种全光的光交叉连接,包括第一和第二多个多端口光设备。第一多个多端口光设备中的每一个具有至少一个输入端口用于接收WDM光信号;和多个输出端口,用于有选择地接收光信号的多个波长分量中之一。第二多个多端口光设备中的每一个具有多个输入端口,用于有选择地接收光信号的多个波长分量之一;和至少一个输出端口,用于有选择地接收光信号的多个波长分量之一。所述第一或第二多个多端口光设备中的至少一个是可以独立于所有其它波长分量来路由每个波长分量的全光交换器。第二多个多端口光设备的多个输入端口分别光连接到第一多个多端口光设备的多个输出端口一个端口。
文档编号H04Q11/00GK1596517SQ02806700
公开日2005年3月16日 申请日期2002年3月15日 优先权日2001年3月16日
发明者托马斯·安德鲁·斯特拉瑟, 佩尔·班·汉森, 杰斐逊·L·瓦格纳 申请人:福图瑞斯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1