用于高速率正交频分复用通信的系统和方法

文档序号:7889030阅读:175来源:国知局
专利名称:用于高速率正交频分复用通信的系统和方法
技术领域
本发明的系统和方法通常涉及通信系统。更确切地说,本发明的系统和方法涉及正交频分复用(OFDM)通信系统、方法和协议。
背景技术
用于无线局域网的IEEE 802.11a和802.11g标准作为参考资料完整地结合在此处,在下文中被称为803.11a/g,规定无线局域网通信系统在5GHz和2.4GHz频带中。这些标准指定使用OFDM作为用于通信的调制方法。OFDM是一种适宜在无线通信信道中实施的多载波调制方案。802.11a/g标准提供6、9、12、18、24、36、48和54Mbps的数据传输速率。不同的数据传输速率是通过在多载波系统中在所有载波上发送不同但恒定数目的位和通过以不同的编码速率操作来实现的。在下面表1示出了对于一个示范的802.11a/g收发机用于每个数据传输速率的编码速率和每个副载波的位。


表1为了确定适宜的发送数据传输速率,802.11a/g发射机使用以不同的数据传输速率发射的试错法,例如,从最高的或者上一次成功的传输速率开始,并且等待来自接收机肯定的确认指示,即该数据分组被成功地接收。这种简单的肯定的确认指示方法被用于在基于常规的802.11a的无线系统中优化通信。

发明内容
本发明示范的系统和方法使用在接收机和发射机之间发送的消息来最大化通信数据传输速率。尤其是,根据本发明示范的实施例,一种多载波调制系统使用从接收机发送给发射机的消息,去交换最优化的通信参数。然后,发射机存储这些通信参数,并且当发送给特定的接收机的时候,该发射机利用存储的参数致力于最大化对该接收机的数据传输速率。同样地,当接收机从特定的发射机接收数据分组的时候,接收机可以利用存储的通信参数用于接收。
因此,本发明的多个方面涉及多载波调制通信系统。
本发明的额外的方面涉及在收发机之间发送消息的有线或者无线多载波调制通信系统。
本发明额外的方面涉及在多个收发机之间发送消息,以致力于最优化数据通信速率。
本发明进一步的方面涉及在多载波调制系统中的多个接收机之间交换最优化的通信参数。
本发明额外的方面涉及在有线或者无线多载波调制通信网络中的多个收发机之间交换通信参数,以在收发机之间调节数据传输速率。
本发明的这些和其他的特点及优点在以下实施例的详细说明中加以描述或者从其中清晰可见的。


参考下列附图将详细描述本发明的实施例,其中图1为根据本发明的一示范的通信系统的功能方框图;图2为根据本发明的第一和第二收发机部件的功能方框图;图3为根据本发明的一示范的通信方法的流程图;图4为根据本发明的一示范的扩展的信号字段;图5为根据本发明的第两个示范的通信系统;及图6为根据本发明的第两个示范的实施例的示范的收发机。
具体实施例方式
下面将相关于多载波调制通信系统描述本发明示范的系统和方法。但是,为了使本发明更加清晰,以下的描述省略公知的结构和设备,其可以以方框图形式或者别的方式概括来示出。为了解释的目的,许多的特定细节被阐述,以便提供对本发明彻底的了解。但是应该理解,除了在此处专门详细阐述的之外,可以以各种方法实践本发明。例如,本发明的系统和方法通常可以被应用于任何类型的通信系统,包括有线通信系统、无线通信系统,诸如无线局域网、输电线通信系统、有线或者无线电话线路通信系统,或者其任意的组合。
此外,虽然在此处说明的示范的实施例显示了该通信系统配置的各种各样的部件,应该理解,该系统的各种部件可以被设置在分布式网络的远距离的部分上,诸如远程通信网和/或互联网,或者在专用的多载波调制系统内。因此,应该理解,该通信系统的部件可以结合成一个或多个设备,或者配置在分布式网络的特定的节点上,诸如远程通信网。从以下的描述中将理解,出于对计算效率的考虑,该通信系统的部件可以被布置在分布式网络内的任何位置上,而不影响该系统的操作。
此外,应该理解,连接这些单元的各种各样的链路可以是有线或者无线链路,或者其任意的组合,或者任何其它已知的或者稍后开发的单元,该单元能够提供和/或交换信息出入这些连接的单元。另外,在此处使用的该术语模块可以涉及任何已知的或者稍后开发的硬件、软件或者硬件和软件的组合,其能够执行与那个单元有关的功能。
另外,虽然将相关于多载波调制系统描述本发明,本发明的系统和方法可以应用在任何的通信系统或者用于发送信息的传输协议。
图1示出了一个示范的通信系统1。通信系统1包含一个或多个基站10和一个接入点(AP)20。这个示范的实施例示出了一个无线局域网,其中多个基站10与接入点20通信。尤其是,在其示范的无线局域网中,多个基站10共享一个公共的通信介质。一种可能的配置包括一个用于基站10(BSS)之间通信的接入点20。接入点20在基站10之间,及例如给其它的有线和/或无线网络(未示出)提供本地中继功能。因此,当基站1与基站2通信的时候,该通信(例如,数据分组)是从基站1发送给接入点20,然后从接入点20到基站2。由于这个缘故,在大多数情况下,基站10仅发送数据分组给接入点20,和从接入点20接收数据分组。另一方面,接入点20必须与该网络中所有的基站10通信。
另一个可能的配置不依靠接入点20,而是代之以直接在该网络中的基站10(IBSS)之间进行通信,在图1中以虚线表示。在这个实施例中,直接在基站10之间发生通信,不存在由接入点20提供的中继功能。
根据本发明示范的实施例,该无线网络依靠在多个收发机之间交换参数,尤其是从接收机到发射机。这些参数被存储在发射机上,并且被用于随后传送数据分组到该参数来源于的接收机。因此,无论该网络被配置具有接入点20与否,作为每个基站包括该接入点,如果使用,保存包含该通信参数的表,本发明的系统和方法将同样地工作。
一些不同类型的通信参数可以从接收机发送给发射机,以最优化通信,例如提高或者降低数据传输速率。通常,可以改变性能的任何参数可以被包括在该消息中。以下的例子是可以在接收机和发射机之间交换的更通用类型的通信参数。
位配置表(Bit Allocation Table)——位配置表在多载波调制系统中规定在每个载波上调制的位数,在多载波调制系统中该载波也被称为子信道、副载波、单音或者二进制数。802.11a/g收发机在所有的子信道上使用相同的位数,它是最简单的位配置表。由于无线通信经历多路径,在频率方面该通信信道不是平坦的,这意味着不同的副载波将具有不同的信噪比。因此,为了在所有的载波上实现恒定的误码率,使用一个位配置表,使得具有较高信噪比的载波比具有较低信噪比的载波调制更多的位。这个过程通常被称为“位加载”。位加载和位配置表已经在ADSL多载波通信系统中使用了很多年。例如,ITU标准G.992.1和G.992.2是国际间的ADSL标准,其被作为参考资料完整地结合在此处,其详述了使用位加载和位配置表的通信。位加载也能够使用比64QAM(6比特)更高的构象尺寸(constellation size),64QAM是标准802.11a/g系统最大的构象尺寸。如果该信道支持,可以使用调制达到15比特或更多的位加载构象,从而实现很大的数据传输速率改善。
编码调制参数——使用编码调制技术的系统,诸如格状编码调制和turbo编码调制比未结合调制和前向纠错编码的系统实现更高的编码优点。但是,编码调制方案不编码所有的信息位,因此,编码调制必须与多径信道中的位加载相结合,以便实现该编码的增益权益。
可变循环前缀(cyclic prefix)长度——循环前缀在多载波系统中使用以抗击多路径。通常,只要信道的脉冲响应小于该循环前缀长度,由于信道多路径就会不存在码间干扰(inter-symbolinterference)或者信道间(inter-channel)干扰。但是,由于该循环前缀是被加到每个通信码元的冗余循环扩展,该循环前缀也导致数据传输速率损失。802.11a/g标准使用具有一段0.8微秒长固定的循环前缀,它是码元长度的20%。因此,循环前缀的增加导致20%的数据传输速率降低。如果该信道大约是与循环前缀相同的长度,这是良好的折衷。但是,如果该信道短得多,例如仅0.1微秒,那么其使降低循环前缀长度为0.1微秒有意义,以便得到19%的数据传输速率改善。同样地,如果该信道比0.8微秒长得多,该循环前缀应该被扩展以匹配该信道的长度,因为码间干扰和信道间干扰的有效的水平或许将大大地降低能实现的数据传输速率。
可变的导频音(pilot tone)分配——标准802.11a/g接收机使用四个固定的导频音,其在该发射频率频带上扩展。在802.11a/g系统中这是必需的,因为该发射机不知道哪个频带范围部分由于多路径处于深度无效之中。根据本发明一个示范的实施例,接收机可以传达给发射机哪个载波应该用于导频音。由于接收机可以确定哪个载波具有高的信噪比,该接收机可以命令发射机在那些高信噪比载波上设置导频音。实际上,在很多情况下,单个的高信噪比载波足以用于所有的定时恢复需求,从而允许该系统在802.11a/g系统用于导频音的三个载波上发送数据。当与标准802.11a/g系统相比的时候,这也提供数据传输速率提高。
作为选择,通信系统可以不必使任何的载波专用于导频音,即所有被调制的载波被信息位调制。在这种情况下,携带信息位的载波可用于执行“决定指向的”定时恢复算法。例如,用于这种决定指向算法的载波通常将比实际上以规定的误码率可允许的携带更少的位,以便提供具有高信噪比的参考信号。
每个载波的增益微调(fine gain)——增益微调被用于诸如G.992.1的ADSL标准中,以当使用位加载的时候在所有的载波上均衡该误码率。增益微调是在发射功率电平中很小的调整,能够使子信道基于专门测量的信噪比实现该系统所需的误码率。
贯穿以下的论述,本发明示范的实施例将集中到作为原始优化的通信参数的位配置表上,该原始优化的通信参数在许多基站之间交换。这么做是因为位配置表的使用是一种实现优化通信和改变数据传输速率最有效的方式。但是,将应理解,有或者没有位配置表,其他的通信参数仍可以在许多基站之间交换,以实现在数据传输速率方面的改变,这些通信参数包括但不限于增益微调、格状编码调制、导频音位置、可变的循环前缀长度和类似的参数。
为了实现数据传输速率的改变,包含该通信参数的消息从接收机发送给发射机。这些通信参数可以用多种方法通信。例如,该通信参数可以作为肯定的确认数据分组的一部分发送给发射机。在这种情况下,在接收该肯定的确认数据分组之后,发射机将使用包含在肯定的确认数据分组中的这些通信参数,用于后续数据分组的传送。这些通信参数还可以作为诸如管理或者数据帧的一部分发送,该管理或者数据帧的一部分意欲在收发机之间交换信息。例如,通信参数可以被作为在收发机之间发送的任何数据分组的扩展的报头字段的一部分发送。
下面将结合图1和图2论述根据本发明的一个示范的实施例用于交换通信参数的协议的示范实施例。尤其是,图1示出了一个示范的网络1,诸如无线网络。网络1包括由多个链路相互连接的多个基站10和一个接入点20。图2示出了一个示范的与第一和第二收发机有关的组成部分的实施例,例如,基站10或者接入点20。尤其是,第一收发机100包括消息确定模块110、通信参数确定模块120、数据分组确定模块130、发射机140、接收机150、存储器160和控制器170,所有这些由一个链路(未示出)连接。第二收发机200包括消息确定模块210、通信参数确定模块220、数据分组确定模块230、发射机240、接收机250、存储器260和控制器270,所有这些由一个链路(未示出)连接。
为了描述的方便,的用于高速率OFDM通信系统的示范方法将结合第一收发机发送数据分组给第二收发机加以阐述。例如,第一收发机可以是基站2,第二收发机可以是接入点20。或者,第一收发机可以是基站2,第二收发机可以是基站1等等。该协议的相关部分随着第一收发机以一个最大可能的数据传输速率发送数据分组开始,例如用于802.11a/g的54Mbps,以最后成功传送的数据传输速率,或者以已知的数据传输速率。
具体地,该数据分组确定模块130和发射机140、存储器160及控制器170合作协同传送这个第一数据分组,即,在任何优化的通信参数被交换之前,并且使用标准尺寸固定的通信参数设置来发送数据分组,该通信参数设置诸如那些在IEEE 802.11a/g中规定的,例如,在所有的载波上每个音调固定的六个比特。
接下来,如果第二收发机的接收机250成功地从第一收发机100接收数据分组,在数据分组确定调制230、发射机240、存储器260和控制器270的合作下,第二收发机200再次返回给第一收发机一个肯定的确认数据分组。这个肯定的确认数据分组还包括由通信参数确定模块220确定的优化的通信参数,以被第二收发机200用于随后从第一收发机100接收数据分组。例如,该肯定的确认数据分组可以包含一个具有每个副载波不同的位的位配置表,例如,基于由第二收发机200测量的和由通信参数确定模块220确定的信道特性。作为选择,或者此外,这个确认数据分组还可以指示如上所述任意的优化的传输参数,例如,如上所述的应该作为导频音使用的一个或多个载波。
如果第二收发机200没有成功地从第一收发机100接收数据分组,第二收发机200不返回给第一收发机一个肯定的确认数据分组。在这种情况下,第一收发机100再次和数据分组确定模块130、发射机140、存储器160和控制器170合作以下一最高的或者另一个已知的标准数据传输速率发送数据分组。
如果第一收发机100接收肯定的确认数据分组,第一收发机和存储器160合作存储该优化的通信参数。然后,第一收发机100使用存储的通信参数,用于将后续的数据分组传送给第二收发机200。优化的通信参数的使用被表示在从第一收发机100发送给第二收发机200的数据分组的报头字段中。例如,消息确定模块110改变报头字段以表示哪一个优化的通信参数正被使用。
第二收发机的接收机250从第一收发机100接收该数据分组,并且基于在数据分组的数据字段中的信息,确定哪一个通信参数被使用。例如,这是通过解码该数据分组的报头字段实现的,该数据分组的报头字段表示正在使用的优化的通信参数。然后,基于与使用优化的通信参数的消息确定/解码模块210相结合的数据字段中包含的信息,该数据分组可以被解调和解码,该优化的通信参数在先前的肯定的确认数据分组中从第二收发机发送给第一收发机。
在第二收发机200从第一收发机100接收具有指定哪一个优化通信参数被使用的报头字段的数据分组之后,第二收发机200发送肯定的确认返回给第一收发机100。这个肯定的确认可以包含与用于最后成功接收的数据分组相同的参数,作为一个给第二收发机200的用存储的优化的通信参数继续发送的指示。同样地,该肯定的确认可以只是一个基础的确认数据分组,如在常规的802.11a/g系统中,以表示该数据分组被成功地在第二收发机上接收,并且通信应该使用相同的优化的通信参数继续。如果优化的通信参数在扩展的通信对话期间伴随所有的肯定的确认,这个机制有效地跟踪。
作为选择,第二收发机200可以在确认消息中发送新的、第二组优化的通信参数。这些新的参数例如可以请求在数据传输速率方面改变,诸如更高的数据传输速率。在这种情况下,在接收确认数据分组之后,第一收发机100可以使用第二组优化的通信参数开始传送。
在第二收发机200没有成功地接收由第一收发机100发送的数据分组的情况下,第二收发机200将不发送肯定的确认返回给第一收发机100,其中该数据分组具有指定哪一个通信参数被使用的修改的报头字段。在这种情况下,第一收发机100将确定该优化的通信参数不再有效,并且将通过返回到第一步重新开始协议,这里第一收发机100将使用固定的/标准通信参数,以已知的数据传输速率开始通信,诸如最高的数据传输速率(例如在802.11a/g系统中54Mbps)。
在使用第一组优化的参数传送数据分组之后,在第一收发机100从第二收发机200接收肯定的确认,并且这个肯定的确认包含新的、第二组优化的参数的情况下,这些新的参数应该被用于后续的数据分组传送。但是,在使用第二组优化参数发送数据分组之后,如果第二收发机200没有接收肯定的确认数据分组,那么第二收发机200恢复到该协议的第一步,数据分组以已知的诸如下一最高的数据发送。但是,在这种情况下,第一收发机可以通过使用第一组优化的通信参数传送或者通过使用固定/标准通信参数(例如在802.11a/g标准中54Mbps)的数据传输速率传送而开始。
作为选择,或者此外,第一收发机100和第二收发机200可以周期性地发送“参考”或者“训练”数据分组,其可以由该收发机的接收机部分和该通信参数确定模块一起使用,以确定优化的传输参数。例如,这些训练数据分组可以是包含该收发机已知信号的数据分组。例如,该训练数据分组可以是在基站和网络之间没有数据发送期间发送的携带非信息的数据分组。由于这些数据分组被预先确定和在接收之前为接收机所知,接收机可以使用它们去精确地测量该信道的效果,例如多路径分布、每个载波的信噪比等等。这些训练数据分组还可以用于训练接收机均衡器,该接收机均衡器用来均衡诸如无线信道和/或接收机滤波器和/或发射机滤波器。
在常规的无线局域网系统中,每个数据分组包含一个报头字段,其表示用于传送该数据分组的数据字段的数据传输速率。该报头字段使用固定的调制/编码方案发送,诸如以802.11a/g标准,因此可以由所有的基站解调。根据本发明一个示范的实施例,该报头字段还将表示优化的通信参数是否被用在数据分组中发送数据字段。这可以用多种方法做到。例如,该报头字段可以如802.11a/g中的包含数据传输速率的指示。另外,该报头字段可以包含一个位字段,其表示是否将使用该优化的通信参数。这个位字段可以是单个位,其表示是使用上一次交换的优化的通信参数,还是使用标准固定通信参数的一个。另外,该位字段可以是表示多个优化的通信参数组的一个的多个位。
在具有接入点20的网络例子中,当发送数据分组给该接入点20的时候,每个基站发射机将存储要被使用的优化的通信参数。这些优化的参数将由接入点20接收机产生,并且发送给如上所述的基站。显而易见,由于每个基站10处于不同的位置,并且可能移动,在发送数据分组给接入点20的时候,每个基站发射机可能具有被使用的不同的优化参数。接入点20还必须存储这些优化的参数,这些参数当从不同的基站10接收数据分组的时候被该接入点20接收机使用。对于每个基站10,接入点20可以具有不同组的优化参数。由于接入点20从所有的基站接收数据分组,接入点20必须能够基于在分组报头中的信息(即信号字段)来确定被用于该数据字段的参数。接入点20可以使用分组报头来确定是否使用了该优化的参数,但是由于接入点20不知道哪一个基站实际上发送该数据分组,接入点20不能单独基于该报头确定正确的参数。
因此,根据本发明示范的实施例,该报头还包括一个位字段,其表示哪一个基站发送该数据分组。在这种情况下,接入点20将使用这些信息去确定应该使用哪组参数。作为选择,接入点20可以使用其它的措施去确定哪个基站发送该数据分组。例如,接入点20可以使用该接收信号的功率,基于频率均衡器抽头的信道估算、载波偏移值等等。
在诸如具有接入点20的无线局域网的网络例子中,当发送数据分组给特定的基站10的时候,接入点发射机将存储被使用的优化的通信参数。这些优化的通信参数将由基站接收机产生,并且发送给如上所述的接入点20。显而易见,由于每个基站处于不同的位置,当发送数据分组给不同的基站10的时候,该接入点20可以具有被使用的多组不同的优化通信参数。然后,当从该接入点20接收数据分组的时候,每个基站10也存储对应于要被基站接收机使用的那个基站的优化通信参数。每个基站10也应该能够基于在分组报头中的信息(即信号字段)来确定被用于数据字段的通信参数。因此,每个基站10使用分组报头来确定是否已经使用该优化的通信参数。与接入点接收机不同,每个基站接收机意欲仅从接入点20接收数据分组,因此基站10也许能单独基于该报头确定该通信参数。
由于所有的基站将从接入点20接收数据分组,每个基站必须也能够基于前同步码和分组报头(即信号字段)来确定被用于该数据字段的通信参数。显而易见,如果该数据分组不是为特定的基站接收机设计的,该接收机可能使用不正确的优化通信参数去接收数据分组。这实际上是不成问题的,因为该数据分组首先不是为接收机设计的。但是,由于该协议要求发射机去遵从已经在进行中的通信,每个基站必须能够基于该数据分组持续时间确定不同的协议计数器。即使错误的通信参数的使用不允许接收机去正确地解码该消息,报头必须提供一种确定该数据分组持续时间的方式。
如上所述,一旦接收的收发机确定优化的传输参数,接收的收发机需要发送这个信息给发射的收发机,以用于两个设备之间后续的通信。此外,如上述讨论的,该优化的传送信息可以被作为确认数据分组的一部分发送。作为选择,或者此外,该优化的传输参数可以在定期的或者例如触发的基础上,作为管理帧或者规则信息携带帧的一部分被交换。在这两种情况下,该优化的传输参数可以被作为扩展的分组报头字段(亦称为信号字段)的一部分,,或者作为该数据分组信息字段的一部分发送。在一个扩展的分组报头字段的情况下,该信息以固定速率发送,并且可以被该网络中所有的系统解码。例如,在该分组报头字段中的一个位可用于表示一组新的优化的传输参数已经被附加到扩展的分组报头字段。
在后者的情况下,该信息可以使用优化的用于通信的参数被发送。注意到在这种情况下,用于从接收机发送优化的传输参数信息给发射机的该优化的传输参数是不相同的。例如,假定第一收发机150的接收机确定用于从第二收发机的发射机240发射数据分组给第一收发机的接收机150的优化的传送信息。第一收发机的发射机140发送数据分组给第二收发机的接收机250,这里该数据分组包含用于从第二收发机的发射机240发射数据分组给第一收发机的接收机150的优化的传输参数。从第一收发机的发射机140发送给第二收发机的接收机250的该数据分组可以使用标准固定的速率发送,正如在常规的802.11a/g系统中那样的,或者可以使用在第一收发机100和第二收发机200之间交换的优化的传输参数发送。显而易见,用于从第一收发机100和第二收发机200发送的该优化的传输参数已经先在通信对话过程中交换。
图3是一个根据本发明交换通信参数的常规示范的方法的流程图。具体地,控制在步骤S100开始,并且继续到步骤S110。在步骤S110中,第一收发机(指定为T1)确定和发送一个数据分组给第二收发机(指定为T2),以已知的、最高的、上一次成功的或者变化的速率的至少一个发送。接下来,在步骤S120中,进行确定数据分组是否在第二收发机上被成功地接收。如果该数据分组没有被成功地接收,控制跳转至步骤S130。否则,控制继续至步骤S140。
在步骤S130中,指定数据传输速率的该通信参数根据情况而增加/减少。然后,控制继续返回到步骤S110。
在步骤S140中,第二收发机返回给第一收发机一个肯定的确认,其可以或者可以不必包括优化的通信参数。如果该肯定的确认包含优化的通信参数,第二收发机存储这些参数。接下来,在步骤S150中,第一收发机接收该确认。然后,在步骤S160中,如果从第二收发机返回的该肯定的确认包含通信参数,第一收发机存储该优化的通信参数。然后,控制继续到步骤S170。
在步骤S170中,第一收发机确定一个报头字段。然后,在步骤S180中,第一收发机使用该存储的优化的通信参数开始通信。然后,在步骤S190中,进行确定是否第二收发机接收到该数据分组。如果该数据分组被接收,控制继续至步骤S200。否则,控制跳转至步骤S130。
在步骤S200中,第二收发机解码该报头字段,并确定要使用的该通信参数。接下来,在步骤S210中,第二收发机使用存储的优化的通信参数解调和解码该数据字段。然后,在步骤S220中,第二收发机确定该确认返回给第一收发机。然后控制继续至步骤S230。
在步骤S230中,第二收发机发送该确认给第一收发机。这个消息可以或者可以不必包含优化的通信参数。然后,控制继续至步骤S240,在这里该控制程序结束。
上述讨论到的基本概念还可以扩展至传统系统。在下面的论述中,仅执行当前的802.11a/g标准的基站将被称为传统基站。能够以本发明的方法通过优化的通信参数提供高速率数据通信的基站被称为扩展速率(ER)基站。使得交换、发送和接收使用这些优化的通信参数的方法和协议被称为扩展速率系统和协议。在这个示范的实施例中,一个扩展速率基站也支持当前的802.11a/g标准。
例如,图5示出了一个示范的通信系统500,其包括多个扩展速率基站510、520,一个或多个传统基站530,和例如一个接入点540。
当工作在具有传统基站530和扩展速率基站510、520的环境中的时候,存在两个主要互操作性要求以确保网络稳定性。首先,传统基站530必须能够接收ER分组报头(信号字段),并且使用该信号字段参数以正确地确定该数据分组持续时间,即数据分组传输需要的时间。这将保证传统基站530正确地设置其网络分配矢量(NAV)和其他相关的计数器,使得用于介质访问的争用算法精确的操作将被保持。
其次,如果该数据分组意欲用于该基站,扩展速率基站510、520必须能够基于扩展速率分组报头确定传输参数,例如位配置表。此外,不是意欲接收该数据分组的扩展速率基站也必须使用该信号字段参数,以正确地确定该数据分组持续时间,即分组传输需要的时间。这将确保该扩展速率基站正确地设置其网络分配矢量和其他相关的计数器,使得用于介质访问的争用算法精确的操作将被保持。
为了确保满足两个上述的要求,图4示出了一个示范的使用扩展信号字段的修改的分组报头。在这个说明性的802.11a例子中,该信号字段被扩展。该扩展的信号字段的第一部分具有与标准802.11a信号字段报头相同的结构。该扩展的信号字段的第一个码元按照如在IEEE 802.11a中指定用于标准信号字段的信号调制编码参数来调制,即6Mbps BPSK,编码速率=1/2。因此,传统基站可以正确地从该扩展的信号字段的第一部分接收该信号字段位。
在下一个码元中该扩展的信号字段的第二部分包含发射机(TX)和接收机(RX)基站标识符。这些扩展的信号字段位也被使用802.11a6Mbps,编码速率=1/2的调制方法来调制。在图4中,这些扩展的信号字段位在该扩展的信号字段报头的第二码元中发送,在标准802.11a系统中该码元对应于数据码元编号一。
由于在图5中示出了的示范的通信系统500中存在传统以及扩展速率基站两者,一个扩展的速率基站需要能够确定和识别何时接收的数据分组包含扩展的信号字段报头,与标准802.11a报头相反,其包含在两个码元中,标准802.11a报头仅包含在一个码元中。这可以通过在标准802.11a信号字段中设置一个位来实现。这个位将被称为ER使能位。作为一个例子,802.11a在速率(RATE)字段和长度(LENGTH)字段之间保留的位可以被用作ER使能位。例如,当这个保留的位(R)被设置为1的时候,这表示一个扩展速率报头正在被使用。当该保留的位(R)被设置为0的时候,这表示一个标准802.11a报头正在被使用。
再次参考图5,其示出了两个ER基站510和520以及传统基站530和一个扩展速率接入点540。在图5中不同的链路表示例如一个扩展速率数据分组的通信路径,其中ER使能位(R)被标记在预备的位R位置中,并且发射机/接收机基站标识符(TX/RX STA ID)存在于该扩展的信号字段中。
下面将结合图5和图6论述示范的发生在不同的基站之间的通信。尤其是,图6示出了可能存在于图5的基站中的示范的组成部分。尤其是,基站600包括消息确定模块610、通信参数确定模块620、数据分组确定模块630、ER检测模块640、基站ID解码器/编码器650、接收机660、发射机670、存储器680和控制器690。在基站600中示出的许多的组成部分类似于那些在第一收发机100和第二收发机200中看到的。因此,不想再讨论与本发明的这个实施例有关联的这些组成部分的功能。
通信路径1从接入点540传送数据分组到ER使能基站,例如ER基站510。
接入点540转发给ER基站510一个数据分组。该ER基站510在ER检测模块640的合作下检测ER使能位,并且确定该数据分组是一个ER数据分组。
接下来,基站ID解码器/编码器650解码RX STA ID位和扩展的报头字段,以确定是否接收的数据分组意欲用于这个特定的基站。ER基站510在基站ID解码器/编码器650的合作下也解码在扩展的速率报头中的TX STA ID,并且确定是否这个数据分组是来自接入点540。基于这个信息,接收扩展速率基站510使用当从接入点540接收该数据分组的时候使用的存储的优化通信参数。扩展速率基站510使用该优化参数,以正确地解码该数据分组剩余的字段,即数据字段。自然地,该RX基站早先已经在对话中发送这些优化的通信参数给该接入点。
通信路径2另一个ER使能基站,例如基站520,偶然地从接入点540接收数据分组。
基站520和ER检测模块640合作检测在数据分组中发自接入点540的ER使能位,并且确定该数据分组是一个ER数据分组,以及在STA ID解/编码器650的合作下,解码在扩展的报头字段中的RX STA ID位,并且确定该接收的数据分组不是意欲用于这个特定的基站。然后,如下所述,基于“欺骗的”速率,包含在该信号字段中的长度信息,基站520设置网络分配矢量和相关的计数器。
由于基站520确定接收的数据分组不是意欲用于它本身,基站520甚至无需解码该数据分组。这个方法的一个额外的好处是当数据分组被接收的时候,基站可以很早就检测其是否是数据分组意欲的接收方,因此如果不是这样,该基站无需解码该数据分组的其余部分。这将例如在基站中节省功率,因为该基站不会耗费解码该数据分组的其余部分所需的处理功率,因此,例如该基站可以进入低功率模式。
通信路径3传统基站530偶然地接收来源于接入点540的数据分组。
传统基站通常没有意识到ER分组报头。因此,除了传统基站530应该忽略的ER使能位之外(因为其是备用的),传统基站530将正确地解码ER数据分组的第一部分,其被包含在该报头字段的第一个码元中,并且与标准802.11a信号字段相同。
基于包含在该信号字段中的“欺骗的”速率/长度信息,该传统基站530设置网络分配矢量和相关的计数器,如在下面论述的,允许802.11a介质占用算法的正确的传统操作。使用该欺骗的速率和长度信息,传统基站530将错误地解调该数据码元,因为该基站不知道优化的通信参数,直到最终CRC错误将导致该数据分组被忽略为止。
通信路径4从ER使能基站510传送数据分组到接入点540。
接入点540检测该ER使能位,确定接收的数据分组是一个ER数据分组,并且解码在扩展报头字段中的该RX STA ID位,以确定是否该数据分组是意欲用于它本身。接入点540也解码在ER报头中的TXSTA ID,并且确定哪个基站发送该数据分组。基于这个信息,接入点540使用该存储的优化通信参数,以当从那个特定的发射机基站接收数据分组的时候使用。然后,接入点540使用该优化的参数,以正确地解码该数据分组剩余的字段,即数据字段。当然,该接入点540早先已经在通信对话中发送该优化的通信参数给该发射机基站。
通信路径5另一个ER使能基站520偶然地接收来源于ER基站510的数据分组。
该基站510在ER检测模块的合作下检测ER使能位,确定这是一个ER数据分组,并且在STA ID解/编码器650的合作下解码在扩展的报头字段中的RX ST ID位,以确定该数据分组不是意欲用于它本身。然后,如在下面论述的,基于“欺骗的”速率,包含在该信号字段中的长度信息,该基站510设置网络分配矢量和相关的计数器。由于基站510知道这个数据分组不是意欲用于它本身,基站510甚至没有必要解码该数据分组。这个方法的一个额外的好处是,当偶然发生这种情况的时候,基站可以很早就检测其不是数据分组意欲的接收方,因此该基站不需要解码该数据分组的其余部分。这将节省例如在基站的功率,因为该基站不会耗费解码该数据分组的其余部分的处理功率,因此该基站例如可以进入低功率模式。
通信路径6传统基站530偶然地接收来源于ER使能基站510的数据分组。
这种情形产生如相对于通信路径3示出了的相同的结果。
“欺骗”速率和长度字段。
当传统基站接收一个ER数据分组的时候,诸如在通信路径3和6中,该传统基站必须能够基于包含在该ER分组报头的第一码元中的标准802.11报头,确定该数据分组的持续时间,即分组传输需要的时间,该报头每个基站可以正确地解码。因此,对于该传统基站,R1-R4位对于ER使能RX STA不具有任何的意义,其必须被设置为一个在802.11a标准中使用的合理的模式,在表1中示出。另外,该长度字段必须以一种方式和速率字段一起填写,这种方式是基于“欺骗的”速率和长度参数将与使用优化的通信参数的ER RX STA所需的那个重合,该传统RX STA计算数据分组传输所需的时间。这将保证该传统基站正确地设置其网络分配矢量和其他相关的计数器,因此,将保持用于介质访问的争用算法精确的操作。
当数据分组不是意欲用于ER使能RX STA接收的时候,诸如在情况2和5下,ER使能RX STA将也采用在信号字段中示出的欺骗的速率、长度信息。一旦ER使能RX STA确认保留的位R被接通,该ER使能RXSTA检查扩展信号码元,并且基于该RX STA ID,确定这个数据分组不是意欲用于它本身。基于在该信号字段中的该“欺骗的”速率和长度信息,该RX STA以完全和传统基站相同的方式,以涉及虚拟载波感测(virtual carrier sense)算法设置该计数器,然后可以进入功率节省模式。
作为一个例子,该ER数据传输速率是108Mbps,其是常规的802.11a系统的最大数据传输速率(54Mbps)的两倍。这可以通过例如位加载和使用格状编码调制来实现。以108Mbps发射的系统每个码元将具有432个数据位。因此,例如以864个字节发送一个数据分组将需要864*8/432=16个码元。此外,与标准802.11a系统相比较,该ER协议需要在ER报头中附加一个码元,其包含TX和RX基站ID。因此,一个864个字节数据分组以108Mbps发送需要16+1=17码元。为了允许传统802.11a基站正确地确定网络分配矢量,速率和该ER报头的长度字段需要被设置,使得该传统基站也将确定对该数据分组的发送需要17个码元。因此,例如该速率和长度字段可以被设置为速率=54Mbps,和长度=459个字节。在这种情况下,由于54Mbps导致每个码元216个数据位,传统基站将确定数据分组持续时间是459*8/216=17个码元,并且正确地设置该网络分配矢量。显而易见,可以使用来源于802.11a标准其他的速率和长度组合,以能够使该传统基站正确地设置网络分配矢量。例如,速率=6Mbps和长度=51字节也将导致一数据字段是17个码元长的数据分组。
在如上所述的例子中,该扩展的报头字段仅包含RX和TX STA ID。这暗示对于每个TX/RX通信仅存在一组优化的参数。在另一个实施例中,该扩展的报头字段也(或者可选择地)包含一个指示,表明多个优化的通信参数组的哪一个将被用于数据分组的发送和接收。这些参数组从接收机基站发送到发射机基站,并且在每个中保存。
以上所述的通信系统可以在有线或者无线通信设备上实施,诸如调制解调器、多载波调制解调器、DSL调制解调器、ADSL调制解调器、XDSL调制解调器、VDSL调制解调器、多载波收发机、有线或者无线广域网/局域网络系统等等,或者在具有通信设备的分离的编程通用计算机上实施。另外,本发明的系统、方法和协议可以在专用计算机、编程的微处理器或者微控制器和外部集成电路单元、ASIC或者其他的集成电路、数字信号处理器、硬连线电子或逻辑电路,诸如分立元件电路、可编程序逻辑设备(诸如PLD、PLA、FPGA、PAL),调制解调器,发射机/接收机等等上实施。通常,能够执行状态机的任何的设备可用于执行根据本发明的不同的通信方法,该状态机随后能够执行在此处示出的流程图。
此外,公开的方法可以容易地以使用对象或者面向对象的软件开发环境的软件来实现,其提供可以在各种计算机或者工作站平台上使用的可移植的源代码。另外,公开的通信系统可以使用标准逻辑电路或者VLSI设计而部分或者完全地用硬件来实现。使用软件还是硬件来实现根据本发明的系统,取决于该系统的速度和/或效率需求,以及被使用的特定的功能和特定的软件或者硬件系统或者微处理器或者微型计算机系统。但是,在此处示出了的通信系统、方法和协议可以容易地由本领域技术人员从在此处提供的功能描述中,使用任何已知的或者稍后开发的系统或者结构、设备和/或软件,和借助计算机和远程通信领域常规的基础知识,以硬件和/或软件来实现。
此外,公开的方法可以容易地以在编程的通用计算机、专用计算机、微处理器等等上执行的软件来实现。在这种情况下,本发明的系统和方法可以作为嵌入在个人计算机上的程序,诸如JAVA或者CGI文字,作为驻留在服务器或者图形工作站上的资源,作为嵌入在专用通信系统中的例行程序等等来实现。该通信系统还可以通过物理上将该系统和方法结合到一个软件和/或硬件系统之中来实现,例如通信收发机的硬件和软件系统。
因此很明显的,已经提供了根据本发明用于交换通信参数的系统和方法。虽然已经结合多个实施例描述了本发明,很明显,很多的替换、修改和变化对于那些本领域技术人员将是显而易见的。因此,本发明的精神和范围之内所有的上述的替换、修改、等效和变化将包含在权利要求书中。
权利要求
1.一种用于在无线多载波通信系统中最优化通信的方法,包括以第一速率发送数据分组;基于该接收的数据分组,确定通信参数;发送一个包含该通信参数的确认;和基于该通信参数开始通信。
2.如权利要求1所述的方法,进一步包括确定一个表示正在用于通信的通信参数的报头字段。
3.如权利要求1所述的方法,进一步包括基于在报头字段中的信息,解调和解码接收的数据。
4.如权利要求1所述的方法,进一步包括如果没有接收到该数据分组,切换到以第二速率发送。
5.如权利要求1所述的方法,进一步包括发送一个表示该数据分组被成功地接收的确认,并且基于该通信参数继续通信。
6.如权利要求1所述的方法,其中该通信系统包括一个或多个基站、接入点和传统基站。
7.如权利要求1所述的方法,其中一个扩展速率的扩展信号字段确定该通信参数。
8.一种用于在无线多载波通信系统中最优化通信的系统,包括用于以第一速率发送数据分组的装置;用于基于该接收的数据分组,确定通信参数的装置;用于发送一个包含该通信参数的确认的装置;和用于基于该通信参数开始通信的装置。
9.一种在无线多载波通信系统中最优化通信的协议,包括以第一速率发送数据分组;基于该接收的数据分组,确定通信参数;发送一个包含该通信参数的确认;和基于该通信参数开始通信。
10.一种在无线多载波通信系统中包含最优化通信信息的信息存储介质,包括以第一速率发送数据分组的信息;基于该接收的数据分组,确定通信参数的信息;发送一个包含该通信参数的确认的信息;和基于该通信参数开始通信的信息。
11.一种在无线多载波通信系统中最优化通信的系统,包括一个以第一速率发送数据分组的收发机;一个基于该接收的数据分组来确定通信参数的通信参数确定模块;和一个发送包含该通信参数的确认的第二收发机,其中该收发机基于该通信参数开始通信。
全文摘要
在接收机(150)和发射机(240)之间传送的消息被用于最大化通信数据传输速率。尤其是,多载波调制系统使用从接收机发送给发射机的消息,以交换一组或多组最优化的通信参数。然后,发射机存储这些通信参数,并且当发送给该特定的接收机的时候,该发射机利用存储的参数致力于最大化对那些接收机的数据传输速率。同样地,当接收机从该特定的发射机接收数据分组的时候,接收机可以利用存储的通信参数用于接收。
文档编号H04L12/26GK1640033SQ03805540
公开日2005年7月13日 申请日期2003年3月7日 优先权日2002年3月8日
发明者M·C·察内斯, D·李, T·库克利夫, C·兰齐 申请人:艾威尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1